import os import cv2 import torch import numpy as np from scipy import misc def load_test_data(image_path, size=256): img = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) if img is None: return None h, w, c = img.shape if img.shape[2] == 4: white = np.ones((h, w, 3), np.uint8) * 255 img_rgb = img[:, :, :3].copy() mask = img[:, :, 3].copy() mask = (mask / 255).astype(np.uint8) img = (img_rgb * mask[:, :, np.newaxis]).astype(np.uint8) + white * (1 - mask[:, :, np.newaxis]) img = cv2.resize(img, (size, size), cv2.INTER_AREA) img = RGB2BGR(img) img = np.expand_dims(img, axis=0) img = preprocessing(img) return img def preprocessing(x): x = x/127.5 - 1 # -1 ~ 1 return x def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def inverse_transform(images): return (images+1.) / 2 def imsave(images, size, path): return misc.imsave(path, merge(images, size)) def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[h*j:h*(j+1), w*i:w*(i+1), :] = image return img def check_folder(log_dir): if not os.path.exists(log_dir): os.makedirs(log_dir) return log_dir def str2bool(x): return x.lower() in ('true') def cam(x, size=256): x = x - np.min(x) cam_img = x / np.max(x) cam_img = np.uint8(255 * cam_img) cam_img = cv2.resize(cam_img, (size, size)) cam_img = cv2.applyColorMap(cam_img, cv2.COLORMAP_JET) return cam_img / 255.0 def imagenet_norm(x): mean = [0.485, 0.456, 0.406] std = [0.299, 0.224, 0.225] mean = torch.FloatTensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device) std = torch.FloatTensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3).to(x.device) return (x - mean) / std def denorm(x): return x * 0.5 + 0.5 def tensor2numpy(x): return x.detach().cpu().numpy().transpose(1, 2, 0) def RGB2BGR(x): return cv2.cvtColor(x, cv2.COLOR_RGB2BGR)