import importlib import math from collections import defaultdict from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Tuple, Union import imageio import numpy as np import PIL.Image import rembg import torch import torch.nn as nn import torch.nn.functional as F import trimesh from omegaconf import DictConfig, OmegaConf from PIL import Image def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any: scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg) return scfg def find_class(cls_string): module_string = ".".join(cls_string.split(".")[:-1]) cls_name = cls_string.split(".")[-1] module = importlib.import_module(module_string, package=None) cls = getattr(module, cls_name) return cls def get_intrinsic_from_fov(fov, H, W, bs=-1): focal_length = 0.5 * H / np.tan(0.5 * fov) intrinsic = np.identity(3, dtype=np.float32) intrinsic[0, 0] = focal_length intrinsic[1, 1] = focal_length intrinsic[0, 2] = W / 2.0 intrinsic[1, 2] = H / 2.0 if bs > 0: intrinsic = intrinsic[None].repeat(bs, axis=0) return torch.from_numpy(intrinsic) class BaseModule(nn.Module): @dataclass class Config: pass cfg: Config # add this to every subclass of BaseModule to enable static type checking def __init__( self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs ) -> None: super().__init__() self.cfg = parse_structured(self.Config, cfg) self.configure(*args, **kwargs) def configure(self, *args, **kwargs) -> None: raise NotImplementedError class ImagePreprocessor: def convert_and_resize( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], size: int, ): if isinstance(image, PIL.Image.Image): image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0) elif isinstance(image, np.ndarray): if image.dtype == np.uint8: image = torch.from_numpy(image.astype(np.float32) / 255.0) else: image = torch.from_numpy(image) elif isinstance(image, torch.Tensor): pass batched = image.ndim == 4 if not batched: image = image[None, ...] image = F.interpolate( image.permute(0, 3, 1, 2), (size, size), mode="bilinear", align_corners=False, antialias=True, ).permute(0, 2, 3, 1) if not batched: image = image[0] return image def __call__( self, image: Union[ PIL.Image.Image, np.ndarray, torch.FloatTensor, List[PIL.Image.Image], List[np.ndarray], List[torch.FloatTensor], ], size: int, ) -> Any: if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4: image = self.convert_and_resize(image, size) else: if not isinstance(image, list): image = [image] image = [self.convert_and_resize(im, size) for im in image] image = torch.stack(image, dim=0) return image def rays_intersect_bbox( rays_o: torch.Tensor, rays_d: torch.Tensor, radius: float, near: float = 0.0, valid_thresh: float = 0.01, ): input_shape = rays_o.shape[:-1] rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3) rays_d_valid = torch.where( rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d ) if type(radius) in [int, float]: radius = torch.FloatTensor( [[-radius, radius], [-radius, radius], [-radius, radius]] ).to(rays_o.device) radius = ( 1.0 - 1.0e-3 ) * radius # tighten the radius to make sure the intersection point lies in the bounding box interx0 = (radius[..., 1] - rays_o) / rays_d_valid interx1 = (radius[..., 0] - rays_o) / rays_d_valid t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near) t_far = torch.maximum(interx0, interx1).amin(dim=-1) # check wheter a ray intersects the bbox or not rays_valid = t_far - t_near > valid_thresh t_near[torch.where(~rays_valid)] = 0.0 t_far[torch.where(~rays_valid)] = 0.0 t_near = t_near.view(*input_shape, 1) t_far = t_far.view(*input_shape, 1) rays_valid = rays_valid.view(*input_shape) return t_near, t_far, rays_valid def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any: if chunk_size <= 0: return func(*args, **kwargs) B = None for arg in list(args) + list(kwargs.values()): if isinstance(arg, torch.Tensor): B = arg.shape[0] break assert ( B is not None ), "No tensor found in args or kwargs, cannot determine batch size." out = defaultdict(list) out_type = None # max(1, B) to support B == 0 for i in range(0, max(1, B), chunk_size): out_chunk = func( *[ arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg for arg in args ], **{ k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg for k, arg in kwargs.items() }, ) if out_chunk is None: continue out_type = type(out_chunk) if isinstance(out_chunk, torch.Tensor): out_chunk = {0: out_chunk} elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): chunk_length = len(out_chunk) out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} elif isinstance(out_chunk, dict): pass else: print( f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." ) exit(1) for k, v in out_chunk.items(): v = v if torch.is_grad_enabled() else v.detach() out[k].append(v) if out_type is None: return None out_merged: Dict[Any, Optional[torch.Tensor]] = {} for k, v in out.items(): if all([vv is None for vv in v]): # allow None in return value out_merged[k] = None elif all([isinstance(vv, torch.Tensor) for vv in v]): out_merged[k] = torch.cat(v, dim=0) else: raise TypeError( f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" ) if out_type is torch.Tensor: return out_merged[0] elif out_type in [tuple, list]: return out_type([out_merged[i] for i in range(chunk_length)]) elif out_type is dict: return out_merged ValidScale = Union[Tuple[float, float], torch.FloatTensor] def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale): if inp_scale is None: inp_scale = (0, 1) if tgt_scale is None: tgt_scale = (0, 1) if isinstance(tgt_scale, torch.FloatTensor): assert dat.shape[-1] == tgt_scale.shape[-1] dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] return dat def get_activation(name) -> Callable: if name is None: return lambda x: x name = name.lower() if name == "none": return lambda x: x elif name == "exp": return lambda x: torch.exp(x) elif name == "sigmoid": return lambda x: torch.sigmoid(x) elif name == "tanh": return lambda x: torch.tanh(x) elif name == "softplus": return lambda x: F.softplus(x) else: try: return getattr(F, name) except AttributeError: raise ValueError(f"Unknown activation function: {name}") def get_ray_directions( H: int, W: int, focal: Union[float, Tuple[float, float]], principal: Optional[Tuple[float, float]] = None, use_pixel_centers: bool = True, normalize: bool = True, ) -> torch.FloatTensor: """ Get ray directions for all pixels in camera coordinate. Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ ray-tracing-generating-camera-rays/standard-coordinate-systems Inputs: H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers Outputs: directions: (H, W, 3), the direction of the rays in camera coordinate """ pixel_center = 0.5 if use_pixel_centers else 0 if isinstance(focal, float): fx, fy = focal, focal cx, cy = W / 2, H / 2 else: fx, fy = focal assert principal is not None cx, cy = principal i, j = torch.meshgrid( torch.arange(W, dtype=torch.float32) + pixel_center, torch.arange(H, dtype=torch.float32) + pixel_center, indexing="xy", ) directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1) if normalize: directions = F.normalize(directions, dim=-1) return directions def get_rays( directions, c2w, keepdim=False, noise_scale=0.0, normalize=False, ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: # Rotate ray directions from camera coordinate to the world coordinate assert directions.shape[-1] == 3 if directions.ndim == 2: # (N_rays, 3) if c2w.ndim == 2: # (4, 4) c2w = c2w[None, :, :] assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) rays_o = c2w[:, :3, 3].expand(rays_d.shape) elif directions.ndim == 3: # (H, W, 3) assert c2w.ndim in [2, 3] if c2w.ndim == 2: # (4, 4) rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( -1 ) # (H, W, 3) rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) elif c2w.ndim == 3: # (B, 4, 4) rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( -1 ) # (B, H, W, 3) rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) elif directions.ndim == 4: # (B, H, W, 3) assert c2w.ndim == 3 # (B, 4, 4) rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( -1 ) # (B, H, W, 3) rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) # add camera noise to avoid grid-like artifect # https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373 if noise_scale > 0: rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale if normalize: rays_d = F.normalize(rays_d, dim=-1) if not keepdim: rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) return rays_o, rays_d def get_spherical_cameras( n_views: int, elevation_deg: float, camera_distance: float, fovy_deg: float, height: int, width: int, ): azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views] elevation_deg = torch.full_like(azimuth_deg, elevation_deg) camera_distances = torch.full_like(elevation_deg, camera_distance) elevation = elevation_deg * math.pi / 180 azimuth = azimuth_deg * math.pi / 180 # convert spherical coordinates to cartesian coordinates # right hand coordinate system, x back, y right, z up # elevation in (-90, 90), azimuth from +x to +y in (-180, 180) camera_positions = torch.stack( [ camera_distances * torch.cos(elevation) * torch.cos(azimuth), camera_distances * torch.cos(elevation) * torch.sin(azimuth), camera_distances * torch.sin(elevation), ], dim=-1, ) # default scene center at origin center = torch.zeros_like(camera_positions) # default camera up direction as +z up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1) fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180 lookat = F.normalize(center - camera_positions, dim=-1) right = F.normalize(torch.cross(lookat, up), dim=-1) up = F.normalize(torch.cross(right, lookat), dim=-1) c2w3x4 = torch.cat( [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]], dim=-1, ) c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1) c2w[:, 3, 3] = 1.0 # get directions by dividing directions_unit_focal by focal length focal_length = 0.5 * height / torch.tan(0.5 * fovy) directions_unit_focal = get_ray_directions( H=height, W=width, focal=1.0, ) directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1) directions[:, :, :, :2] = ( directions[:, :, :, :2] / focal_length[:, None, None, None] ) # must use normalize=True to normalize directions here rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True) return rays_o, rays_d def remove_background( image: PIL.Image.Image, rembg_session: Any = None, force: bool = False, **rembg_kwargs, ) -> PIL.Image.Image: do_remove = True if image.mode == "RGBA" and image.getextrema()[3][0] < 255: do_remove = False do_remove = do_remove or force if do_remove: image = rembg.remove(image, session=rembg_session, **rembg_kwargs) return image def resize_foreground( image: PIL.Image.Image, ratio: float, ) -> PIL.Image.Image: image = np.array(image) assert image.shape[-1] == 4 alpha = np.where(image[..., 3] > 0) y1, y2, x1, x2 = ( alpha[0].min(), alpha[0].max(), alpha[1].min(), alpha[1].max(), ) # crop the foreground fg = image[y1:y2, x1:x2] # pad to square size = max(fg.shape[0], fg.shape[1]) ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 new_image = np.pad( fg, ((ph0, ph1), (pw0, pw1), (0, 0)), mode="constant", constant_values=((0, 0), (0, 0), (0, 0)), ) # compute padding according to the ratio new_size = int(new_image.shape[0] / ratio) # pad to size, double side ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 ph1, pw1 = new_size - size - ph0, new_size - size - pw0 new_image = np.pad( new_image, ((ph0, ph1), (pw0, pw1), (0, 0)), mode="constant", constant_values=((0, 0), (0, 0), (0, 0)), ) new_image = PIL.Image.fromarray(new_image) return new_image def save_video( frames: List[PIL.Image.Image], output_path: str, fps: int = 30, ): # use imageio to save video frames = [np.array(frame) for frame in frames] writer = imageio.get_writer(output_path, fps=fps) for frame in frames: writer.append_data(frame) writer.close() def to_gradio_3d_orientation(mesh): mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0])) # mesh.apply_scale([1, 1, -1]) mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0])) return mesh