Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,960 Bytes
d578b5a 9aeb2df f33be2d 9aeb2df d578b5a f33be2d d578b5a f33be2d d578b5a 5bdb8db f33be2d d578b5a f33be2d d578b5a 85f6a01 f33be2d 85f6a01 f33be2d 85f6a01 d578b5a 85f6a01 d578b5a f33be2d d578b5a f33be2d 85f6a01 d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d 1d5bddb d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d 85f6a01 d578b5a 85f6a01 d578b5a 85f6a01 d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a f33be2d d578b5a 85f6a01 9e392e3 85f6a01 d578b5a 85f6a01 d578b5a f33be2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#!/usr/bin/env python
import os
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from transformers import VitMatteForImageMatting, VitMatteImageProcessor
DESCRIPTION = """\
# [ViTMatte](https://github.com/hustvl/ViTMatte)
This is a demo of [ViTMatte](https://github.com/hustvl/ViTMatte), an image matting method that uses Vision Transformers (ViT) to accurately extract the foreground from an image.
It predicts a soft alpha matte to help separate the subject from the background — even tricky areas like hair and fur!
You've got two ways to get started:
### 🖼️ Option 1: Upload Image & Trimap
- Upload your original image.
- Upload a **trimap**: a helper image that labels regions as **foreground (white)**, **background (black)**, and **unknown (gray)**.
- The trimap must be a **grayscale image** containing only three pixel values:
- `0` for **background**
- `128` for **unknown**
- `255` for **foreground**
- The model will use this trimap to generate the alpha matte and extract the foreground.
### ✏️ Option 2: Draw Your Own Trimap
- Upload just your image.
- Go to the **"Draw Trimap"** tab to start drawing masks.
- Use the tools to mark:
- **Foreground** (e.g. the subject),
- **Unknown** (areas where the boundary is unclear).
- Once you're done, click the **"Generate Trimap"** button to generate the trimap from your drawing.
### ✨ Optional: Replace Background
Want to swap the background? Just check the **"Replace Background"** option and choose a new background image.
The app will blend your extracted subject with the new background seamlessly!
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1500"))
MODEL_ID = os.getenv("MODEL_ID", "hustvl/vitmatte-small-distinctions-646")
processor = VitMatteImageProcessor.from_pretrained(MODEL_ID)
model = VitMatteForImageMatting.from_pretrained(MODEL_ID).to(device)
def resize_input_image(image: PIL.Image.Image | None) -> PIL.Image.Image:
if image is None:
return None
if max(image.size) > MAX_IMAGE_SIZE:
w, h = image.size
scale = MAX_IMAGE_SIZE / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
gr.Info(
f"The uploaded image exceeded the maximum resolution limit of {MAX_IMAGE_SIZE}px. It has been resized to {new_w}x{new_h}."
)
return image.resize((new_w, new_h))
return image
def binarize_mask(mask: np.ndarray) -> np.ndarray:
mask[mask > 0] = 1
return mask
def update_trimap(foreground_mask_editor: dict, unknown_mask_editor: dict) -> np.ndarray:
foreground = foreground_mask_editor["layers"][0]
foreground = binarize_mask(foreground)
unknown = unknown_mask_editor["layers"][0]
unknown = binarize_mask(unknown)
trimap = np.zeros_like(foreground)
trimap[unknown > 0] = 128
trimap[foreground > 0] = 255
return trimap
def adjust_background_image(background_image: PIL.Image.Image, target_size: tuple[int, int]) -> PIL.Image.Image:
target_w, target_h = target_size
bg_w, bg_h = background_image.size
scale = max(target_w / bg_w, target_h / bg_h)
new_bg_w = int(bg_w * scale)
new_bg_h = int(bg_h * scale)
background_image = background_image.resize((new_bg_w, new_bg_h))
left = (new_bg_w - target_w) // 2
top = (new_bg_h - target_h) // 2
right = left + target_w
bottom = top + target_h
return background_image.crop((left, top, right, bottom))
def replace_background(
image: PIL.Image.Image, alpha: np.ndarray, background_image: PIL.Image.Image | None
) -> PIL.Image.Image | None:
if background_image is None:
return None
if image.mode != "RGB":
raise gr.Error("Image must be RGB.")
background_image = background_image.convert("RGB")
background_image = adjust_background_image(background_image, image.size)
image = np.array(image).astype(float) / 255
background_image = np.array(background_image).astype(float) / 255
result = image * alpha[:, :, None] + background_image * (1 - alpha[:, :, None])
return (result * 255).astype(np.uint8)
@spaces.GPU
@torch.inference_mode()
def run(
image: PIL.Image.Image,
trimap: PIL.Image.Image,
apply_background_replacement: bool,
background_image: PIL.Image.Image | None,
) -> tuple[np.ndarray, PIL.Image.Image, PIL.Image.Image | None]:
if image.size != trimap.size:
raise gr.Error("Image and trimap must have the same size.")
if max(image.size) > MAX_IMAGE_SIZE:
error_message = f"Image size is too large. Max image size is {MAX_IMAGE_SIZE} pixels."
raise gr.Error(error_message)
if image.mode != "RGB":
raise gr.Error("Image must be RGB.")
if trimap.mode != "L":
raise gr.Error("Trimap must be grayscale.")
pixel_values = processor(images=image, trimaps=trimap, return_tensors="pt").to(device).pixel_values
out = model(pixel_values=pixel_values)
alpha = out.alphas[0, 0].to("cpu").numpy()
w, h = image.size
alpha = alpha[:h, :w]
foreground = np.array(image).astype(float) / 255 * alpha[:, :, None] + (1 - alpha[:, :, None])
foreground = (foreground * 255).astype(np.uint8)
foreground = PIL.Image.fromarray(foreground)
res_bg_replacement = replace_background(image, alpha, background_image) if apply_background_replacement else None
return alpha, foreground, res_bg_replacement
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(label="Input image", type="pil")
with gr.Tabs():
with gr.Tab(label="Trimap"):
trimap = gr.Image(label="Trimap", type="pil", image_mode="L")
with gr.Tab(label="Draw trimap"):
foreground_mask = gr.ImageEditor(
label="Foreground",
type="numpy",
sources=("upload",),
transforms=(),
image_mode="L",
height=500,
brush=gr.Brush(default_color=("#00ff00", 0.6)),
layers=gr.LayerOptions(allow_additional_layers=False, layers=["Foreground mask"]),
)
unknown_mask = gr.ImageEditor(
label="Unknown",
type="numpy",
sources=("upload",),
transforms=(),
image_mode="L",
height=500,
brush=gr.Brush(default_color=("#00ff00", 0.6)),
layers=gr.LayerOptions(allow_additional_layers=False, layers=["Unknown mask"]),
)
generate_trimap_button = gr.Button("Generate trimap")
apply_background_replacement = gr.Checkbox(label="Replace background", value=False)
background_image = gr.Image(label="Background image", type="pil", visible=False)
run_button = gr.Button("Run")
with gr.Column():
with gr.Group():
out_alpha = gr.Image(label="Alpha")
out_foreground = gr.Image(label="Foreground")
out_background_replacement = gr.Image(label="Background replacement", visible=False)
inputs = [
image,
trimap,
apply_background_replacement,
background_image,
]
outputs = [
out_alpha,
out_foreground,
out_background_replacement,
]
gr.Examples(
examples=[
["assets/retriever_rgb.png", "assets/retriever_trimap.png", False, None],
["assets/bulb_rgb.png", "assets/bulb_trimap.png", True, "assets/new_bg.jpg"],
],
inputs=inputs,
outputs=outputs,
fn=run,
cache_examples=False,
)
image.input(
fn=resize_input_image,
inputs=image,
outputs=image,
api_name=False,
).then(
fn=lambda image: (image, image),
inputs=image,
outputs=[foreground_mask, unknown_mask],
api_name=False,
)
generate_trimap_button.click(
fn=update_trimap,
inputs=[foreground_mask, unknown_mask],
outputs=trimap,
api_name=False,
)
apply_background_replacement.change(
fn=lambda checked: (gr.Image(visible=checked), gr.Image(visible=checked)),
inputs=apply_background_replacement,
outputs=[background_image, out_background_replacement],
api_name=False,
)
run_button.click(
fn=run,
inputs=inputs,
outputs=outputs,
)
if __name__ == "__main__":
demo.launch()
|