Spaces:
Runtime error
Runtime error
Update for gradio 3.0
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 📊
|
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -48,7 +48,6 @@ def parse_args() -> argparse.Namespace:
|
|
48 |
dest='enable_queue',
|
49 |
action='store_false')
|
50 |
parser.add_argument('--allow-flagging', type=str, default='never')
|
51 |
-
parser.add_argument('--allow-screenshot', action='store_true')
|
52 |
return parser.parse_args()
|
53 |
|
54 |
|
@@ -88,7 +87,7 @@ def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
|
|
88 |
def generate_interpolated_images(
|
89 |
seed0: int, seed1: int, num_intermediate: int, psi0: float,
|
90 |
psi1: float, randomize_noise: bool, model: nn.Module,
|
91 |
-
device: torch.device) ->
|
92 |
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
|
93 |
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
|
94 |
|
@@ -107,8 +106,7 @@ def generate_interpolated_images(
|
|
107 |
for z, psi in zip(zs, psis):
|
108 |
out = generate_image(model, z, psi, randomize_noise)
|
109 |
res.append(out)
|
110 |
-
|
111 |
-
return res, concatenated
|
112 |
|
113 |
|
114 |
def main():
|
@@ -146,19 +144,15 @@ def main():
|
|
146 |
0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
|
147 |
gr.inputs.Checkbox(default=False, label='Randomize Noise'),
|
148 |
],
|
149 |
-
|
150 |
-
gr.outputs.Carousel(gr.outputs.Image(type='numpy'),
|
151 |
-
label='Output Images'),
|
152 |
-
gr.outputs.Image(type='numpy', label='Concatenated'),
|
153 |
-
],
|
154 |
examples=examples,
|
155 |
title=TITLE,
|
156 |
description=DESCRIPTION,
|
157 |
article=ARTICLE,
|
158 |
theme=args.theme,
|
159 |
-
allow_screenshot=args.allow_screenshot,
|
160 |
allow_flagging=args.allow_flagging,
|
161 |
live=args.live,
|
|
|
162 |
).launch(
|
163 |
enable_queue=args.enable_queue,
|
164 |
server_port=args.port,
|
|
|
48 |
dest='enable_queue',
|
49 |
action='store_false')
|
50 |
parser.add_argument('--allow-flagging', type=str, default='never')
|
|
|
51 |
return parser.parse_args()
|
52 |
|
53 |
|
|
|
87 |
def generate_interpolated_images(
|
88 |
seed0: int, seed1: int, num_intermediate: int, psi0: float,
|
89 |
psi1: float, randomize_noise: bool, model: nn.Module,
|
90 |
+
device: torch.device) -> list[np.ndarray]:
|
91 |
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
|
92 |
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
|
93 |
|
|
|
106 |
for z, psi in zip(zs, psis):
|
107 |
out = generate_image(model, z, psi, randomize_noise)
|
108 |
res.append(out)
|
109 |
+
return res
|
|
|
110 |
|
111 |
|
112 |
def main():
|
|
|
144 |
0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
|
145 |
gr.inputs.Checkbox(default=False, label='Randomize Noise'),
|
146 |
],
|
147 |
+
gr.Gallery(type='numpy', label='Output Images'),
|
|
|
|
|
|
|
|
|
148 |
examples=examples,
|
149 |
title=TITLE,
|
150 |
description=DESCRIPTION,
|
151 |
article=ARTICLE,
|
152 |
theme=args.theme,
|
|
|
153 |
allow_flagging=args.allow_flagging,
|
154 |
live=args.live,
|
155 |
+
cache_examples=False,
|
156 |
).launch(
|
157 |
enable_queue=args.enable_queue,
|
158 |
server_port=args.port,
|