|
import gradio as gr |
|
|
|
from matplotlib import gridspec |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation |
|
|
|
feature_extractor = SegformerFeatureExtractor.from_pretrained( |
|
"nvidia/segformer-b0-finetuned-ade-512-512" |
|
) |
|
model = TFSegformerForSemanticSegmentation.from_pretrained( |
|
"nvidia/segformer-b0-finetuned-ade-512-512" |
|
) |
|
|
|
|
|
def ade_palette(): |
|
"""ADE20K palette that maps each class to RGB values.""" |
|
return [ |
|
[111, 214, 93], |
|
[18, 181, 57], |
|
[72, 152, 135], |
|
[240, 74, 253], |
|
[211, 22, 184], |
|
[68, 111, 215], |
|
[120, 212, 135], |
|
[185, 244, 20], |
|
[190, 90, 92], |
|
[53, 18, 220], |
|
[251, 56, 67], |
|
[141, 248, 248], |
|
[226, 38, 196], |
|
[153, 75, 248], |
|
[158, 166, 127], |
|
[240, 254, 73], |
|
[157, 99, 218], |
|
[85, 243, 54], |
|
[38, 71, 123], |
|
[207, 188, 66], |
|
[145, 24, 6], |
|
[187, 252, 239], |
|
[240, 181, 229], |
|
[137, 187, 112], |
|
[104, 219, 158], |
|
[234, 56, 176], |
|
[23, 141, 13], |
|
[28, 22, 88], |
|
[83, 169, 127], |
|
[1, 236, 221], |
|
[61, 88, 81], |
|
[102, 94, 10], |
|
[116, 233, 66], |
|
[147, 247, 143], |
|
[241, 72, 39], |
|
[229, 165, 195], |
|
[22, 247, 217], |
|
[110, 208, 164], |
|
[236, 236, 6], |
|
[163, 31, 15], |
|
[78, 148, 190], |
|
[92, 222, 66], |
|
[198, 120, 99], |
|
[161, 201, 28], |
|
[235, 88, 53], |
|
[249, 233, 102], |
|
[235, 115, 89], |
|
[51, 135, 171], |
|
[37, 162, 46], |
|
[11, 200, 171], |
|
[192, 186, 65], |
|
[173, 208, 139], |
|
[240, 124, 1], |
|
[106, 209, 96], |
|
[174, 126, 239], |
|
[221, 234, 164], |
|
[140, 46, 109], |
|
[135, 62, 174], |
|
[130, 51, 242], |
|
[229, 28, 133], |
|
[30, 157, 217], |
|
[154, 195, 123], |
|
[157, 115, 35], |
|
[199, 218, 59], |
|
[144, 47, 157], |
|
[253, 185, 226], |
|
[8, 62, 238], |
|
[71, 191, 146], |
|
[217, 227, 170], |
|
[169, 195, 73], |
|
[253, 60, 179], |
|
[42, 239, 174], |
|
[67, 221, 248], |
|
[163, 179, 218], |
|
[250, 30, 153], |
|
[154, 66, 181], |
|
[109, 228, 192], |
|
[213, 212, 73], |
|
[125, 186, 185], |
|
[12, 80, 88], |
|
[188, 90, 227], |
|
[38, 131, 95], |
|
[105, 56, 175], |
|
[230, 72, 244], |
|
[212, 98, 68], |
|
[5, 14, 131], |
|
[136, 150, 164], |
|
[72, 70, 198], |
|
[160, 124, 189], |
|
[255, 132, 160], |
|
[199, 71, 86], |
|
[32, 209, 66], |
|
[167, 50, 228], |
|
[163, 72, 61], |
|
[53, 24, 145], |
|
[132, 27, 124], |
|
[72, 143, 166], |
|
[54, 156, 177], |
|
[197, 26, 37], |
|
[230, 92, 201], |
|
[31, 47, 165], |
|
[133, 215, 89], |
|
[190, 51, 145], |
|
[162, 3, 41], |
|
[37, 197, 236], |
|
[247, 19, 29], |
|
[105, 12, 99], |
|
[130, 235, 57], |
|
[112, 224, 59], |
|
[6, 253, 14], |
|
[205, 176, 152], |
|
[110, 202, 51], |
|
[94, 74, 61], |
|
[108, 86, 56], |
|
[148, 184, 162], |
|
[125, 0, 195], |
|
[143, 211, 60], |
|
[108, 240, 95], |
|
[106, 211, 59], |
|
[12, 1, 158], |
|
[46, 53, 36], |
|
[130, 192, 113], |
|
[204, 224, 85], |
|
[162, 86, 98], |
|
[10, 155, 230], |
|
[76, 105, 166], |
|
[157, 34, 206], |
|
[3, 230, 115], |
|
[115, 172, 117], |
|
[98, 2, 191], |
|
[173, 132, 102], |
|
[3, 47, 51], |
|
[60, 7, 102], |
|
[70, 47, 237], |
|
[10, 145, 167], |
|
[235, 156, 244], |
|
[142, 188, 86], |
|
[137, 45, 182], |
|
[110, 37, 249], |
|
[21, 108, 156], |
|
[51, 19, 187], |
|
[66, 99, 230], |
|
[249, 153, 221], |
|
[231, 146, 194], |
|
[153, 115, 50], |
|
[25, 15, 226], |
|
[126, 9, 119], |
|
[241, 114, 28], |
|
[134, 156, 64], |
|
[111, 215, 120], |
|
] |
|
|
|
|
|
labels_list = [] |
|
|
|
with open(r"labels.txt", "r") as fp: |
|
for line in fp: |
|
labels_list.append(line[:-1]) |
|
|
|
colormap = np.asarray(ade_palette()) |
|
|
|
|
|
def label_to_color_image(label): |
|
if label.ndim != 2: |
|
raise ValueError("Expect 2-D input label") |
|
|
|
if np.max(label) >= len(colormap): |
|
raise ValueError("label value too large.") |
|
return colormap[label] |
|
|
|
unique_labels = np.asarray([]) |
|
def draw_plot(pred_img, seg): |
|
global unique_labels |
|
fig = plt.figure(figsize=(20, 15)) |
|
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
plt.subplot(grid_spec[0]) |
|
plt.imshow(pred_img) |
|
plt.axis("off") |
|
LABEL_NAMES = np.asarray(labels_list) |
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
unique_labels = np.unique(seg.numpy().astype("uint8")) |
|
ax = plt.subplot(grid_spec[1]) |
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
ax.yaxis.tick_right() |
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
plt.xticks([], []) |
|
ax.tick_params(width=0.0, labelsize=25) |
|
return fig |
|
|
|
|
|
def sepia(input_img): |
|
global unique_labels |
|
input_img = Image.fromarray(input_img) |
|
|
|
inputs = feature_extractor(images=input_img, return_tensors="tf") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
logits = tf.transpose(logits, [0, 2, 3, 1]) |
|
logits = tf.image.resize( |
|
logits, input_img.size[::-1] |
|
) |
|
seg = tf.math.argmax(logits, axis=-1)[0] |
|
|
|
color_seg = np.zeros( |
|
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 |
|
) |
|
for label, color in enumerate(colormap): |
|
color_seg[seg.numpy() == label, :] = color |
|
|
|
|
|
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 |
|
pred_img = pred_img.astype(np.uint8) |
|
|
|
fig = draw_plot(pred_img, seg) |
|
|
|
outputStr = f"이번에는 " |
|
for i in unique_labels: |
|
outputStr += labels_list[i] + ", " |
|
outputStr += "가 검출됐어요." |
|
|
|
return fig, outputStr |
|
|
|
|
|
demo = gr.Interface( |
|
fn=sepia, |
|
inputs=gr.Image(shape=(800, 600)), |
|
outputs=["plot", "text"], |
|
examples=[ |
|
"image (1).jpg", |
|
"image (2).jpg", |
|
"image (3).jpg", |
|
"image (4).jpg", |
|
"image (5).jpg"], |
|
allow_flagging="never", |
|
) |
|
|
|
demo.launch() |
|
|