File size: 2,554 Bytes
3c87692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""Load html from files, clean up, split, ingest into Weaviate."""
import os
from pathlib import Path

import weaviate
from bs4 import BeautifulSoup
from langchain.text_splitter import CharacterTextSplitter


def clean_data(data):
    soup = BeautifulSoup(data)
    text = soup.find_all("main", {"id": "main-content"})[0].get_text()
    return "\n".join([t for t in text.split("\n") if t])


docs = []
metadatas = []
for p in Path("langchain.readthedocs.io/en/latest/").rglob("*"):
    if p.is_dir():
        continue
    with open(p) as f:
        docs.append(clean_data(f.read()))
        metadatas.append({"source": p})


text_splitter = CharacterTextSplitter(
    separator="\n",
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
)

documents = text_splitter.create_documents(docs, metadatas=metadatas)


WEAVIATE_URL = os.environ["WEAVIATE_URL"]
client = weaviate.Client(
    url=WEAVIATE_URL,
    additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
)

client.schema.delete_class("Paragraph")
client.schema.get()
schema = {
    "classes": [
        {
            "class": "Paragraph",
            "description": "A written paragraph",
            "vectorizer": "text2vec-openai",
            "moduleConfig": {
                "text2vec-openai": {
                    "model": "ada",
                    "modelVersion": "002",
                    "type": "text",
                }
            },
            "properties": [
                {
                    "dataType": ["text"],
                    "description": "The content of the paragraph",
                    "moduleConfig": {
                        "text2vec-openai": {
                            "skip": False,
                            "vectorizePropertyName": False,
                        }
                    },
                    "name": "content",
                },
                {
                    "dataType": ["text"],
                    "description": "The link",
                    "moduleConfig": {
                        "text2vec-openai": {
                            "skip": True,
                            "vectorizePropertyName": False,
                        }
                    },
                    "name": "source",
                },
            ],
        },
    ]
}

client.schema.create(schema)

with client.batch as batch:
    for text in documents:
        batch.add_data_object(
            {"content": text.page_content, "source": str(text.metadata["source"])},
            "Paragraph",
        )