File size: 3,349 Bytes
fb59cb8
 
 
 
 
 
e9c5f95
fb59cb8
 
 
 
 
 
 
 
b8ce03a
fb59cb8
 
e9c5f95
b8ce03a
e9c5f95
b8ce03a
e9c5f95
 
b8ce03a
fb59cb8
 
e9c5f95
b8ce03a
e9c5f95
 
fb59cb8
 
e9c5f95
b8ce03a
e9c5f95
 
 
 
 
01b28b7
 
 
 
b8ce03a
fb59cb8
 
b8ce03a
fb59cb8
 
b8ce03a
fb59cb8
 
bbe49e5
 
 
 
 
 
 
 
fb59cb8
bbe49e5
 
b8ce03a
bbe49e5
fb59cb8
 
01b28b7
 
 
b8ce03a
01b28b7
 
 
b8ce03a
 
 
01b28b7
bbe49e5
b8ce03a
 
 
 
 
 
 
 
 
 
 
 
 
01b28b7
bbe49e5
 
 
 
b8ce03a
bbe49e5
b8ce03a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python

from __future__ import annotations

import os
import pathlib
import tarfile

import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf

DESCRIPTION = "# [KichangKim/DeepDanbooru](https://github.com/KichangKim/DeepDanbooru)"


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path("images")
    if not image_dir.exists():
        path = huggingface_hub.hf_hub_download("public-data/sample-images-TADNE", "images.tar.gz", repo_type="dataset")
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob("*"))


def load_model() -> tf.keras.Model:
    path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "model-resnet_custom_v3.h5")
    model = tf.keras.models.load_model(path)
    return model


def load_labels() -> list[str]:
    path = huggingface_hub.hf_hub_download("public-data/DeepDanbooru", "tags.txt")
    with open(path) as f:
        labels = [line.strip() for line in f.readlines()]
    return labels


model = load_model()
labels = load_labels()


def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
    _, height, width, _ = model.input_shape
    image = np.asarray(image)
    image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
    image = image.numpy()
    image = dd.image.transform_and_pad_image(image, width, height)
    image = image / 255.0
    probs = model.predict(image[None, ...])[0]
    probs = probs.astype(float)

    indices = np.argsort(probs)[::-1]
    result_all = dict()
    result_threshold = dict()
    for index in indices:
        label = labels[index]
        prob = probs[index]
        result_all[label] = prob
        if prob < score_threshold:
            break
        result_threshold[label] = prob
    result_text = ", ".join(result_all.keys())
    return result_threshold, result_all, result_text


image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.5] for path in image_paths]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="pil")
            score_threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.05, value=0.5)
            run_button = gr.Button("Run")
        with gr.Column():
            with gr.Tabs():
                with gr.Tab(label="Output"):
                    result = gr.Label(label="Output", show_label=False)
                with gr.Tab(label="JSON"):
                    result_json = gr.JSON(label="JSON output", show_label=False)
                with gr.Tab(label="Text"):
                    result_text = gr.Text(label="Text output", show_label=False, lines=5)
    gr.Examples(
        examples=examples,
        inputs=[image, score_threshold],
        outputs=[result, result_json, result_text],
        fn=predict,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )

    run_button.click(
        fn=predict,
        inputs=[image, score_threshold],
        outputs=[result, result_json, result_text],
        api_name="predict",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()