init
Browse files- app.py +250 -0
- edittxt.py +153 -0
- image (1).jpg +0 -0
- image (2).jpg +0 -0
- image (3).jpg +0 -0
- image (4).jpg +0 -0
- image (5).jpg +0 -0
- initcolor.py +8 -0
- labels.txt +150 -0
app.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"nvidia/segformer-b0-finetuned-ade-512-512"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"nvidia/segformer-b0-finetuned-ade-512-512"
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def ade_palette():
|
19 |
+
"""ADE20K palette that maps each class to RGB values."""
|
20 |
+
return [
|
21 |
+
[111, 214, 93],
|
22 |
+
[18, 181, 57],
|
23 |
+
[72, 152, 135],
|
24 |
+
[240, 74, 253],
|
25 |
+
[211, 22, 184],
|
26 |
+
[68, 111, 215],
|
27 |
+
[120, 212, 135],
|
28 |
+
[185, 244, 20],
|
29 |
+
[190, 90, 92],
|
30 |
+
[53, 18, 220],
|
31 |
+
[251, 56, 67],
|
32 |
+
[141, 248, 248],
|
33 |
+
[226, 38, 196],
|
34 |
+
[153, 75, 248],
|
35 |
+
[158, 166, 127],
|
36 |
+
[240, 254, 73],
|
37 |
+
[157, 99, 218],
|
38 |
+
[85, 243, 54],
|
39 |
+
[38, 71, 123],
|
40 |
+
[207, 188, 66],
|
41 |
+
[145, 24, 6],
|
42 |
+
[187, 252, 239],
|
43 |
+
[240, 181, 229],
|
44 |
+
[137, 187, 112],
|
45 |
+
[104, 219, 158],
|
46 |
+
[234, 56, 176],
|
47 |
+
[23, 141, 13],
|
48 |
+
[28, 22, 88],
|
49 |
+
[83, 169, 127],
|
50 |
+
[1, 236, 221],
|
51 |
+
[61, 88, 81],
|
52 |
+
[102, 94, 10],
|
53 |
+
[116, 233, 66],
|
54 |
+
[147, 247, 143],
|
55 |
+
[241, 72, 39],
|
56 |
+
[229, 165, 195],
|
57 |
+
[22, 247, 217],
|
58 |
+
[110, 208, 164],
|
59 |
+
[236, 236, 6],
|
60 |
+
[163, 31, 15],
|
61 |
+
[78, 148, 190],
|
62 |
+
[92, 222, 66],
|
63 |
+
[198, 120, 99],
|
64 |
+
[161, 201, 28],
|
65 |
+
[235, 88, 53],
|
66 |
+
[249, 233, 102],
|
67 |
+
[235, 115, 89],
|
68 |
+
[51, 135, 171],
|
69 |
+
[37, 162, 46],
|
70 |
+
[11, 200, 171],
|
71 |
+
[192, 186, 65],
|
72 |
+
[173, 208, 139],
|
73 |
+
[240, 124, 1],
|
74 |
+
[106, 209, 96],
|
75 |
+
[174, 126, 239],
|
76 |
+
[221, 234, 164],
|
77 |
+
[140, 46, 109],
|
78 |
+
[135, 62, 174],
|
79 |
+
[130, 51, 242],
|
80 |
+
[229, 28, 133],
|
81 |
+
[30, 157, 217],
|
82 |
+
[154, 195, 123],
|
83 |
+
[157, 115, 35],
|
84 |
+
[199, 218, 59],
|
85 |
+
[144, 47, 157],
|
86 |
+
[253, 185, 226],
|
87 |
+
[8, 62, 238],
|
88 |
+
[71, 191, 146],
|
89 |
+
[217, 227, 170],
|
90 |
+
[169, 195, 73],
|
91 |
+
[253, 60, 179],
|
92 |
+
[42, 239, 174],
|
93 |
+
[67, 221, 248],
|
94 |
+
[163, 179, 218],
|
95 |
+
[250, 30, 153],
|
96 |
+
[154, 66, 181],
|
97 |
+
[109, 228, 192],
|
98 |
+
[213, 212, 73],
|
99 |
+
[125, 186, 185],
|
100 |
+
[12, 80, 88],
|
101 |
+
[188, 90, 227],
|
102 |
+
[38, 131, 95],
|
103 |
+
[105, 56, 175],
|
104 |
+
[230, 72, 244],
|
105 |
+
[212, 98, 68],
|
106 |
+
[5, 14, 131],
|
107 |
+
[136, 150, 164],
|
108 |
+
[72, 70, 198],
|
109 |
+
[160, 124, 189],
|
110 |
+
[255, 132, 160],
|
111 |
+
[199, 71, 86],
|
112 |
+
[32, 209, 66],
|
113 |
+
[167, 50, 228],
|
114 |
+
[163, 72, 61],
|
115 |
+
[53, 24, 145],
|
116 |
+
[132, 27, 124],
|
117 |
+
[72, 143, 166],
|
118 |
+
[54, 156, 177],
|
119 |
+
[197, 26, 37],
|
120 |
+
[230, 92, 201],
|
121 |
+
[31, 47, 165],
|
122 |
+
[133, 215, 89],
|
123 |
+
[190, 51, 145],
|
124 |
+
[162, 3, 41],
|
125 |
+
[37, 197, 236],
|
126 |
+
[247, 19, 29],
|
127 |
+
[105, 12, 99],
|
128 |
+
[130, 235, 57],
|
129 |
+
[112, 224, 59],
|
130 |
+
[6, 253, 14],
|
131 |
+
[205, 176, 152],
|
132 |
+
[110, 202, 51],
|
133 |
+
[94, 74, 61],
|
134 |
+
[108, 86, 56],
|
135 |
+
[148, 184, 162],
|
136 |
+
[125, 0, 195],
|
137 |
+
[143, 211, 60],
|
138 |
+
[108, 240, 95],
|
139 |
+
[106, 211, 59],
|
140 |
+
[12, 1, 158],
|
141 |
+
[46, 53, 36],
|
142 |
+
[130, 192, 113],
|
143 |
+
[204, 224, 85],
|
144 |
+
[162, 86, 98],
|
145 |
+
[10, 155, 230],
|
146 |
+
[76, 105, 166],
|
147 |
+
[157, 34, 206],
|
148 |
+
[3, 230, 115],
|
149 |
+
[115, 172, 117],
|
150 |
+
[98, 2, 191],
|
151 |
+
[173, 132, 102],
|
152 |
+
[3, 47, 51],
|
153 |
+
[60, 7, 102],
|
154 |
+
[70, 47, 237],
|
155 |
+
[10, 145, 167],
|
156 |
+
[235, 156, 244],
|
157 |
+
[142, 188, 86],
|
158 |
+
[137, 45, 182],
|
159 |
+
[110, 37, 249],
|
160 |
+
[21, 108, 156],
|
161 |
+
[51, 19, 187],
|
162 |
+
[66, 99, 230],
|
163 |
+
[249, 153, 221],
|
164 |
+
[231, 146, 194],
|
165 |
+
[153, 115, 50],
|
166 |
+
[25, 15, 226],
|
167 |
+
[126, 9, 119],
|
168 |
+
[241, 114, 28],
|
169 |
+
[134, 156, 64],
|
170 |
+
[111, 215, 120],
|
171 |
+
]
|
172 |
+
|
173 |
+
|
174 |
+
labels_list = []
|
175 |
+
|
176 |
+
with open(r"labels.txt", "r") as fp:
|
177 |
+
for line in fp:
|
178 |
+
labels_list.append(line[:-1])
|
179 |
+
|
180 |
+
colormap = np.asarray(ade_palette())
|
181 |
+
|
182 |
+
|
183 |
+
def label_to_color_image(label):
|
184 |
+
if label.ndim != 2:
|
185 |
+
raise ValueError("Expect 2-D input label")
|
186 |
+
|
187 |
+
if np.max(label) >= len(colormap):
|
188 |
+
raise ValueError("label value too large.")
|
189 |
+
return colormap[label]
|
190 |
+
|
191 |
+
|
192 |
+
def draw_plot(pred_img, seg):
|
193 |
+
fig = plt.figure(figsize=(20, 15))
|
194 |
+
|
195 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
196 |
+
|
197 |
+
plt.subplot(grid_spec[0])
|
198 |
+
plt.imshow(pred_img)
|
199 |
+
plt.axis("off")
|
200 |
+
LABEL_NAMES = np.asarray(labels_list)
|
201 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
202 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
203 |
+
|
204 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
205 |
+
ax = plt.subplot(grid_spec[1])
|
206 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
207 |
+
ax.yaxis.tick_right()
|
208 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
209 |
+
plt.xticks([], [])
|
210 |
+
ax.tick_params(width=0.0, labelsize=25)
|
211 |
+
return fig
|
212 |
+
|
213 |
+
|
214 |
+
def sepia(input_img):
|
215 |
+
input_img = Image.fromarray(input_img)
|
216 |
+
|
217 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
218 |
+
outputs = model(**inputs)
|
219 |
+
logits = outputs.logits
|
220 |
+
|
221 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
222 |
+
logits = tf.image.resize(
|
223 |
+
logits, input_img.size[::-1]
|
224 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
225 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
226 |
+
|
227 |
+
color_seg = np.zeros(
|
228 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
229 |
+
) # height, width, 3
|
230 |
+
for label, color in enumerate(colormap):
|
231 |
+
color_seg[seg.numpy() == label, :] = color
|
232 |
+
|
233 |
+
# Show image + mask
|
234 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
235 |
+
pred_img = pred_img.astype(np.uint8)
|
236 |
+
|
237 |
+
fig = draw_plot(pred_img, seg)
|
238 |
+
return fig
|
239 |
+
|
240 |
+
|
241 |
+
demo = gr.Interface(
|
242 |
+
fn=sepia,
|
243 |
+
inputs=gr.Image(shape=(800, 600)),
|
244 |
+
outputs=["plot"],
|
245 |
+
examples=[
|
246 |
+
"image (1).jpg"],
|
247 |
+
allow_flagging="never",
|
248 |
+
)
|
249 |
+
|
250 |
+
demo.launch()
|
edittxt.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dic = {"0": "wall",
|
2 |
+
"1": "building",
|
3 |
+
"2": "sky",
|
4 |
+
"3": "floor",
|
5 |
+
"4": "tree",
|
6 |
+
"5": "ceiling",
|
7 |
+
"6": "road",
|
8 |
+
"7": "bed ",
|
9 |
+
"8": "windowpane",
|
10 |
+
"9": "grass",
|
11 |
+
"10": "cabinet",
|
12 |
+
"11": "sidewalk",
|
13 |
+
"12": "person",
|
14 |
+
"13": "earth",
|
15 |
+
"14": "door",
|
16 |
+
"15": "table",
|
17 |
+
"16": "mountain",
|
18 |
+
"17": "plant",
|
19 |
+
"18": "curtain",
|
20 |
+
"19": "chair",
|
21 |
+
"20": "car",
|
22 |
+
"21": "water",
|
23 |
+
"22": "painting",
|
24 |
+
"23": "sofa",
|
25 |
+
"24": "shelf",
|
26 |
+
"25": "house",
|
27 |
+
"26": "sea",
|
28 |
+
"27": "mirror",
|
29 |
+
"28": "rug",
|
30 |
+
"29": "field",
|
31 |
+
"30": "armchair",
|
32 |
+
"31": "seat",
|
33 |
+
"32": "fence",
|
34 |
+
"33": "desk",
|
35 |
+
"34": "rock",
|
36 |
+
"35": "wardrobe",
|
37 |
+
"36": "lamp",
|
38 |
+
"37": "bathtub",
|
39 |
+
"38": "railing",
|
40 |
+
"39": "cushion",
|
41 |
+
"40": "base",
|
42 |
+
"41": "box",
|
43 |
+
"42": "column",
|
44 |
+
"43": "signboard",
|
45 |
+
"44": "chest of drawers",
|
46 |
+
"45": "counter",
|
47 |
+
"46": "sand",
|
48 |
+
"47": "sink",
|
49 |
+
"48": "skyscraper",
|
50 |
+
"49": "fireplace",
|
51 |
+
"50": "refrigerator",
|
52 |
+
"51": "grandstand",
|
53 |
+
"52": "path",
|
54 |
+
"53": "stairs",
|
55 |
+
"54": "runway",
|
56 |
+
"55": "case",
|
57 |
+
"56": "pool table",
|
58 |
+
"57": "pillow",
|
59 |
+
"58": "screen door",
|
60 |
+
"59": "stairway",
|
61 |
+
"60": "river",
|
62 |
+
"61": "bridge",
|
63 |
+
"62": "bookcase",
|
64 |
+
"63": "blind",
|
65 |
+
"64": "coffee table",
|
66 |
+
"65": "toilet",
|
67 |
+
"66": "flower",
|
68 |
+
"67": "book",
|
69 |
+
"68": "hill",
|
70 |
+
"69": "bench",
|
71 |
+
"70": "countertop",
|
72 |
+
"71": "stove",
|
73 |
+
"72": "palm",
|
74 |
+
"73": "kitchen island",
|
75 |
+
"74": "computer",
|
76 |
+
"75": "swivel chair",
|
77 |
+
"76": "boat",
|
78 |
+
"77": "bar",
|
79 |
+
"78": "arcade machine",
|
80 |
+
"79": "hovel",
|
81 |
+
"80": "bus",
|
82 |
+
"81": "towel",
|
83 |
+
"82": "light",
|
84 |
+
"83": "truck",
|
85 |
+
"84": "tower",
|
86 |
+
"85": "chandelier",
|
87 |
+
"86": "awning",
|
88 |
+
"87": "streetlight",
|
89 |
+
"88": "booth",
|
90 |
+
"89": "television receiver",
|
91 |
+
"90": "airplane",
|
92 |
+
"91": "dirt track",
|
93 |
+
"92": "apparel",
|
94 |
+
"93": "pole",
|
95 |
+
"94": "land",
|
96 |
+
"95": "bannister",
|
97 |
+
"96": "escalator",
|
98 |
+
"97": "ottoman",
|
99 |
+
"98": "bottle",
|
100 |
+
"99": "buffet",
|
101 |
+
"100": "poster",
|
102 |
+
"101": "stage",
|
103 |
+
"102": "van",
|
104 |
+
"103": "ship",
|
105 |
+
"104": "fountain",
|
106 |
+
"105": "conveyer belt",
|
107 |
+
"106": "canopy",
|
108 |
+
"107": "washer",
|
109 |
+
"108": "plaything",
|
110 |
+
"109": "swimming pool",
|
111 |
+
"110": "stool",
|
112 |
+
"111": "barrel",
|
113 |
+
"112": "basket",
|
114 |
+
"113": "waterfall",
|
115 |
+
"114": "tent",
|
116 |
+
"115": "bag",
|
117 |
+
"116": "minibike",
|
118 |
+
"117": "cradle",
|
119 |
+
"118": "oven",
|
120 |
+
"119": "ball",
|
121 |
+
"120": "food",
|
122 |
+
"121": "step",
|
123 |
+
"122": "tank",
|
124 |
+
"123": "trade name",
|
125 |
+
"124": "microwave",
|
126 |
+
"125": "pot",
|
127 |
+
"126": "animal",
|
128 |
+
"127": "bicycle",
|
129 |
+
"128": "lake",
|
130 |
+
"129": "dishwasher",
|
131 |
+
"130": "screen",
|
132 |
+
"131": "blanket",
|
133 |
+
"132": "sculpture",
|
134 |
+
"133": "hood",
|
135 |
+
"134": "sconce",
|
136 |
+
"135": "vase",
|
137 |
+
"136": "traffic light",
|
138 |
+
"137": "tray",
|
139 |
+
"138": "ashcan",
|
140 |
+
"139": "fan",
|
141 |
+
"140": "pier",
|
142 |
+
"141": "crt screen",
|
143 |
+
"142": "plate",
|
144 |
+
"143": "monitor",
|
145 |
+
"144": "bulletin board",
|
146 |
+
"145": "shower",
|
147 |
+
"146": "radiator",
|
148 |
+
"147": "glass",
|
149 |
+
"148": "clock",
|
150 |
+
"149": "flag"}
|
151 |
+
|
152 |
+
for i in dic.values():
|
153 |
+
print(i)
|
image (1).jpg
ADDED
![]() |
image (2).jpg
ADDED
![]() |
image (3).jpg
ADDED
![]() |
image (4).jpg
ADDED
![]() |
image (5).jpg
ADDED
![]() |
initcolor.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
print(random.randint(0, 255))
|
4 |
+
|
5 |
+
for i in list(range(150)):
|
6 |
+
print("[" + str(random.randint(0, 255)) + ", "
|
7 |
+
+ str(random.randint(0, 255)) + ", "
|
8 |
+
+ str(random.randint(0, 255)) + "], ")
|
labels.txt
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wall
|
2 |
+
building
|
3 |
+
sky
|
4 |
+
floor
|
5 |
+
tree
|
6 |
+
ceiling
|
7 |
+
road
|
8 |
+
bed
|
9 |
+
windowpane
|
10 |
+
grass
|
11 |
+
cabinet
|
12 |
+
sidewalk
|
13 |
+
person
|
14 |
+
earth
|
15 |
+
door
|
16 |
+
table
|
17 |
+
mountain
|
18 |
+
plant
|
19 |
+
curtain
|
20 |
+
chair
|
21 |
+
car
|
22 |
+
water
|
23 |
+
painting
|
24 |
+
sofa
|
25 |
+
shelf
|
26 |
+
house
|
27 |
+
sea
|
28 |
+
mirror
|
29 |
+
rug
|
30 |
+
field
|
31 |
+
armchair
|
32 |
+
seat
|
33 |
+
fence
|
34 |
+
desk
|
35 |
+
rock
|
36 |
+
wardrobe
|
37 |
+
lamp
|
38 |
+
bathtub
|
39 |
+
railing
|
40 |
+
cushion
|
41 |
+
base
|
42 |
+
box
|
43 |
+
column
|
44 |
+
signboard
|
45 |
+
chest of drawers
|
46 |
+
counter
|
47 |
+
sand
|
48 |
+
sink
|
49 |
+
skyscraper
|
50 |
+
fireplace
|
51 |
+
refrigerator
|
52 |
+
grandstand
|
53 |
+
path
|
54 |
+
stairs
|
55 |
+
runway
|
56 |
+
case
|
57 |
+
pool table
|
58 |
+
pillow
|
59 |
+
screen door
|
60 |
+
stairway
|
61 |
+
river
|
62 |
+
bridge
|
63 |
+
bookcase
|
64 |
+
blind
|
65 |
+
coffee table
|
66 |
+
toilet
|
67 |
+
flower
|
68 |
+
book
|
69 |
+
hill
|
70 |
+
bench
|
71 |
+
countertop
|
72 |
+
stove
|
73 |
+
palm
|
74 |
+
kitchen island
|
75 |
+
computer
|
76 |
+
swivel chair
|
77 |
+
boat
|
78 |
+
bar
|
79 |
+
arcade machine
|
80 |
+
hovel
|
81 |
+
bus
|
82 |
+
towel
|
83 |
+
light
|
84 |
+
truck
|
85 |
+
tower
|
86 |
+
chandelier
|
87 |
+
awning
|
88 |
+
streetlight
|
89 |
+
booth
|
90 |
+
television receiver
|
91 |
+
airplane
|
92 |
+
dirt track
|
93 |
+
apparel
|
94 |
+
pole
|
95 |
+
land
|
96 |
+
bannister
|
97 |
+
escalator
|
98 |
+
ottoman
|
99 |
+
bottle
|
100 |
+
buffet
|
101 |
+
poster
|
102 |
+
stage
|
103 |
+
van
|
104 |
+
ship
|
105 |
+
fountain
|
106 |
+
conveyer belt
|
107 |
+
canopy
|
108 |
+
washer
|
109 |
+
plaything
|
110 |
+
swimming pool
|
111 |
+
stool
|
112 |
+
barrel
|
113 |
+
basket
|
114 |
+
waterfall
|
115 |
+
tent
|
116 |
+
bag
|
117 |
+
minibike
|
118 |
+
cradle
|
119 |
+
oven
|
120 |
+
ball
|
121 |
+
food
|
122 |
+
step
|
123 |
+
tank
|
124 |
+
trade name
|
125 |
+
microwave
|
126 |
+
pot
|
127 |
+
animal
|
128 |
+
bicycle
|
129 |
+
lake
|
130 |
+
dishwasher
|
131 |
+
screen
|
132 |
+
blanket
|
133 |
+
sculpture
|
134 |
+
hood
|
135 |
+
sconce
|
136 |
+
vase
|
137 |
+
traffic light
|
138 |
+
tray
|
139 |
+
ashcan
|
140 |
+
fan
|
141 |
+
pier
|
142 |
+
crt screen
|
143 |
+
plate
|
144 |
+
monitor
|
145 |
+
bulletin board
|
146 |
+
shower
|
147 |
+
radiator
|
148 |
+
glass
|
149 |
+
clock
|
150 |
+
flag
|