File size: 4,294 Bytes
0a359f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15b0708
 
 
 
 
 
0a359f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e699f
 
 
 
 
 
 
 
0a359f0
 
 
 
15b0708
0a359f0
 
 
 
 
15b0708
 
0a359f0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python

import gradio as gr
import PIL.Image
import spaces
import torch
from controlnet_aux import CannyDetector
from diffusers.pipelines import BlipDiffusionControlNetPipeline

from settings import CACHE_EXAMPLES, DEFAULT_NEGATIVE_PROMPT, MAX_INFERENCE_STEPS
from utils import MAX_SEED, randomize_seed_fn

canny_detector = CannyDetector()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    pipe = BlipDiffusionControlNetPipeline.from_pretrained(
        "Salesforce/blipdiffusion-controlnet", torch_dtype=torch.float16
    ).to(device)
else:
    pipe = None


@spaces.GPU
def run(
    condition_image: PIL.Image.Image,
    style_image: PIL.Image.Image,
    condition_subject: str,
    style_subject: str,
    prompt: str,
    negative_prompt: str = DEFAULT_NEGATIVE_PROMPT,
    seed: int = 0,
    guidance_scale: float = 7.5,
    num_inference_steps: int = 25,
) -> PIL.Image.Image:
    if num_inference_steps > MAX_INFERENCE_STEPS:
        raise gr.Error(f"Number of inference steps must be less than {MAX_INFERENCE_STEPS}")
    condition_image = canny_detector(condition_image, 30, 70, output_type="pil")
    return pipe(
        prompt,
        style_image,
        condition_image,
        style_subject,
        condition_subject,
        generator=torch.Generator(device=device).manual_seed(seed),
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        neg_prompt=negative_prompt,
        height=512,
        width=512,
    ).images[0]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            condition_image = gr.Image(label="Condition Image")
            style_image = gr.Image(label="Style Image")
            condition_subject = gr.Textbox(label="Condition Subject")
            style_subject = gr.Textbox(label="Style Subject")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button()
            with gr.Accordion(label="Advanced options", open=False):
                negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0,
                    maximum=10,
                    step=0.1,
                    value=7.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=MAX_INFERENCE_STEPS,
                    step=1,
                    value=25,
                )
        with gr.Column():
            result = gr.Image(label="Result")

    gr.Examples(
        examples=[
            [
                "images/kettle.jpg",
                "images/flower.jpg",
                "teapot",
                "flower",
                "on a marble table",
            ],
        ],
        inputs=[
            condition_image,
            style_image,
            condition_subject,
            style_subject,
            prompt,
        ],
        outputs=result,
        fn=run,
        cache_examples=CACHE_EXAMPLES,
    )

    inputs = [
        condition_image,
        style_image,
        condition_subject,
        style_subject,
        prompt,
        negative_prompt,
        seed,
        guidance_scale,
        num_inference_steps,
    ]
    gr.on(
        triggers=[
            condition_subject.submit,
            style_subject.submit,
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        api_name=False,
        concurrency_limit=None,
    ).then(
        fn=run,
        inputs=inputs,
        outputs=result,
        api_name="run-stylization",
        concurrency_id="gpu",
        concurrency_limit=1,
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()