Spaces:
hysts
/
Running on Zero

BLIP2 / app.py
hysts's picture
hysts HF staff
Use transformers
2a6a910
raw
history blame
7.97 kB
#!/usr/bin/env python
from __future__ import annotations
import string
import gradio as gr
import PIL.Image
import torch
from transformers import AutoProcessor, Blip2ForConditionalGeneration
DESCRIPTION = '# BLIP-2'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MODEL_ID_OPT_6_7B = 'Salesforce/blip2-opt-6.7b'
MODEL_ID_FLAN_T5_XXL = 'Salesforce/blip2-flan-t5-xxl'
model_dict = {
MODEL_ID_OPT_6_7B: {
'processor':
AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B),
'model':
Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B,
device_map='auto',
load_in_8bit=True),
},
MODEL_ID_FLAN_T5_XXL: {
'processor':
AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL),
'model':
Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_FLAN_T5_XXL,
device_map='auto',
load_in_8bit=True),
}
}
def generate_caption(model_id: str, image: PIL.Image.Image,
decoding_method: str, temperature: float,
length_penalty: float, repetition_penalty: float) -> str:
model_info = model_dict[model_id]
processor = model_info['processor']
model = model_info['model']
inputs = processor(images=image,
return_tensors='pt').to(device, torch.float16)
generated_ids = model.generate(
pixel_values=inputs.pixel_values,
do_sample=decoding_method == 'Nucleus sampling',
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
max_length=50)
result = processor.batch_decode(generated_ids,
skip_special_tokens=True)[0].strip()
return result
def answer_question(model_id: str, image: PIL.Image.Image, text: str,
decoding_method: str, temperature: float,
length_penalty: float, repetition_penalty: float) -> str:
model_info = model_dict[model_id]
processor = model_info['processor']
model = model_info['model']
inputs = processor(images=image, text=text,
return_tensors='pt').to(device, torch.float16)
generated_ids = model.generate(**inputs,
do_sample=decoding_method ==
'Nucleus sampling',
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty)
result = processor.batch_decode(generated_ids,
skip_special_tokens=True)[0].strip()
return result
def postprocess_output(output: str) -> str:
if output and not output[-1] in string.punctuation:
output += '.'
return output
def chat(
model_id: str,
image: PIL.Image.Image,
text: str,
decoding_method: str,
temperature: float,
length_penalty: float,
repetition_penalty: float,
history_orig: list[str] = [],
history_qa: list[str] = [],
) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]:
history_orig.append(text)
text_qa = f'Question: {text} Answer:'
history_qa.append(text_qa)
prompt = ' '.join(history_qa)
output = answer_question(
model_id,
image,
prompt,
decoding_method,
temperature,
length_penalty,
repetition_penalty,
)
output = postprocess_output(output)
history_orig.append(output)
history_qa.append(output)
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
return gr.update(value=chat_val), gr.update(value=history_orig), gr.update(
value=history_qa)
examples = [
[
'house.png',
'How could someone get out of the house?',
],
[
'flower.jpg',
'What is this flower and where is it\'s origin?',
],
[
'pizza.jpg',
'What are steps to cook it?',
],
[
'sunset.jpg',
'Here is a romantic message going along the photo:',
],
[
'forbidden_city.webp',
'In what dynasties was this place built?',
],
]
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
image = gr.Image(type='pil')
with gr.Accordion(label='Advanced settings', open=False):
with gr.Row():
model_id_caption = gr.Dropdown(
label='Model ID for image captioning',
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
value=MODEL_ID_OPT_6_7B)
model_id_chat = gr.Dropdown(
label='Model ID for VQA',
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
value=MODEL_ID_FLAN_T5_XXL)
sampling_method = gr.Radio(
label='Text Decoding Method',
choices=['Beam search', 'Nucleus sampling'],
value='Beam search',
)
temperature = gr.Slider(
label='Temperature (used with nucleus sampling)',
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.1,
)
length_penalty = gr.Slider(
label=
'Length Penalty (set to larger for longer sequence, used with beam search)',
minimum=-1.0,
maximum=2.0,
value=1.0,
step=0.2,
)
rep_penalty = gr.Slider(
label='Repeat Penalty (larger value prevents repetition)',
minimum=1.0,
maximum=5.0,
value=1.5,
step=0.5,
)
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown('Image Captioning')
caption_button = gr.Button(value='Caption it!')
caption_output = gr.Textbox(label='Caption Output')
with gr.Column():
with gr.Box():
gr.Markdown('VQA Chat')
vqa_input = gr.Text(label='Chat Input', max_lines=1)
with gr.Row():
clear_chat_button = gr.Button(value='Clear')
chat_button = gr.Button(value='Submit')
chatbot = gr.Chatbot(label='Chat Output')
history_orig = gr.State(value=[])
history_qa = gr.State(value=[])
gr.Examples(
examples=examples,
inputs=[
image,
vqa_input,
],
)
caption_button.click(
fn=generate_caption,
inputs=[
model_id_caption,
image,
sampling_method,
temperature,
length_penalty,
rep_penalty,
],
outputs=caption_output,
)
chat_inputs = [
model_id_chat,
image,
vqa_input,
sampling_method,
temperature,
length_penalty,
rep_penalty,
history_orig,
]
chat_outputs = [
chatbot,
history_orig,
history_qa,
]
vqa_input.submit(
fn=chat,
inputs=chat_inputs,
outputs=chat_outputs,
)
chat_button.click(
fn=chat,
inputs=chat_inputs,
outputs=chat_outputs,
)
clear_chat_button.click(
fn=lambda: ('', [], [], []),
inputs=None,
outputs=[
vqa_input,
chatbot,
history_orig,
history_qa,
],
queue=False,
)
image.change(
fn=lambda: ('', '', [], []),
inputs=None,
outputs=[
chatbot,
caption_output,
history_orig,
history_qa,
],
queue=False,
)
demo.queue(max_size=10).launch()