StyleGAN3 / app.py
hysts's picture
hysts HF staff
Add files
5691542
raw
history blame
5.74 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
sys.path.insert(0, 'stylegan3')
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
ORIGINAL_REPO_URL = 'https://github.com/NVlabs/stylegan3'
TITLE = 'NVlabs/stylegan3'
DESCRIPTION = f'This is a demo for {ORIGINAL_REPO_URL}.'
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN3/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### AFHQv2
- size: 512x512
- seed: 0-99
![AFHQv2 samples]({SAMPLE_IMAGE_DIR}/afhqv2.jpg)
### FFHQ
- size: 1024x1024
- seed: 0-99
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### FFHQ-U
- size: 1024x1024
- seed: 0-99
![FFHQ-U samples]({SAMPLE_IMAGE_DIR}/ffhq-u.jpg)
### MetFaces
- size: 1024x1024
- seed: 0-99
![MetFaces samples]({SAMPLE_IMAGE_DIR}/metfaces.jpg)
### MetFaces-U
- size: 1024x1024
- seed: 0-99
![MetFaces-U samples]({SAMPLE_IMAGE_DIR}/metfaces-u.jpg)
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
mat = np.eye(3)
sin = np.sin(angle / 360 * np.pi * 2)
cos = np.cos(angle / 360 * np.pi * 2)
mat[0][0] = cos
mat[0][1] = sin
mat[0][2] = translate[0]
mat[1][0] = -sin
mat[1][1] = cos
mat[1][2] = translate[1]
return mat
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device)
@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
tx: float, ty: float, angle: float,
model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
mat = make_transform((tx, ty), angle)
mat = np.linalg.inv(mat)
model.synthesis.input.transform.copy_(torch.from_numpy(mat))
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(file_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN3',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
model_names = {
'AFHQv2-512-R': 'stylegan3-r-afhqv2-512x512.pkl',
'FFHQ-1024-R': 'stylegan3-r-ffhq-1024x1024.pkl',
'FFHQ-U-256-R': 'stylegan3-r-ffhqu-256x256.pkl',
'FFHQ-U-1024-R': 'stylegan3-r-ffhqu-1024x1024.pkl',
'MetFaces-1024-R': 'stylegan3-r-metfaces-1024x1024.pkl',
'MetFaces-U-1024-R': 'stylegan3-r-metfacesu-1024x1024.pkl',
'AFHQv2-512-T': 'stylegan3-t-afhqv2-512x512.pkl',
'FFHQ-1024-T': 'stylegan3-t-ffhq-1024x1024.pkl',
'FFHQ-U-256-T': 'stylegan3-t-ffhqu-256x256.pkl',
'FFHQ-U-1024-T': 'stylegan3-t-ffhqu-1024x1024.pkl',
'MetFaces-1024-T': 'stylegan3-t-metfaces-1024x1024.pkl',
'MetFaces-U-1024-T': 'stylegan3-t-metfacesu-1024x1024.pkl',
}
model_dict = {
name: load_model(file_name, device)
for name, file_name in model_names.items()
}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(list(model_names.keys()),
type='value',
default='FFHQ-1024-R',
label='Model'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'),
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'),
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),
],
gr.outputs.Image(type='numpy', label='Output'),
theme=args.theme,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()