File size: 11,583 Bytes
e60c070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File    :   call_llm.py
@Time    :   2023/10/18 10:45:00
@Author  :   Logan Zou 
@Version :   1.0
@Contact :   loganzou0421@163.com
@License :   (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
@Desc    :   将各个大模型的原生接口封装在一个接口
'''

import openai
import json
import requests
import _thread as thread
import base64
# import datetime
from dotenv import load_dotenv, find_dotenv
import hashlib
import hmac
import os
import queue
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import zhipuai
from langchain.utils import get_from_dict_or_env

import websocket  # 使用websocket_client

def get_completion(prompt :str, model="gpt-3.5-turbo", temperature=0.1,api_key=None, secret_key=None, access_token=None, appid=None, api_secret=None, max_tokens=2048):
    # 调用大模型获取回复,支持上述三种模型+gpt
    # arguments:
    # prompt: 输入提示
    # model:模型名
    # temperature: 温度系数
    # api_key:如名
    # secret_key, access_token:调用文心系列模型需要
    # appid, api_secret: 调用星火系列模型需要
    # max_tokens : 返回最长序列
    # return: 模型返回,字符串
    # 调用 GPT
    if model in ["gpt-3.5-turbo", "gpt-3.5-turbo-16k-0613", "gpt-3.5-turbo-0613", "gpt-4", "gpt-4-32k"]:
        return get_completion_gpt(prompt, model, temperature, api_key, max_tokens)
    elif model in ["ERNIE-Bot", "ERNIE-Bot-4", "ERNIE-Bot-turbo"]:
        return get_completion_wenxin(prompt, model, temperature, api_key, secret_key)
    elif model in ["Spark-1.5", "Spark-2.0"]:
        return get_completion_spark(prompt, model, temperature, api_key, appid, api_secret, max_tokens)
    elif model in ["chatglm_pro", "chatglm_std", "chatglm_lite"]:
        return get_completion_glm(prompt, model, temperature, api_key, max_tokens)
    else:
        return "不正确的模型"
    
def get_completion_gpt(prompt : str, model : str, temperature : float, api_key:str, max_tokens:int):
    # 封装 OpenAI 原生接口
    if api_key is None:
        api_key = parse_llm_api_key("openai")
    openai.api_key = api_key
    # 具体调用
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # 模型输出的温度系数,控制输出的随机程度
        max_tokens = max_tokens, # 回复最大长度
    )
    # 调用 OpenAI 的 ChatCompletion 接口
    return response.choices[0].message["content"]

def get_completion_from_messages(messages, api_key, temperature=0):
    # 封装 OpenAI 原生接口
    if api_key is None:
        api_key = parse_llm_api_key("openai")
    openai.api_key = api_key
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=temperature, # 控制模型输出的随机程度
    )
    return response.choices[0].message["content"]

def get_access_token(api_key, secret_key):
    """
    使用 API Key,Secret Key 获取access_token,替换下列示例中的应用API Key、应用Secret Key
    """
    # 指定网址
    url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={api_key}&client_secret={secret_key}"
    # 设置 POST 访问
    payload = json.dumps("")
    headers = {
        'Content-Type': 'application/json',
        'Accept': 'application/json'
    }
    # 通过 POST 访问获取账户对应的 access_token
    response = requests.request("POST", url, headers=headers, data=payload)
    return response.json().get("access_token")

def get_completion_wenxin(prompt : str, model : str, temperature : float, api_key:str, secret_key : str):
    # 封装百度文心原生接口
    if api_key is None or secret_key is None:
        api_key, secret_key = parse_llm_api_key("wenxin")
    # 获取access_token
    access_token = get_access_token(api_key, secret_key)
    # 调用接口
    url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant?access_token={access_token}"
    # 配置 POST 参数
    payload = json.dumps({
        "messages": [
            {
                "role": "user",# user prompt
                "content": "{}".format(prompt)# 输入的 prompt
            }
        ]
    })
    headers = {
        'Content-Type': 'application/json'
    }
    # 发起请求
    response = requests.request("POST", url, headers=headers, data=payload)
    # 返回的是一个 Json 字符串
    js = json.loads(response.text)
    return js["result"]

def get_completion_spark(prompt : str, model : str, temperature : float, api_key:str, appid : str, api_secret : str, max_tokens : int):
    if api_key is None or appid is None and api_secret is None:
        api_key, appid, api_secret = parse_llm_api_key("spark")
    
    # 配置 1.5 和 2 的不同环境
    if model == "Spark-1.5":
        domain = "general"  
        Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat"  # v1.5环境的地址
    else:
        domain = "generalv2"    # v2.0版本
        Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat"  # v2.0环境的地址

    question = [{"role":"user", "content":prompt}]
    response = spark_main(appid,api_key,api_secret,Spark_url,domain,question,temperature,max_tokens)
    return response

def get_completion_glm(prompt : str, model : str, temperature : float, api_key:str, max_tokens : int):
    # 获取GLM回答
    if api_key is None:
        api_key = parse_llm_api_key("zhipuai")
    zhipuai.api_key = api_key

    response = zhipuai.model_api.invoke(
        model=model,
        prompt=[{"role":"user", "content":prompt}],
        temperature = temperature,
        max_tokens=max_tokens
        )
    return response["data"]["choices"][0]["content"].strip('"').strip(" ")

# def getText(role, content, text = []):
#     # role 是指定角色,content 是 prompt 内容
#     jsoncon = {}
#     jsoncon["role"] = role
#     jsoncon["content"] = content
#     text.append(jsoncon)
#     return text

# 星火 API 调用使用
answer = ""

class Ws_Param(object):
    # 初始化
    def __init__(self, APPID, APIKey, APISecret, Spark_url):
        self.APPID = APPID
        self.APIKey = APIKey
        self.APISecret = APISecret
        self.host = urlparse(Spark_url).netloc
        self.path = urlparse(Spark_url).path
        self.Spark_url = Spark_url
        # 自定义
        self.temperature = 0
        self.max_tokens = 2048

    # 生成url
    def create_url(self):
        # 生成RFC1123格式的时间戳
        now = datetime.now()
        date = format_date_time(mktime(now.timetuple()))

        # 拼接字符串
        signature_origin = "host: " + self.host + "\n"
        signature_origin += "date: " + date + "\n"
        signature_origin += "GET " + self.path + " HTTP/1.1"

        # 进行hmac-sha256进行加密
        signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
                                 digestmod=hashlib.sha256).digest()

        signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')

        authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'

        authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')

        # 将请求的鉴权参数组合为字典
        v = {
            "authorization": authorization,
            "date": date,
            "host": self.host
        }
        # 拼接鉴权参数,生成url
        url = self.Spark_url + '?' + urlencode(v)
        # 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
        return url


# 收到websocket错误的处理
def on_error(ws, error):
    print("### error:", error)


# 收到websocket关闭的处理
def on_close(ws,one,two):
    print(" ")


# 收到websocket连接建立的处理
def on_open(ws):
    thread.start_new_thread(run, (ws,))


def run(ws, *args):
    data = json.dumps(gen_params(appid=ws.appid, domain= ws.domain,question=ws.question, temperature = ws.temperature, max_tokens = ws.max_tokens))
    ws.send(data)


# 收到websocket消息的处理
def on_message(ws, message):
    # print(message)
    data = json.loads(message)
    code = data['header']['code']
    if code != 0:
        print(f'请求错误: {code}, {data}')
        ws.close()
    else:
        choices = data["payload"]["choices"]
        status = choices["status"]
        content = choices["text"][0]["content"]
        print(content,end ="")
        global answer
        answer += content
        # print(1)
        if status == 2:
            ws.close()


def gen_params(appid, domain,question, temperature, max_tokens):
    """
    通过appid和用户的提问来生成请参数
    """
    data = {
        "header": {
            "app_id": appid,
            "uid": "1234"
        },
        "parameter": {
            "chat": {
                "domain": domain,
                "random_threshold": 0.5,
                "max_tokens": max_tokens,
                "temperature" : temperature,
                "auditing": "default"
            }
        },
        "payload": {
            "message": {
                "text": question
            }
        }
    }
    return data


def spark_main(appid, api_key, api_secret, Spark_url,domain, question, temperature, max_tokens):
    # print("星火:")
    output_queue = queue.Queue()
    def on_message(ws, message):
        data = json.loads(message)
        code = data['header']['code']
        if code != 0:
            print(f'请求错误: {code}, {data}')
            ws.close()
        else:
            choices = data["payload"]["choices"]
            status = choices["status"]
            content = choices["text"][0]["content"]
            # print(content, end='')
            # 将输出值放入队列
            output_queue.put(content)
            if status == 2:
                ws.close()

    wsParam = Ws_Param(appid, api_key, api_secret, Spark_url)
    websocket.enableTrace(False)
    wsUrl = wsParam.create_url()
    ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
    ws.appid = appid
    ws.question = question
    ws.domain = domain
    ws.temperature = temperature
    ws.max_tokens = max_tokens
    ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
    return ''.join([output_queue.get() for _ in range(output_queue.qsize())])

def parse_llm_api_key(model:str, env_file:dict()=None):
    """
    通过 model 和 env_file 的来解析平台参数
    """   
    if env_file is None:
        _ = load_dotenv(find_dotenv())
        env_file = os.environ
    if model == "openai":
        return env_file["OPENAI_API_KEY"]
    elif model == "wenxin":
        return env_file["wenxin_api_key"], env_file["wenxin_secret_key"]
    elif model == "spark":
        return env_file["spark_api_key"], env_file["spark_appid"], env_file["spark_api_secret"]
    elif model == "zhipuai":
        return get_from_dict_or_env(env_file, "zhipuai_api_key", "ZHIPUAI_API_KEY")
        # return env_file["ZHIPUAI_API_KEY"]
    else:
        raise ValueError(f"model{model} not support!!!")