Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import pickle | |
import sys | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
sys.path.insert(0, "StyleGAN-Human") | |
TITLE = "StyleGAN-Human" | |
DESCRIPTION = "https://github.com/stylegan-human/StyleGAN-Human" | |
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(device).float() | |
def generate_image(seed: int, truncation_psi: float, model: nn.Module, device: torch.device) -> np.ndarray: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = generate_z(model.z_dim, seed, device) | |
label = torch.zeros([1, model.c_dim], device=device) | |
out = model(z, label, truncation_psi=truncation_psi, force_fp32=True) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def load_model(file_name: str, device: torch.device) -> nn.Module: | |
path = hf_hub_download("public-data/StyleGAN-Human", f"models/{file_name}") | |
with open(path, "rb") as f: | |
model = pickle.load(f)["G_ema"] | |
model.eval() | |
model.to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.z_dim)).to(device) | |
label = torch.zeros([1, model.c_dim], device=device) | |
model(z, label, force_fp32=True) | |
return model | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = load_model("stylegan_human_v2_1024.pkl", device) | |
fn = functools.partial(generate_image, model=model, device=device) | |
gr.Interface( | |
fn=fn, | |
inputs=[ | |
gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0), | |
gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7), | |
], | |
outputs=gr.Image(label="Output", type="numpy"), | |
title=TITLE, | |
description=DESCRIPTION, | |
).queue(max_size=10).launch() | |