File size: 1,794 Bytes
b8d9f69 07c2aaf b8d9f69 d9db1f6 b8d9f69 d9db1f6 07c2aaf 04e89d3 d9db1f6 07c2aaf d9db1f6 07c2aaf 115ddf5 d9db1f6 115ddf5 d9db1f6 115ddf5 d9db1f6 115ddf5 d9db1f6 115ddf5 b8d9f69 d9db1f6 b8d9f69 d9db1f6 b8d9f69 115ddf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
#!/usr/bin/env python
import os
import pathlib
import shlex
import subprocess
import gradio as gr
import torch
from app_colorization import create_demo as create_demo_colorization
from app_superresolution import create_demo as create_demo_superresolution
DESCRIPTION = "# [DDNM-HQ](https://github.com/wyhuai/DDNM/tree/main/hq_demo)"
if (SPACE_ID := os.getenv("SPACE_ID")) is not None:
DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
MODEL_DIR = pathlib.Path("DDNM/hq_demo/data/pretrained")
if not MODEL_DIR.exists():
MODEL_DIR.mkdir()
subprocess.run( # noqa: S603
shlex.split("wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt"),
cwd=MODEL_DIR.as_posix(),
check=False,
)
subprocess.run( # noqa: S603
shlex.split("wget https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt"),
cwd=MODEL_DIR.as_posix(),
check=False,
)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem(label="Super-resolution"):
create_demo_superresolution()
with gr.TabItem(label="Colorization"):
create_demo_colorization()
if __name__ == "__main__":
demo.queue(api_open=False, max_size=5).launch()
|