import json import os import pathlib from typing import Dict, List, Tuple import weaviate from langchain import OpenAI, PromptTemplate from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain.chains.combine_documents.base import BaseCombineDocumentsChain from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chains.question_answering import load_qa_chain from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import FewShotPromptTemplate, PromptTemplate from langchain.prompts.example_selector import \ SemanticSimilarityExampleSelector from langchain.vectorstores import FAISS, Weaviate from pydantic import BaseModel class CustomChain(Chain, BaseModel): vstore: Weaviate chain: BaseCombineDocumentsChain key_word_extractor: Chain @property def input_keys(self) -> List[str]: return ["question"] @property def output_keys(self) -> List[str]: return ["answer"] def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: question = inputs["question"] chat_history_str = _get_chat_history(inputs["chat_history"]) if chat_history_str: new_question = self.key_word_extractor.run( question=question, chat_history=chat_history_str ) else: new_question = question print(new_question) docs = self.vstore.similarity_search(new_question, k=4) new_inputs = inputs.copy() new_inputs["question"] = new_question new_inputs["chat_history"] = chat_history_str answer, _ = self.chain.combine_docs(docs, **new_inputs) return {"answer": answer} def get_new_chain1(vectorstore) -> Chain: WEAVIATE_URL = os.environ["WEAVIATE_URL"] client = weaviate.Client( url=WEAVIATE_URL, additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]}, ) _eg_template = """## Example: Chat History: {chat_history} Follow Up Input: {question} Standalone question: {answer}""" _eg_prompt = PromptTemplate( template=_eg_template, input_variables=["chat_history", "question", "answer"], ) _prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to LangChain.""" _suffix = """## Example: Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" eg_store = Weaviate( client, "Rephrase", "content", attributes=["question", "answer", "chat_history"], ) example_selector = SemanticSimilarityExampleSelector(vectorstore=eg_store, k=4) prompt = FewShotPromptTemplate( prefix=_prefix, suffix=_suffix, example_selector=example_selector, example_prompt=_eg_prompt, input_variables=["question", "chat_history"], ) llm = OpenAI(temperature=0, model_name="text-davinci-003") key_word_extractor = LLMChain(llm=llm, prompt=prompt) EXAMPLE_PROMPT = PromptTemplate( template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}", input_variables=["page_content", "source"], ) template = """You are an AI assistant for the open source library LangChain. The documentation is located at https://langchain.readthedocs.io. You are given the following extracted parts of a long document and a question. Provide a conversational answer with a hyperlink to the documentation. You should only use hyperlinks that are explicitly listed as a source in the context. Do NOT make up a hyperlink that is not listed. If the question includes a request for code, provide a code block directly from the documentation. If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer. If the question is not about LangChain, politely inform them that you are tuned to only answer questions about LangChain. Question: {question} ========= {context} ========= Answer in Markdown:""" PROMPT = PromptTemplate(template=template, input_variables=["question", "context"]) doc_chain = load_qa_chain( OpenAI(temperature=0, model_name="text-davinci-003", max_tokens=-1), chain_type="stuff", prompt=PROMPT, document_prompt=EXAMPLE_PROMPT, ) return CustomChain(chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor) def _get_chat_history(chat_history: List[Tuple[str, str]]): buffer = "" for human_s, ai_s in chat_history: human = f"Human: " + human_s ai = f"Assistant: " + ai_s buffer += "\n" + "\n".join([human, ai]) return buffer