#!/usr/bin/env python import pathlib import shlex import subprocess import gradio as gr from model import Model from settings import CACHE_EXAMPLES, MAX_SEED from utils import randomize_seed_fn def create_demo(model: Model) -> gr.Blocks: if not pathlib.Path("corgi.png").exists(): subprocess.run( shlex.split( "wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png" ) ) examples = ["corgi.png"] def process_example_fn(image_path: str) -> str: return model.run_image(image_path) with gr.Blocks() as demo: with gr.Box(): image = gr.Image(label="Input image", show_label=False, type="pil") run_button = gr.Button("Run") result = gr.Model3D(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=20, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=64, ) gr.Examples( examples=examples, inputs=image, outputs=result, fn=process_example_fn, cache_examples=CACHE_EXAMPLES, ) inputs = [ image, seed, guidance_scale, num_inference_steps, ] run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=model.run_image, inputs=inputs, outputs=result, api_name="image-to-3d", ) return demo