File size: 7,113 Bytes
5eeb557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
diff --git a/models/hierarchy_inference_model.py b/models/hierarchy_inference_model.py
index 3116307..5de661d 100644
--- a/models/hierarchy_inference_model.py
+++ b/models/hierarchy_inference_model.py
@@ -21,7 +21,7 @@ class VQGANTextureAwareSpatialHierarchyInferenceModel():
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.is_train = opt['is_train']
 
         self.top_encoder = Encoder(
diff --git a/models/hierarchy_vqgan_model.py b/models/hierarchy_vqgan_model.py
index 4b0d657..0bf4712 100644
--- a/models/hierarchy_vqgan_model.py
+++ b/models/hierarchy_vqgan_model.py
@@ -20,7 +20,7 @@ class HierarchyVQSpatialTextureAwareModel():
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.top_encoder = Encoder(
             ch=opt['top_ch'],
             num_res_blocks=opt['top_num_res_blocks'],
diff --git a/models/parsing_gen_model.py b/models/parsing_gen_model.py
index 9440345..15a1ecb 100644
--- a/models/parsing_gen_model.py
+++ b/models/parsing_gen_model.py
@@ -22,7 +22,7 @@ class ParsingGenModel():
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.is_train = opt['is_train']
 
         self.attr_embedder = ShapeAttrEmbedding(
diff --git a/models/sample_model.py b/models/sample_model.py
index 4c60e3f..5265cd0 100644
--- a/models/sample_model.py
+++ b/models/sample_model.py
@@ -23,7 +23,7 @@ class BaseSampleModel():
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
 
         # hierarchical VQVAE
         self.decoder = Decoder(
@@ -123,7 +123,7 @@ class BaseSampleModel():
 
     def load_top_pretrain_models(self):
         # load pretrained vqgan
-        top_vae_checkpoint = torch.load(self.opt['top_vae_path'])
+        top_vae_checkpoint = torch.load(self.opt['top_vae_path'], map_location=self.device)
 
         self.decoder.load_state_dict(
             top_vae_checkpoint['decoder'], strict=True)
@@ -137,7 +137,7 @@ class BaseSampleModel():
         self.top_post_quant_conv.eval()
 
     def load_bot_pretrain_network(self):
-        checkpoint = torch.load(self.opt['bot_vae_path'])
+        checkpoint = torch.load(self.opt['bot_vae_path'], map_location=self.device)
         self.bot_decoder_res.load_state_dict(
             checkpoint['bot_decoder_res'], strict=True)
         self.decoder.load_state_dict(checkpoint['decoder'], strict=True)
@@ -153,7 +153,7 @@ class BaseSampleModel():
 
     def load_pretrained_segm_token(self):
         # load pretrained vqgan for segmentation mask
-        segm_token_checkpoint = torch.load(self.opt['segm_token_path'])
+        segm_token_checkpoint = torch.load(self.opt['segm_token_path'], map_location=self.device)
         self.segm_encoder.load_state_dict(
             segm_token_checkpoint['encoder'], strict=True)
         self.segm_quantizer.load_state_dict(
@@ -166,7 +166,7 @@ class BaseSampleModel():
         self.segm_quant_conv.eval()
 
     def load_index_pred_network(self):
-        checkpoint = torch.load(self.opt['pretrained_index_network'])
+        checkpoint = torch.load(self.opt['pretrained_index_network'], map_location=self.device)
         self.index_pred_guidance_encoder.load_state_dict(
             checkpoint['guidance_encoder'], strict=True)
         self.index_pred_decoder.load_state_dict(
@@ -176,7 +176,7 @@ class BaseSampleModel():
         self.index_pred_decoder.eval()
 
     def load_sampler_pretrained_network(self):
-        checkpoint = torch.load(self.opt['pretrained_sampler'])
+        checkpoint = torch.load(self.opt['pretrained_sampler'], map_location=self.device)
         self.sampler_fn.load_state_dict(checkpoint, strict=True)
         self.sampler_fn.eval()
 
@@ -397,7 +397,7 @@ class SampleFromPoseModel(BaseSampleModel):
                         [185, 210, 205], [130, 165, 180], [225, 141, 151]]
 
     def load_shape_generation_models(self):
-        checkpoint = torch.load(self.opt['pretrained_parsing_gen'])
+        checkpoint = torch.load(self.opt['pretrained_parsing_gen'], map_location=self.device)
 
         self.shape_attr_embedder.load_state_dict(
             checkpoint['embedder'], strict=True)
diff --git a/models/transformer_model.py b/models/transformer_model.py
index 7db0f3e..4523d17 100644
--- a/models/transformer_model.py
+++ b/models/transformer_model.py
@@ -21,7 +21,7 @@ class TransformerTextureAwareModel():
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.is_train = opt['is_train']
 
         # VQVAE for image
@@ -317,10 +317,10 @@ class TransformerTextureAwareModel():
     def sample_fn(self, temp=1.0, sample_steps=None):
         self._denoise_fn.eval()
 
-        b, device = self.image.size(0), 'cuda'
+        b = self.image.size(0)
         x_t = torch.ones(
-            (b, np.prod(self.shape)), device=device).long() * self.mask_id
-        unmasked = torch.zeros_like(x_t, device=device).bool()
+            (b, np.prod(self.shape)), device=self.device).long() * self.mask_id
+        unmasked = torch.zeros_like(x_t, device=self.device).bool()
         sample_steps = list(range(1, sample_steps + 1))
 
         texture_mask_flatten = self.texture_tokens.view(-1)
@@ -336,11 +336,11 @@ class TransformerTextureAwareModel():
 
         for t in reversed(sample_steps):
             print(f'Sample timestep {t:4d}', end='\r')
-            t = torch.full((b, ), t, device=device, dtype=torch.long)
+            t = torch.full((b, ), t, device=self.device, dtype=torch.long)
 
             # where to unmask
             changes = torch.rand(
-                x_t.shape, device=device) < 1 / t.float().unsqueeze(-1)
+                x_t.shape, device=self.device) < 1 / t.float().unsqueeze(-1)
             # don't unmask somewhere already unmasked
             changes = torch.bitwise_xor(changes,
                                         torch.bitwise_and(changes, unmasked))
diff --git a/models/vqgan_model.py b/models/vqgan_model.py
index 13a2e70..9c840f1 100644
--- a/models/vqgan_model.py
+++ b/models/vqgan_model.py
@@ -20,7 +20,7 @@ class VQModel():
     def __init__(self, opt):
         super().__init__()
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.encoder = Encoder(
             ch=opt['ch'],
             num_res_blocks=opt['num_res_blocks'],
@@ -390,7 +390,7 @@ class VQImageSegmTextureModel(VQImageModel):
 
     def __init__(self, opt):
         self.opt = opt
-        self.device = torch.device('cuda')
+        self.device = torch.device(opt['device'])
         self.encoder = Encoder(
             ch=opt['ch'],
             num_res_blocks=opt['num_res_blocks'],