hysts HF staff commited on
Commit
473b850
·
0 Parent(s):

Duplicate from hysts/ControlNet

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models/
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ build/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ lib/
20
+ lib64/
21
+ parts/
22
+ sdist/
23
+ var/
24
+ wheels/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+
31
+ # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
+ *.manifest
35
+ *.spec
36
+
37
+ # Installer logs
38
+ pip-log.txt
39
+ pip-delete-this-directory.txt
40
+
41
+ # Unit test / coverage reports
42
+ htmlcov/
43
+ .tox/
44
+ .nox/
45
+ .coverage
46
+ .coverage.*
47
+ .cache
48
+ nosetests.xml
49
+ coverage.xml
50
+ *.cover
51
+ *.py,cover
52
+ .hypothesis/
53
+ .pytest_cache/
54
+ cover/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ .pybuilder/
78
+ target/
79
+
80
+ # Jupyter Notebook
81
+ .ipynb_checkpoints
82
+
83
+ # IPython
84
+ profile_default/
85
+ ipython_config.py
86
+
87
+ # pyenv
88
+ # For a library or package, you might want to ignore these files since the code is
89
+ # intended to run in multiple environments; otherwise, check them in:
90
+ # .python-version
91
+
92
+ # pipenv
93
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
95
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
96
+ # install all needed dependencies.
97
+ #Pipfile.lock
98
+
99
+ # poetry
100
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
101
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
102
+ # commonly ignored for libraries.
103
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
104
+ #poetry.lock
105
+
106
+ # pdm
107
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
108
+ #pdm.lock
109
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
110
+ # in version control.
111
+ # https://pdm.fming.dev/#use-with-ide
112
+ .pdm.toml
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "ControlNet"]
2
+ path = ControlNet
3
+ url = https://github.com/lllyasviel/ControlNet
.pre-commit-config.yaml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exclude: patch
2
+ repos:
3
+ - repo: https://github.com/pre-commit/pre-commit-hooks
4
+ rev: v4.2.0
5
+ hooks:
6
+ - id: check-executables-have-shebangs
7
+ - id: check-json
8
+ - id: check-merge-conflict
9
+ - id: check-shebang-scripts-are-executable
10
+ - id: check-toml
11
+ - id: check-yaml
12
+ - id: double-quote-string-fixer
13
+ - id: end-of-file-fixer
14
+ - id: mixed-line-ending
15
+ args: ['--fix=lf']
16
+ - id: requirements-txt-fixer
17
+ - id: trailing-whitespace
18
+ - repo: https://github.com/myint/docformatter
19
+ rev: v1.4
20
+ hooks:
21
+ - id: docformatter
22
+ args: ['--in-place']
23
+ - repo: https://github.com/pycqa/isort
24
+ rev: 5.12.0
25
+ hooks:
26
+ - id: isort
27
+ - repo: https://github.com/pre-commit/mirrors-mypy
28
+ rev: v0.991
29
+ hooks:
30
+ - id: mypy
31
+ args: ['--ignore-missing-imports']
32
+ additional_dependencies: ['types-python-slugify']
33
+ - repo: https://github.com/google/yapf
34
+ rev: v0.32.0
35
+ hooks:
36
+ - id: yapf
37
+ args: ['--parallel', '--in-place']
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
ControlNet ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit f4748e3630d8141d7765e2bd9b1e348f47847707
LICENSE.ControlNet ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ControlNet
3
+ emoji: 🌖
4
+ colorFrom: pink
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.18.0
8
+ python_version: 3.10.9
9
+ app_file: app.py
10
+ pinned: false
11
+ duplicated_from: hysts/ControlNet
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import os
6
+ import pathlib
7
+ import shlex
8
+ import subprocess
9
+
10
+ import gradio as gr
11
+
12
+ if os.getenv('SYSTEM') == 'spaces':
13
+ with open('patch') as f:
14
+ subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')
15
+
16
+ base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
17
+ names = [
18
+ 'body_pose_model.pth',
19
+ 'dpt_hybrid-midas-501f0c75.pt',
20
+ 'hand_pose_model.pth',
21
+ 'mlsd_large_512_fp32.pth',
22
+ 'mlsd_tiny_512_fp32.pth',
23
+ 'network-bsds500.pth',
24
+ 'upernet_global_small.pth',
25
+ ]
26
+ for name in names:
27
+ command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
28
+ out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
29
+ if out_path.exists():
30
+ continue
31
+ subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
32
+
33
+ from gradio_canny2image import create_demo as create_demo_canny
34
+ from gradio_depth2image import create_demo as create_demo_depth
35
+ from gradio_fake_scribble2image import create_demo as create_demo_fake_scribble
36
+ from gradio_hed2image import create_demo as create_demo_hed
37
+ from gradio_hough2image import create_demo as create_demo_hough
38
+ from gradio_normal2image import create_demo as create_demo_normal
39
+ from gradio_pose2image import create_demo as create_demo_pose
40
+ from gradio_scribble2image import create_demo as create_demo_scribble
41
+ from gradio_scribble2image_interactive import \
42
+ create_demo as create_demo_scribble_interactive
43
+ from gradio_seg2image import create_demo as create_demo_seg
44
+ from model import Model
45
+
46
+ MAX_IMAGES = 1
47
+ DESCRIPTION = '''# ControlNet
48
+
49
+ This is an unofficial demo for [https://github.com/lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet).
50
+ '''
51
+ if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
52
+ DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/>
53
+ <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
54
+ <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
55
+ <p/>
56
+ '''
57
+
58
+ model = Model()
59
+
60
+ with gr.Blocks(css='style.css') as demo:
61
+ gr.Markdown(DESCRIPTION)
62
+ with gr.Tabs():
63
+ with gr.TabItem('Canny'):
64
+ create_demo_canny(model.process_canny, max_images=MAX_IMAGES)
65
+ with gr.TabItem('Hough'):
66
+ create_demo_hough(model.process_hough, max_images=MAX_IMAGES)
67
+ with gr.TabItem('HED'):
68
+ create_demo_hed(model.process_hed, max_images=MAX_IMAGES)
69
+ with gr.TabItem('Scribble'):
70
+ create_demo_scribble(model.process_scribble, max_images=MAX_IMAGES)
71
+ with gr.TabItem('Scribble Interactive'):
72
+ create_demo_scribble_interactive(
73
+ model.process_scribble_interactive, max_images=MAX_IMAGES)
74
+ with gr.TabItem('Fake Scribble'):
75
+ create_demo_fake_scribble(model.process_fake_scribble,
76
+ max_images=MAX_IMAGES)
77
+ with gr.TabItem('Pose'):
78
+ create_demo_pose(model.process_pose, max_images=MAX_IMAGES)
79
+ with gr.TabItem('Segmentation'):
80
+ create_demo_seg(model.process_seg, max_images=MAX_IMAGES)
81
+ with gr.TabItem('Depth'):
82
+ create_demo_depth(model.process_depth, max_images=MAX_IMAGES)
83
+ with gr.TabItem('Normal map'):
84
+ create_demo_normal(model.process_normal, max_images=MAX_IMAGES)
85
+
86
+ demo.queue(api_open=False).launch()
gradio_canny2image.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_canny2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Canny Edge Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ low_threshold = gr.Slider(label='Canny low threshold',
27
+ minimum=1,
28
+ maximum=255,
29
+ value=100,
30
+ step=1)
31
+ high_threshold = gr.Slider(label='Canny high threshold',
32
+ minimum=1,
33
+ maximum=255,
34
+ value=200,
35
+ step=1)
36
+ ddim_steps = gr.Slider(label='Steps',
37
+ minimum=1,
38
+ maximum=100,
39
+ value=20,
40
+ step=1)
41
+ scale = gr.Slider(label='Guidance Scale',
42
+ minimum=0.1,
43
+ maximum=30.0,
44
+ value=9.0,
45
+ step=0.1)
46
+ seed = gr.Slider(label='Seed',
47
+ minimum=-1,
48
+ maximum=2147483647,
49
+ step=1,
50
+ randomize=True)
51
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
52
+ a_prompt = gr.Textbox(
53
+ label='Added Prompt',
54
+ value='best quality, extremely detailed')
55
+ n_prompt = gr.Textbox(
56
+ label='Negative Prompt',
57
+ value=
58
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
59
+ )
60
+ with gr.Column():
61
+ result_gallery = gr.Gallery(label='Output',
62
+ show_label=False,
63
+ elem_id='gallery').style(
64
+ grid=2, height='auto')
65
+ ips = [
66
+ input_image, prompt, a_prompt, n_prompt, num_samples,
67
+ image_resolution, ddim_steps, scale, seed, eta, low_threshold,
68
+ high_threshold
69
+ ]
70
+ run_button.click(fn=process,
71
+ inputs=ips,
72
+ outputs=[result_gallery],
73
+ api_name='canny')
74
+ return demo
gradio_depth2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_depth2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Depth Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Depth Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=384,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='depth')
68
+ return demo
gradio_fake_scribble2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_fake_scribble2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Fake Scribble Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='HED Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='fake_scribble')
68
+ return demo
gradio_hed2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_hed2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with HED Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='HED Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='hed')
68
+ return demo
gradio_hough2image.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_hough2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Hough Line Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Hough Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ value_threshold = gr.Slider(
32
+ label='Hough value threshold (MLSD)',
33
+ minimum=0.01,
34
+ maximum=2.0,
35
+ value=0.1,
36
+ step=0.01)
37
+ distance_threshold = gr.Slider(
38
+ label='Hough distance threshold (MLSD)',
39
+ minimum=0.01,
40
+ maximum=20.0,
41
+ value=0.1,
42
+ step=0.01)
43
+ ddim_steps = gr.Slider(label='Steps',
44
+ minimum=1,
45
+ maximum=100,
46
+ value=20,
47
+ step=1)
48
+ scale = gr.Slider(label='Guidance Scale',
49
+ minimum=0.1,
50
+ maximum=30.0,
51
+ value=9.0,
52
+ step=0.1)
53
+ seed = gr.Slider(label='Seed',
54
+ minimum=-1,
55
+ maximum=2147483647,
56
+ step=1,
57
+ randomize=True)
58
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
59
+ a_prompt = gr.Textbox(
60
+ label='Added Prompt',
61
+ value='best quality, extremely detailed')
62
+ n_prompt = gr.Textbox(
63
+ label='Negative Prompt',
64
+ value=
65
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
66
+ )
67
+ with gr.Column():
68
+ result_gallery = gr.Gallery(label='Output',
69
+ show_label=False,
70
+ elem_id='gallery').style(
71
+ grid=2, height='auto')
72
+ ips = [
73
+ input_image, prompt, a_prompt, n_prompt, num_samples,
74
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta,
75
+ value_threshold, distance_threshold
76
+ ]
77
+ run_button.click(fn=process,
78
+ inputs=ips,
79
+ outputs=[result_gallery],
80
+ api_name='hough')
81
+ return demo
gradio_normal2image.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_normal2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Normal Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Normal Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=384,
30
+ step=1)
31
+ bg_threshold = gr.Slider(
32
+ label='Normal background threshold',
33
+ minimum=0.0,
34
+ maximum=1.0,
35
+ value=0.4,
36
+ step=0.01)
37
+ ddim_steps = gr.Slider(label='Steps',
38
+ minimum=1,
39
+ maximum=100,
40
+ value=20,
41
+ step=1)
42
+ scale = gr.Slider(label='Guidance Scale',
43
+ minimum=0.1,
44
+ maximum=30.0,
45
+ value=9.0,
46
+ step=0.1)
47
+ seed = gr.Slider(label='Seed',
48
+ minimum=-1,
49
+ maximum=2147483647,
50
+ step=1,
51
+ randomize=True)
52
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
53
+ a_prompt = gr.Textbox(
54
+ label='Added Prompt',
55
+ value='best quality, extremely detailed')
56
+ n_prompt = gr.Textbox(
57
+ label='Negative Prompt',
58
+ value=
59
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
60
+ )
61
+ with gr.Column():
62
+ result_gallery = gr.Gallery(label='Output',
63
+ show_label=False,
64
+ elem_id='gallery').style(
65
+ grid=2, height='auto')
66
+ ips = [
67
+ input_image, prompt, a_prompt, n_prompt, num_samples,
68
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta,
69
+ bg_threshold
70
+ ]
71
+ run_button.click(fn=process,
72
+ inputs=ips,
73
+ outputs=[result_gallery],
74
+ api_name='normal')
75
+ return demo
gradio_pose2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_pose2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Human Pose')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='OpenPose Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='pose')
68
+ return demo
gradio_scribble2image.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_scribble2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Scribble Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ ddim_steps = gr.Slider(label='Steps',
27
+ minimum=1,
28
+ maximum=100,
29
+ value=20,
30
+ step=1)
31
+ scale = gr.Slider(label='Guidance Scale',
32
+ minimum=0.1,
33
+ maximum=30.0,
34
+ value=9.0,
35
+ step=0.1)
36
+ seed = gr.Slider(label='Seed',
37
+ minimum=-1,
38
+ maximum=2147483647,
39
+ step=1,
40
+ randomize=True)
41
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
42
+ a_prompt = gr.Textbox(
43
+ label='Added Prompt',
44
+ value='best quality, extremely detailed')
45
+ n_prompt = gr.Textbox(
46
+ label='Negative Prompt',
47
+ value=
48
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
49
+ )
50
+ with gr.Column():
51
+ result_gallery = gr.Gallery(label='Output',
52
+ show_label=False,
53
+ elem_id='gallery').style(
54
+ grid=2, height='auto')
55
+ ips = [
56
+ input_image, prompt, a_prompt, n_prompt, num_samples,
57
+ image_resolution, ddim_steps, scale, seed, eta
58
+ ]
59
+ run_button.click(fn=process,
60
+ inputs=ips,
61
+ outputs=[result_gallery],
62
+ api_name='scribble')
63
+ return demo
gradio_scribble2image_interactive.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_scribble2image_interactive.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+ import numpy as np
5
+
6
+
7
+ def create_canvas(w, h):
8
+ return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
9
+
10
+
11
+ def create_demo(process, max_images=12):
12
+ with gr.Blocks() as demo:
13
+ with gr.Row():
14
+ gr.Markdown(
15
+ '## Control Stable Diffusion with Interactive Scribbles')
16
+ with gr.Row():
17
+ with gr.Column():
18
+ canvas_width = gr.Slider(label='Canvas Width',
19
+ minimum=256,
20
+ maximum=1024,
21
+ value=512,
22
+ step=1)
23
+ canvas_height = gr.Slider(label='Canvas Height',
24
+ minimum=256,
25
+ maximum=1024,
26
+ value=512,
27
+ step=1)
28
+ create_button = gr.Button(label='Start',
29
+ value='Open drawing canvas!')
30
+ input_image = gr.Image(source='upload',
31
+ type='numpy',
32
+ tool='sketch')
33
+ gr.Markdown(
34
+ value=
35
+ 'Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) '
36
+ 'Just click on the small pencil icon in the upper right corner of the above block.'
37
+ )
38
+ create_button.click(fn=create_canvas,
39
+ inputs=[canvas_width, canvas_height],
40
+ outputs=[input_image])
41
+ prompt = gr.Textbox(label='Prompt')
42
+ run_button = gr.Button(label='Run')
43
+ with gr.Accordion('Advanced options', open=False):
44
+ num_samples = gr.Slider(label='Images',
45
+ minimum=1,
46
+ maximum=max_images,
47
+ value=1,
48
+ step=1)
49
+ image_resolution = gr.Slider(label='Image Resolution',
50
+ minimum=256,
51
+ maximum=768,
52
+ value=512,
53
+ step=256)
54
+ ddim_steps = gr.Slider(label='Steps',
55
+ minimum=1,
56
+ maximum=100,
57
+ value=20,
58
+ step=1)
59
+ scale = gr.Slider(label='Guidance Scale',
60
+ minimum=0.1,
61
+ maximum=30.0,
62
+ value=9.0,
63
+ step=0.1)
64
+ seed = gr.Slider(label='Seed',
65
+ minimum=-1,
66
+ maximum=2147483647,
67
+ step=1,
68
+ randomize=True)
69
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
70
+ a_prompt = gr.Textbox(
71
+ label='Added Prompt',
72
+ value='best quality, extremely detailed')
73
+ n_prompt = gr.Textbox(
74
+ label='Negative Prompt',
75
+ value=
76
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
77
+ )
78
+ with gr.Column():
79
+ result_gallery = gr.Gallery(label='Output',
80
+ show_label=False,
81
+ elem_id='gallery').style(
82
+ grid=2, height='auto')
83
+ ips = [
84
+ input_image, prompt, a_prompt, n_prompt, num_samples,
85
+ image_resolution, ddim_steps, scale, seed, eta
86
+ ]
87
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
88
+ return demo
gradio_seg2image.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_seg2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Segmentation Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(
27
+ label='Segmentation Resolution',
28
+ minimum=128,
29
+ maximum=1024,
30
+ value=512,
31
+ step=1)
32
+ ddim_steps = gr.Slider(label='Steps',
33
+ minimum=1,
34
+ maximum=100,
35
+ value=20,
36
+ step=1)
37
+ scale = gr.Slider(label='Guidance Scale',
38
+ minimum=0.1,
39
+ maximum=30.0,
40
+ value=9.0,
41
+ step=0.1)
42
+ seed = gr.Slider(label='Seed',
43
+ minimum=-1,
44
+ maximum=2147483647,
45
+ step=1,
46
+ randomize=True)
47
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
48
+ a_prompt = gr.Textbox(
49
+ label='Added Prompt',
50
+ value='best quality, extremely detailed')
51
+ n_prompt = gr.Textbox(
52
+ label='Negative Prompt',
53
+ value=
54
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
55
+ )
56
+ with gr.Column():
57
+ result_gallery = gr.Gallery(label='Output',
58
+ show_label=False,
59
+ elem_id='gallery').style(
60
+ grid=2, height='auto')
61
+ ips = [
62
+ input_image, prompt, a_prompt, n_prompt, num_samples,
63
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
64
+ ]
65
+ run_button.click(fn=process,
66
+ inputs=ips,
67
+ outputs=[result_gallery],
68
+ api_name='seg')
69
+ return demo
model.py ADDED
@@ -0,0 +1,764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ from __future__ import annotations
4
+
5
+ import pathlib
6
+ import random
7
+ import shlex
8
+ import subprocess
9
+ import sys
10
+
11
+ import cv2
12
+ import einops
13
+ import numpy as np
14
+ import torch
15
+ from pytorch_lightning import seed_everything
16
+
17
+ sys.path.append('ControlNet')
18
+
19
+ import config
20
+ from annotator.canny import apply_canny
21
+ from annotator.hed import apply_hed, nms
22
+ from annotator.midas import apply_midas
23
+ from annotator.mlsd import apply_mlsd
24
+ from annotator.openpose import apply_openpose
25
+ from annotator.uniformer import apply_uniformer
26
+ from annotator.util import HWC3, resize_image
27
+ from cldm.model import create_model, load_state_dict
28
+ from ldm.models.diffusion.ddim import DDIMSampler
29
+ from share import *
30
+
31
+ ORIGINAL_MODEL_NAMES = {
32
+ 'canny': 'control_sd15_canny.pth',
33
+ 'hough': 'control_sd15_mlsd.pth',
34
+ 'hed': 'control_sd15_hed.pth',
35
+ 'scribble': 'control_sd15_scribble.pth',
36
+ 'pose': 'control_sd15_openpose.pth',
37
+ 'seg': 'control_sd15_seg.pth',
38
+ 'depth': 'control_sd15_depth.pth',
39
+ 'normal': 'control_sd15_normal.pth',
40
+ }
41
+ ORIGINAL_WEIGHT_ROOT = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/models/'
42
+
43
+ LIGHTWEIGHT_MODEL_NAMES = {
44
+ 'canny': 'control_canny-fp16.safetensors',
45
+ 'hough': 'control_mlsd-fp16.safetensors',
46
+ 'hed': 'control_hed-fp16.safetensors',
47
+ 'scribble': 'control_scribble-fp16.safetensors',
48
+ 'pose': 'control_openpose-fp16.safetensors',
49
+ 'seg': 'control_seg-fp16.safetensors',
50
+ 'depth': 'control_depth-fp16.safetensors',
51
+ 'normal': 'control_normal-fp16.safetensors',
52
+ }
53
+ LIGHTWEIGHT_WEIGHT_ROOT = 'https://huggingface.co/webui/ControlNet-modules-safetensors/resolve/main/'
54
+
55
+
56
+ class Model:
57
+ def __init__(self,
58
+ model_config_path: str = 'ControlNet/models/cldm_v15.yaml',
59
+ model_dir: str = 'models',
60
+ use_lightweight: bool = True):
61
+ self.device = torch.device(
62
+ 'cuda:0' if torch.cuda.is_available() else 'cpu')
63
+ self.model = create_model(model_config_path).to(self.device)
64
+ self.ddim_sampler = DDIMSampler(self.model)
65
+ self.task_name = ''
66
+
67
+ self.model_dir = pathlib.Path(model_dir)
68
+
69
+ self.use_lightweight = use_lightweight
70
+ if use_lightweight:
71
+ self.model_names = LIGHTWEIGHT_MODEL_NAMES
72
+ self.weight_root = LIGHTWEIGHT_WEIGHT_ROOT
73
+ base_model_url = 'https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors'
74
+ self.load_base_model(base_model_url)
75
+ else:
76
+ self.model_names = ORIGINAL_MODEL_NAMES
77
+ self.weight_root = ORIGINAL_WEIGHT_ROOT
78
+ self.download_models()
79
+
80
+ def download_base_model(self, model_url: str) -> pathlib.Path:
81
+ model_name = model_url.split('/')[-1]
82
+ out_path = self.model_dir / model_name
83
+ if not out_path.exists():
84
+ subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
85
+ return out_path
86
+
87
+ def load_base_model(self, model_url: str) -> None:
88
+ model_path = self.download_base_model(model_url)
89
+ self.model.load_state_dict(load_state_dict(model_path,
90
+ location=self.device.type),
91
+ strict=False)
92
+
93
+ def load_weight(self, task_name: str) -> None:
94
+ if task_name == self.task_name:
95
+ return
96
+ weight_path = self.get_weight_path(task_name)
97
+ if not self.use_lightweight:
98
+ self.model.load_state_dict(
99
+ load_state_dict(weight_path, location=self.device))
100
+ else:
101
+ self.model.control_model.load_state_dict(
102
+ load_state_dict(weight_path, location=self.device.type))
103
+ self.task_name = task_name
104
+
105
+ def get_weight_path(self, task_name: str) -> str:
106
+ if 'scribble' in task_name:
107
+ task_name = 'scribble'
108
+ return f'{self.model_dir}/{self.model_names[task_name]}'
109
+
110
+ def download_models(self) -> None:
111
+ self.model_dir.mkdir(exist_ok=True, parents=True)
112
+ for name in self.model_names.values():
113
+ out_path = self.model_dir / name
114
+ if out_path.exists():
115
+ continue
116
+ subprocess.run(
117
+ shlex.split(f'wget {self.weight_root}{name} -O {out_path}'))
118
+
119
+ @torch.inference_mode()
120
+ def process_canny(self, input_image, prompt, a_prompt, n_prompt,
121
+ num_samples, image_resolution, ddim_steps, scale, seed,
122
+ eta, low_threshold, high_threshold):
123
+ self.load_weight('canny')
124
+
125
+ img = resize_image(HWC3(input_image), image_resolution)
126
+ H, W, C = img.shape
127
+
128
+ detected_map = apply_canny(img, low_threshold, high_threshold)
129
+ detected_map = HWC3(detected_map)
130
+
131
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
132
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
133
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
134
+
135
+ if seed == -1:
136
+ seed = random.randint(0, 65535)
137
+ seed_everything(seed)
138
+
139
+ if config.save_memory:
140
+ self.model.low_vram_shift(is_diffusing=False)
141
+
142
+ cond = {
143
+ 'c_concat': [control],
144
+ 'c_crossattn': [
145
+ self.model.get_learned_conditioning(
146
+ [prompt + ', ' + a_prompt] * num_samples)
147
+ ]
148
+ }
149
+ un_cond = {
150
+ 'c_concat': [control],
151
+ 'c_crossattn':
152
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
153
+ }
154
+ shape = (4, H // 8, W // 8)
155
+
156
+ if config.save_memory:
157
+ self.model.low_vram_shift(is_diffusing=True)
158
+
159
+ samples, intermediates = self.ddim_sampler.sample(
160
+ ddim_steps,
161
+ num_samples,
162
+ shape,
163
+ cond,
164
+ verbose=False,
165
+ eta=eta,
166
+ unconditional_guidance_scale=scale,
167
+ unconditional_conditioning=un_cond)
168
+
169
+ if config.save_memory:
170
+ self.model.low_vram_shift(is_diffusing=False)
171
+
172
+ x_samples = self.model.decode_first_stage(samples)
173
+ x_samples = (
174
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
175
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
176
+
177
+ results = [x_samples[i] for i in range(num_samples)]
178
+ return [255 - detected_map] + results
179
+
180
+ @torch.inference_mode()
181
+ def process_hough(self, input_image, prompt, a_prompt, n_prompt,
182
+ num_samples, image_resolution, detect_resolution,
183
+ ddim_steps, scale, seed, eta, value_threshold,
184
+ distance_threshold):
185
+ self.load_weight('hough')
186
+
187
+ input_image = HWC3(input_image)
188
+ detected_map = apply_mlsd(resize_image(input_image, detect_resolution),
189
+ value_threshold, distance_threshold)
190
+ detected_map = HWC3(detected_map)
191
+ img = resize_image(input_image, image_resolution)
192
+ H, W, C = img.shape
193
+
194
+ detected_map = cv2.resize(detected_map, (W, H),
195
+ interpolation=cv2.INTER_NEAREST)
196
+
197
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
198
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
199
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
200
+
201
+ if seed == -1:
202
+ seed = random.randint(0, 65535)
203
+ seed_everything(seed)
204
+
205
+ if config.save_memory:
206
+ self.model.low_vram_shift(is_diffusing=False)
207
+
208
+ cond = {
209
+ 'c_concat': [control],
210
+ 'c_crossattn': [
211
+ self.model.get_learned_conditioning(
212
+ [prompt + ', ' + a_prompt] * num_samples)
213
+ ]
214
+ }
215
+ un_cond = {
216
+ 'c_concat': [control],
217
+ 'c_crossattn':
218
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
219
+ }
220
+ shape = (4, H // 8, W // 8)
221
+
222
+ if config.save_memory:
223
+ self.model.low_vram_shift(is_diffusing=True)
224
+
225
+ samples, intermediates = self.ddim_sampler.sample(
226
+ ddim_steps,
227
+ num_samples,
228
+ shape,
229
+ cond,
230
+ verbose=False,
231
+ eta=eta,
232
+ unconditional_guidance_scale=scale,
233
+ unconditional_conditioning=un_cond)
234
+
235
+ if config.save_memory:
236
+ self.model.low_vram_shift(is_diffusing=False)
237
+
238
+ x_samples = self.model.decode_first_stage(samples)
239
+ x_samples = (
240
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
241
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
242
+
243
+ results = [x_samples[i] for i in range(num_samples)]
244
+ return [
245
+ 255 - cv2.dilate(detected_map,
246
+ np.ones(shape=(3, 3), dtype=np.uint8),
247
+ iterations=1)
248
+ ] + results
249
+
250
+ @torch.inference_mode()
251
+ def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples,
252
+ image_resolution, detect_resolution, ddim_steps, scale,
253
+ seed, eta):
254
+ self.load_weight('hed')
255
+
256
+ input_image = HWC3(input_image)
257
+ detected_map = apply_hed(resize_image(input_image, detect_resolution))
258
+ detected_map = HWC3(detected_map)
259
+ img = resize_image(input_image, image_resolution)
260
+ H, W, C = img.shape
261
+
262
+ detected_map = cv2.resize(detected_map, (W, H),
263
+ interpolation=cv2.INTER_LINEAR)
264
+
265
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
266
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
267
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
268
+
269
+ if seed == -1:
270
+ seed = random.randint(0, 65535)
271
+ seed_everything(seed)
272
+
273
+ if config.save_memory:
274
+ self.model.low_vram_shift(is_diffusing=False)
275
+
276
+ cond = {
277
+ 'c_concat': [control],
278
+ 'c_crossattn': [
279
+ self.model.get_learned_conditioning(
280
+ [prompt + ', ' + a_prompt] * num_samples)
281
+ ]
282
+ }
283
+ un_cond = {
284
+ 'c_concat': [control],
285
+ 'c_crossattn':
286
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
287
+ }
288
+ shape = (4, H // 8, W // 8)
289
+
290
+ if config.save_memory:
291
+ self.model.low_vram_shift(is_diffusing=True)
292
+
293
+ samples, intermediates = self.ddim_sampler.sample(
294
+ ddim_steps,
295
+ num_samples,
296
+ shape,
297
+ cond,
298
+ verbose=False,
299
+ eta=eta,
300
+ unconditional_guidance_scale=scale,
301
+ unconditional_conditioning=un_cond)
302
+
303
+ if config.save_memory:
304
+ self.model.low_vram_shift(is_diffusing=False)
305
+
306
+ x_samples = self.model.decode_first_stage(samples)
307
+ x_samples = (
308
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
309
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
310
+
311
+ results = [x_samples[i] for i in range(num_samples)]
312
+ return [detected_map] + results
313
+
314
+ @torch.inference_mode()
315
+ def process_scribble(self, input_image, prompt, a_prompt, n_prompt,
316
+ num_samples, image_resolution, ddim_steps, scale,
317
+ seed, eta):
318
+ self.load_weight('scribble')
319
+
320
+ img = resize_image(HWC3(input_image), image_resolution)
321
+ H, W, C = img.shape
322
+
323
+ detected_map = np.zeros_like(img, dtype=np.uint8)
324
+ detected_map[np.min(img, axis=2) < 127] = 255
325
+
326
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
327
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
328
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
329
+
330
+ if seed == -1:
331
+ seed = random.randint(0, 65535)
332
+ seed_everything(seed)
333
+
334
+ if config.save_memory:
335
+ self.model.low_vram_shift(is_diffusing=False)
336
+
337
+ cond = {
338
+ 'c_concat': [control],
339
+ 'c_crossattn': [
340
+ self.model.get_learned_conditioning(
341
+ [prompt + ', ' + a_prompt] * num_samples)
342
+ ]
343
+ }
344
+ un_cond = {
345
+ 'c_concat': [control],
346
+ 'c_crossattn':
347
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
348
+ }
349
+ shape = (4, H // 8, W // 8)
350
+
351
+ if config.save_memory:
352
+ self.model.low_vram_shift(is_diffusing=True)
353
+
354
+ samples, intermediates = self.ddim_sampler.sample(
355
+ ddim_steps,
356
+ num_samples,
357
+ shape,
358
+ cond,
359
+ verbose=False,
360
+ eta=eta,
361
+ unconditional_guidance_scale=scale,
362
+ unconditional_conditioning=un_cond)
363
+
364
+ if config.save_memory:
365
+ self.model.low_vram_shift(is_diffusing=False)
366
+
367
+ x_samples = self.model.decode_first_stage(samples)
368
+ x_samples = (
369
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
370
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
371
+
372
+ results = [x_samples[i] for i in range(num_samples)]
373
+ return [255 - detected_map] + results
374
+
375
+ @torch.inference_mode()
376
+ def process_scribble_interactive(self, input_image, prompt, a_prompt,
377
+ n_prompt, num_samples, image_resolution,
378
+ ddim_steps, scale, seed, eta):
379
+ self.load_weight('scribble')
380
+
381
+ img = resize_image(HWC3(input_image['mask'][:, :, 0]),
382
+ image_resolution)
383
+ H, W, C = img.shape
384
+
385
+ detected_map = np.zeros_like(img, dtype=np.uint8)
386
+ detected_map[np.min(img, axis=2) > 127] = 255
387
+
388
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
389
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
390
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
391
+
392
+ if seed == -1:
393
+ seed = random.randint(0, 65535)
394
+ seed_everything(seed)
395
+
396
+ if config.save_memory:
397
+ self.model.low_vram_shift(is_diffusing=False)
398
+
399
+ cond = {
400
+ 'c_concat': [control],
401
+ 'c_crossattn': [
402
+ self.model.get_learned_conditioning(
403
+ [prompt + ', ' + a_prompt] * num_samples)
404
+ ]
405
+ }
406
+ un_cond = {
407
+ 'c_concat': [control],
408
+ 'c_crossattn':
409
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
410
+ }
411
+ shape = (4, H // 8, W // 8)
412
+
413
+ if config.save_memory:
414
+ self.model.low_vram_shift(is_diffusing=True)
415
+
416
+ samples, intermediates = self.ddim_sampler.sample(
417
+ ddim_steps,
418
+ num_samples,
419
+ shape,
420
+ cond,
421
+ verbose=False,
422
+ eta=eta,
423
+ unconditional_guidance_scale=scale,
424
+ unconditional_conditioning=un_cond)
425
+
426
+ if config.save_memory:
427
+ self.model.low_vram_shift(is_diffusing=False)
428
+
429
+ x_samples = self.model.decode_first_stage(samples)
430
+ x_samples = (
431
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
432
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
433
+
434
+ results = [x_samples[i] for i in range(num_samples)]
435
+ return [255 - detected_map] + results
436
+
437
+ @torch.inference_mode()
438
+ def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt,
439
+ num_samples, image_resolution, detect_resolution,
440
+ ddim_steps, scale, seed, eta):
441
+ self.load_weight('scribble')
442
+
443
+ input_image = HWC3(input_image)
444
+ detected_map = apply_hed(resize_image(input_image, detect_resolution))
445
+ detected_map = HWC3(detected_map)
446
+ img = resize_image(input_image, image_resolution)
447
+ H, W, C = img.shape
448
+
449
+ detected_map = cv2.resize(detected_map, (W, H),
450
+ interpolation=cv2.INTER_LINEAR)
451
+ detected_map = nms(detected_map, 127, 3.0)
452
+ detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
453
+ detected_map[detected_map > 4] = 255
454
+ detected_map[detected_map < 255] = 0
455
+
456
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
457
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
458
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
459
+
460
+ if seed == -1:
461
+ seed = random.randint(0, 65535)
462
+ seed_everything(seed)
463
+
464
+ if config.save_memory:
465
+ self.model.low_vram_shift(is_diffusing=False)
466
+
467
+ cond = {
468
+ 'c_concat': [control],
469
+ 'c_crossattn': [
470
+ self.model.get_learned_conditioning(
471
+ [prompt + ', ' + a_prompt] * num_samples)
472
+ ]
473
+ }
474
+ un_cond = {
475
+ 'c_concat': [control],
476
+ 'c_crossattn':
477
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
478
+ }
479
+ shape = (4, H // 8, W // 8)
480
+
481
+ if config.save_memory:
482
+ self.model.low_vram_shift(is_diffusing=True)
483
+
484
+ samples, intermediates = self.ddim_sampler.sample(
485
+ ddim_steps,
486
+ num_samples,
487
+ shape,
488
+ cond,
489
+ verbose=False,
490
+ eta=eta,
491
+ unconditional_guidance_scale=scale,
492
+ unconditional_conditioning=un_cond)
493
+
494
+ if config.save_memory:
495
+ self.model.low_vram_shift(is_diffusing=False)
496
+
497
+ x_samples = self.model.decode_first_stage(samples)
498
+ x_samples = (
499
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
500
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
501
+
502
+ results = [x_samples[i] for i in range(num_samples)]
503
+ return [255 - detected_map] + results
504
+
505
+ @torch.inference_mode()
506
+ def process_pose(self, input_image, prompt, a_prompt, n_prompt,
507
+ num_samples, image_resolution, detect_resolution,
508
+ ddim_steps, scale, seed, eta):
509
+ self.load_weight('pose')
510
+
511
+ input_image = HWC3(input_image)
512
+ detected_map, _ = apply_openpose(
513
+ resize_image(input_image, detect_resolution))
514
+ detected_map = HWC3(detected_map)
515
+ img = resize_image(input_image, image_resolution)
516
+ H, W, C = img.shape
517
+
518
+ detected_map = cv2.resize(detected_map, (W, H),
519
+ interpolation=cv2.INTER_NEAREST)
520
+
521
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
522
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
523
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
524
+
525
+ if seed == -1:
526
+ seed = random.randint(0, 65535)
527
+ seed_everything(seed)
528
+
529
+ if config.save_memory:
530
+ self.model.low_vram_shift(is_diffusing=False)
531
+
532
+ cond = {
533
+ 'c_concat': [control],
534
+ 'c_crossattn': [
535
+ self.model.get_learned_conditioning(
536
+ [prompt + ', ' + a_prompt] * num_samples)
537
+ ]
538
+ }
539
+ un_cond = {
540
+ 'c_concat': [control],
541
+ 'c_crossattn':
542
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
543
+ }
544
+ shape = (4, H // 8, W // 8)
545
+
546
+ if config.save_memory:
547
+ self.model.low_vram_shift(is_diffusing=True)
548
+
549
+ samples, intermediates = self.ddim_sampler.sample(
550
+ ddim_steps,
551
+ num_samples,
552
+ shape,
553
+ cond,
554
+ verbose=False,
555
+ eta=eta,
556
+ unconditional_guidance_scale=scale,
557
+ unconditional_conditioning=un_cond)
558
+
559
+ if config.save_memory:
560
+ self.model.low_vram_shift(is_diffusing=False)
561
+
562
+ x_samples = self.model.decode_first_stage(samples)
563
+ x_samples = (
564
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
565
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
566
+
567
+ results = [x_samples[i] for i in range(num_samples)]
568
+ return [detected_map] + results
569
+
570
+ @torch.inference_mode()
571
+ def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples,
572
+ image_resolution, detect_resolution, ddim_steps, scale,
573
+ seed, eta):
574
+ self.load_weight('seg')
575
+
576
+ input_image = HWC3(input_image)
577
+ detected_map = apply_uniformer(
578
+ resize_image(input_image, detect_resolution))
579
+ img = resize_image(input_image, image_resolution)
580
+ H, W, C = img.shape
581
+
582
+ detected_map = cv2.resize(detected_map, (W, H),
583
+ interpolation=cv2.INTER_NEAREST)
584
+
585
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
586
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
587
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
588
+
589
+ if seed == -1:
590
+ seed = random.randint(0, 65535)
591
+ seed_everything(seed)
592
+
593
+ if config.save_memory:
594
+ self.model.low_vram_shift(is_diffusing=False)
595
+
596
+ cond = {
597
+ 'c_concat': [control],
598
+ 'c_crossattn': [
599
+ self.model.get_learned_conditioning(
600
+ [prompt + ', ' + a_prompt] * num_samples)
601
+ ]
602
+ }
603
+ un_cond = {
604
+ 'c_concat': [control],
605
+ 'c_crossattn':
606
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
607
+ }
608
+ shape = (4, H // 8, W // 8)
609
+
610
+ if config.save_memory:
611
+ self.model.low_vram_shift(is_diffusing=True)
612
+
613
+ samples, intermediates = self.ddim_sampler.sample(
614
+ ddim_steps,
615
+ num_samples,
616
+ shape,
617
+ cond,
618
+ verbose=False,
619
+ eta=eta,
620
+ unconditional_guidance_scale=scale,
621
+ unconditional_conditioning=un_cond)
622
+
623
+ if config.save_memory:
624
+ self.model.low_vram_shift(is_diffusing=False)
625
+
626
+ x_samples = self.model.decode_first_stage(samples)
627
+ x_samples = (
628
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
629
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
630
+
631
+ results = [x_samples[i] for i in range(num_samples)]
632
+ return [detected_map] + results
633
+
634
+ @torch.inference_mode()
635
+ def process_depth(self, input_image, prompt, a_prompt, n_prompt,
636
+ num_samples, image_resolution, detect_resolution,
637
+ ddim_steps, scale, seed, eta):
638
+ self.load_weight('depth')
639
+
640
+ input_image = HWC3(input_image)
641
+ detected_map, _ = apply_midas(
642
+ resize_image(input_image, detect_resolution))
643
+ detected_map = HWC3(detected_map)
644
+ img = resize_image(input_image, image_resolution)
645
+ H, W, C = img.shape
646
+
647
+ detected_map = cv2.resize(detected_map, (W, H),
648
+ interpolation=cv2.INTER_LINEAR)
649
+
650
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
651
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
652
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
653
+
654
+ if seed == -1:
655
+ seed = random.randint(0, 65535)
656
+ seed_everything(seed)
657
+
658
+ if config.save_memory:
659
+ self.model.low_vram_shift(is_diffusing=False)
660
+
661
+ cond = {
662
+ 'c_concat': [control],
663
+ 'c_crossattn': [
664
+ self.model.get_learned_conditioning(
665
+ [prompt + ', ' + a_prompt] * num_samples)
666
+ ]
667
+ }
668
+ un_cond = {
669
+ 'c_concat': [control],
670
+ 'c_crossattn':
671
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
672
+ }
673
+ shape = (4, H // 8, W // 8)
674
+
675
+ if config.save_memory:
676
+ self.model.low_vram_shift(is_diffusing=True)
677
+
678
+ samples, intermediates = self.ddim_sampler.sample(
679
+ ddim_steps,
680
+ num_samples,
681
+ shape,
682
+ cond,
683
+ verbose=False,
684
+ eta=eta,
685
+ unconditional_guidance_scale=scale,
686
+ unconditional_conditioning=un_cond)
687
+
688
+ if config.save_memory:
689
+ self.model.low_vram_shift(is_diffusing=False)
690
+
691
+ x_samples = self.model.decode_first_stage(samples)
692
+ x_samples = (
693
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
694
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
695
+
696
+ results = [x_samples[i] for i in range(num_samples)]
697
+ return [detected_map] + results
698
+
699
+ @torch.inference_mode()
700
+ def process_normal(self, input_image, prompt, a_prompt, n_prompt,
701
+ num_samples, image_resolution, detect_resolution,
702
+ ddim_steps, scale, seed, eta, bg_threshold):
703
+ self.load_weight('normal')
704
+
705
+ input_image = HWC3(input_image)
706
+ _, detected_map = apply_midas(resize_image(input_image,
707
+ detect_resolution),
708
+ bg_th=bg_threshold)
709
+ detected_map = HWC3(detected_map)
710
+ img = resize_image(input_image, image_resolution)
711
+ H, W, C = img.shape
712
+
713
+ detected_map = cv2.resize(detected_map, (W, H),
714
+ interpolation=cv2.INTER_LINEAR)
715
+
716
+ control = torch.from_numpy(
717
+ detected_map[:, :, ::-1].copy()).float().cuda() / 255.0
718
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
719
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
720
+
721
+ if seed == -1:
722
+ seed = random.randint(0, 65535)
723
+ seed_everything(seed)
724
+
725
+ if config.save_memory:
726
+ self.model.low_vram_shift(is_diffusing=False)
727
+
728
+ cond = {
729
+ 'c_concat': [control],
730
+ 'c_crossattn': [
731
+ self.model.get_learned_conditioning(
732
+ [prompt + ', ' + a_prompt] * num_samples)
733
+ ]
734
+ }
735
+ un_cond = {
736
+ 'c_concat': [control],
737
+ 'c_crossattn':
738
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
739
+ }
740
+ shape = (4, H // 8, W // 8)
741
+
742
+ if config.save_memory:
743
+ self.model.low_vram_shift(is_diffusing=True)
744
+
745
+ samples, intermediates = self.ddim_sampler.sample(
746
+ ddim_steps,
747
+ num_samples,
748
+ shape,
749
+ cond,
750
+ verbose=False,
751
+ eta=eta,
752
+ unconditional_guidance_scale=scale,
753
+ unconditional_conditioning=un_cond)
754
+
755
+ if config.save_memory:
756
+ self.model.low_vram_shift(is_diffusing=False)
757
+
758
+ x_samples = self.model.decode_first_stage(samples)
759
+ x_samples = (
760
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
761
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
762
+
763
+ results = [x_samples[i] for i in range(num_samples)]
764
+ return [detected_map] + results
patch ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/annotator/hed/__init__.py b/annotator/hed/__init__.py
2
+ index 42d8dc6..1587035 100644
3
+ --- a/annotator/hed/__init__.py
4
+ +++ b/annotator/hed/__init__.py
5
+ @@ -1,8 +1,12 @@
6
+ +import pathlib
7
+ +
8
+ import numpy as np
9
+ import cv2
10
+ import torch
11
+ from einops import rearrange
12
+
13
+ +root_dir = pathlib.Path(__file__).parents[2]
14
+ +
15
+
16
+ class Network(torch.nn.Module):
17
+ def __init__(self):
18
+ @@ -64,7 +68,7 @@ class Network(torch.nn.Module):
19
+ torch.nn.Sigmoid()
20
+ )
21
+
22
+ - self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load('./annotator/ckpts/network-bsds500.pth').items()})
23
+ + self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(f'{root_dir}/annotator/ckpts/network-bsds500.pth').items()})
24
+ # end
25
+
26
+ def forward(self, tenInput):
27
+ diff --git a/annotator/midas/api.py b/annotator/midas/api.py
28
+ index 9fa305e..d8594ea 100644
29
+ --- a/annotator/midas/api.py
30
+ +++ b/annotator/midas/api.py
31
+ @@ -1,5 +1,7 @@
32
+ # based on https://github.com/isl-org/MiDaS
33
+
34
+ +import pathlib
35
+ +
36
+ import cv2
37
+ import torch
38
+ import torch.nn as nn
39
+ @@ -10,10 +12,11 @@ from .midas.midas_net import MidasNet
40
+ from .midas.midas_net_custom import MidasNet_small
41
+ from .midas.transforms import Resize, NormalizeImage, PrepareForNet
42
+
43
+ +root_dir = pathlib.Path(__file__).parents[2]
44
+
45
+ ISL_PATHS = {
46
+ - "dpt_large": "annotator/ckpts/dpt_large-midas-2f21e586.pt",
47
+ - "dpt_hybrid": "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
48
+ + "dpt_large": f"{root_dir}/annotator/ckpts/dpt_large-midas-2f21e586.pt",
49
+ + "dpt_hybrid": f"{root_dir}/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
50
+ "midas_v21": "",
51
+ "midas_v21_small": "",
52
+ }
53
+ diff --git a/annotator/mlsd/__init__.py b/annotator/mlsd/__init__.py
54
+ index 75db717..f310fe6 100644
55
+ --- a/annotator/mlsd/__init__.py
56
+ +++ b/annotator/mlsd/__init__.py
57
+ @@ -1,3 +1,5 @@
58
+ +import pathlib
59
+ +
60
+ import cv2
61
+ import numpy as np
62
+ import torch
63
+ @@ -8,8 +10,9 @@ from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
64
+ from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
65
+ from .utils import pred_lines
66
+
67
+ +root_dir = pathlib.Path(__file__).parents[2]
68
+
69
+ -model_path = './annotator/ckpts/mlsd_large_512_fp32.pth'
70
+ +model_path = f'{root_dir}/annotator/ckpts/mlsd_large_512_fp32.pth'
71
+ model = MobileV2_MLSD_Large()
72
+ model.load_state_dict(torch.load(model_path), strict=True)
73
+ model = model.cuda().eval()
74
+ diff --git a/annotator/openpose/__init__.py b/annotator/openpose/__init__.py
75
+ index 47d50a5..2369eed 100644
76
+ --- a/annotator/openpose/__init__.py
77
+ +++ b/annotator/openpose/__init__.py
78
+ @@ -1,4 +1,5 @@
79
+ import os
80
+ +import pathlib
81
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
82
+
83
+ import torch
84
+ @@ -7,8 +8,10 @@ from . import util
85
+ from .body import Body
86
+ from .hand import Hand
87
+
88
+ -body_estimation = Body('./annotator/ckpts/body_pose_model.pth')
89
+ -hand_estimation = Hand('./annotator/ckpts/hand_pose_model.pth')
90
+ +root_dir = pathlib.Path(__file__).parents[2]
91
+ +
92
+ +body_estimation = Body(f'{root_dir}/annotator/ckpts/body_pose_model.pth')
93
+ +hand_estimation = Hand(f'{root_dir}/annotator/ckpts/hand_pose_model.pth')
94
+
95
+
96
+ def apply_openpose(oriImg, hand=False):
97
+ diff --git a/annotator/uniformer/__init__.py b/annotator/uniformer/__init__.py
98
+ index 500e53c..4061dbe 100644
99
+ --- a/annotator/uniformer/__init__.py
100
+ +++ b/annotator/uniformer/__init__.py
101
+ @@ -1,9 +1,12 @@
102
+ +import pathlib
103
+ +
104
+ from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
105
+ from annotator.uniformer.mmseg.core.evaluation import get_palette
106
+
107
+ +root_dir = pathlib.Path(__file__).parents[2]
108
+
109
+ -checkpoint_file = "annotator/ckpts/upernet_global_small.pth"
110
+ -config_file = 'annotator/uniformer/exp/upernet_global_small/config.py'
111
+ +checkpoint_file = f"{root_dir}/annotator/ckpts/upernet_global_small.pth"
112
+ +config_file = f'{root_dir}/annotator/uniformer/exp/upernet_global_small/config.py'
113
+ model = init_segmentor(config_file, checkpoint_file).cuda()
114
+
115
+
requirements.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ addict==2.4.0
2
+ albumentations==1.3.0
3
+ einops==0.6.0
4
+ gradio==3.18.0
5
+ imageio==2.25.0
6
+ imageio-ffmpeg==0.4.8
7
+ kornia==0.6.9
8
+ omegaconf==2.3.0
9
+ open-clip-torch==2.13.0
10
+ opencv-contrib-python==4.7.0.68
11
+ opencv-python-headless==4.7.0.68
12
+ prettytable==3.6.0
13
+ pytorch-lightning==1.9.0
14
+ safetensors==0.2.8
15
+ timm==0.6.12
16
+ torch==1.13.1
17
+ torchvision==0.14.1
18
+ transformers==4.26.1
19
+ yapf==0.32.0
style.css ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ }