Spaces:
Runtime error
Runtime error
Update
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
-
import functools
|
6 |
import os
|
7 |
import random
|
8 |
import shlex
|
@@ -58,12 +57,16 @@ def load_model(device: torch.device) -> nn.Module:
|
|
58 |
return model
|
59 |
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
|
65 |
@torch.inference_mode()
|
66 |
-
def generate_image(
|
67 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
68 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
69 |
return out[0].cpu().numpy()
|
@@ -77,14 +80,15 @@ def generate_interpolated_images(
|
|
77 |
psi0: float,
|
78 |
psi1: float,
|
79 |
randomize_noise: bool,
|
80 |
-
model: nn.Module,
|
81 |
-
device: torch.device,
|
82 |
) -> list[np.ndarray]:
|
83 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
84 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
85 |
|
86 |
-
z0 = generate_z(model.style_dim, seed0
|
87 |
-
z1 = generate_z(model.style_dim, seed1
|
|
|
|
|
|
|
88 |
vec = z1 - z0
|
89 |
dvec = vec / (num_intermediate + 1)
|
90 |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
|
@@ -92,15 +96,11 @@ def generate_interpolated_images(
|
|
92 |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
|
93 |
res = []
|
94 |
for z, psi in zip(zs, psis):
|
95 |
-
out = generate_image(
|
96 |
res.append(out)
|
97 |
return res
|
98 |
|
99 |
|
100 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
101 |
-
model = load_model(device)
|
102 |
-
fn = functools.partial(generate_interpolated_images, model=model, device=device)
|
103 |
-
|
104 |
examples = [
|
105 |
[29703, 55376, 3, 0.7, 0.7, False],
|
106 |
[34141, 36864, 5, 0.7, 0.7, False],
|
@@ -141,13 +141,15 @@ with gr.Blocks(css="style.css") as demo:
|
|
141 |
examples=examples,
|
142 |
inputs=inputs,
|
143 |
outputs=result,
|
144 |
-
fn=
|
145 |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
146 |
)
|
147 |
run_button.click(
|
148 |
-
fn=
|
149 |
inputs=inputs,
|
150 |
outputs=result,
|
151 |
api_name="run",
|
152 |
)
|
153 |
-
|
|
|
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import os
|
6 |
import random
|
7 |
import shlex
|
|
|
57 |
return model
|
58 |
|
59 |
|
60 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
61 |
+
model = load_model(device)
|
62 |
+
|
63 |
+
|
64 |
+
def generate_z(z_dim: int, seed: int) -> torch.Tensor:
|
65 |
+
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float()
|
66 |
|
67 |
|
68 |
@torch.inference_mode()
|
69 |
+
def generate_image(z: torch.Tensor, truncation_psi: float, randomize_noise: bool) -> np.ndarray:
|
70 |
out, _ = model([z], truncation=truncation_psi, truncation_latent=model.latent_avg, randomize_noise=randomize_noise)
|
71 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
72 |
return out[0].cpu().numpy()
|
|
|
80 |
psi0: float,
|
81 |
psi1: float,
|
82 |
randomize_noise: bool,
|
|
|
|
|
83 |
) -> list[np.ndarray]:
|
84 |
seed0 = int(np.clip(seed0, 0, MAX_SEED))
|
85 |
seed1 = int(np.clip(seed1, 0, MAX_SEED))
|
86 |
|
87 |
+
z0 = generate_z(model.style_dim, seed0)
|
88 |
+
z1 = generate_z(model.style_dim, seed1)
|
89 |
+
z0 = z0.to(device)
|
90 |
+
z1 = z1.to(device)
|
91 |
+
|
92 |
vec = z1 - z0
|
93 |
dvec = vec / (num_intermediate + 1)
|
94 |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
|
|
|
96 |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
|
97 |
res = []
|
98 |
for z, psi in zip(zs, psis):
|
99 |
+
out = generate_image(z, psi, randomize_noise)
|
100 |
res.append(out)
|
101 |
return res
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
104 |
examples = [
|
105 |
[29703, 55376, 3, 0.7, 0.7, False],
|
106 |
[34141, 36864, 5, 0.7, 0.7, False],
|
|
|
141 |
examples=examples,
|
142 |
inputs=inputs,
|
143 |
outputs=result,
|
144 |
+
fn=generate_interpolated_images,
|
145 |
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
146 |
)
|
147 |
run_button.click(
|
148 |
+
fn=generate_interpolated_images,
|
149 |
inputs=inputs,
|
150 |
outputs=result,
|
151 |
api_name="run",
|
152 |
)
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
demo.queue(max_size=10).launch()
|