Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,629 Bytes
d4d8571 bc904d0 d4d8571 bc904d0 d4d8571 bc904d0 d4d8571 bc904d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
import PIL.Image
import spaces
import torch
from transformers import InstructBlipForConditionalGeneration, InstructBlipProcessor
DESCRIPTION = "# InstructBLIP"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "Salesforce/instructblip-vicuna-7b"
processor = InstructBlipProcessor.from_pretrained(model_id)
model = InstructBlipForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
@spaces.GPU
def run(
image: PIL.Image.Image,
prompt: str,
text_decoding_method: str = "Nucleus sampling",
num_beams: int = 5,
max_length: int = 256,
min_length: int = 1,
top_p: float = 0.9,
repetition_penalty: float = 1.5,
length_penalty: float = 1.0,
temperature: float = 1.0,
) -> str:
h, w = image.size
scale = MAX_IMAGE_SIZE / max(h, w)
if scale < 1:
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(
**inputs,
do_sample=text_decoding_method == "Nucleus sampling",
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_caption
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button()
with gr.Accordion(label="Advanced options", open=False):
text_decoding_method = gr.Radio(
label="Text Decoding Method",
choices=["Beam search", "Nucleus sampling"],
value="Nucleus sampling",
)
num_beams = gr.Slider(
label="Number of Beams",
minimum=1,
maximum=10,
step=1,
value=5,
)
max_length = gr.Slider(
label="Max Length",
minimum=1,
maximum=512,
step=1,
value=256,
)
min_length = gr.Slider(
label="Minimum Length",
minimum=1,
maximum=64,
step=1,
value=1,
)
top_p = gr.Slider(
label="Top P",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.9,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
info="Larger value prevents repetition.",
minimum=1.0,
maximum=5.0,
step=0.5,
value=1.5,
)
length_penalty = gr.Slider(
label="Length Penalty",
info="Set to larger for longer sequence, used with beam search.",
minimum=-1.0,
maximum=2.0,
step=0.2,
value=1.0,
)
temperature = gr.Slider(
label="Temperature",
info="Used with nucleus sampling.",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Column():
output = gr.Textbox(label="Result")
gr.on(
triggers=[prompt.submit, run_button.click],
fn=run,
inputs=[
input_image,
prompt,
text_decoding_method,
num_beams,
max_length,
min_length,
top_p,
repetition_penalty,
length_penalty,
temperature,
],
outputs=output,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|