Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,751 Bytes
3b6fea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import gradio as gr
from model import Model
DESCRIPTION = '''# MangaLineExtraction_PyTorch
This is an unofficial demo for [https://github.com/ljsabc/MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch).
'''
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.mangalineextraction_pytorch" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def main():
args = parse_args()
model = Model(device=args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Group():
input_image = gr.Image(label='Input', type='numpy')
run_button = gr.Button(value='Run')
with gr.Column():
result = gr.Image(label='Result',
type='numpy',
elem_id='result')
gr.Markdown(FOOTER)
run_button.click(fn=model.predict, inputs=input_image, outputs=result)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|