hysts HF staff commited on
Commit
2b6089a
·
1 Parent(s): 5c2a3a8
Files changed (5) hide show
  1. .pre-commit-config.yaml +59 -34
  2. .vscode/settings.json +30 -0
  3. README.md +1 -1
  4. app.py +40 -46
  5. style.css +8 -0
.pre-commit-config.yaml CHANGED
@@ -1,35 +1,60 @@
1
  repos:
2
- - repo: https://github.com/pre-commit/pre-commit-hooks
3
- rev: v4.2.0
4
- hooks:
5
- - id: check-executables-have-shebangs
6
- - id: check-json
7
- - id: check-merge-conflict
8
- - id: check-shebang-scripts-are-executable
9
- - id: check-toml
10
- - id: check-yaml
11
- - id: double-quote-string-fixer
12
- - id: end-of-file-fixer
13
- - id: mixed-line-ending
14
- args: ['--fix=lf']
15
- - id: requirements-txt-fixer
16
- - id: trailing-whitespace
17
- - repo: https://github.com/myint/docformatter
18
- rev: v1.4
19
- hooks:
20
- - id: docformatter
21
- args: ['--in-place']
22
- - repo: https://github.com/pycqa/isort
23
- rev: 5.12.0
24
- hooks:
25
- - id: isort
26
- - repo: https://github.com/pre-commit/mirrors-mypy
27
- rev: v0.991
28
- hooks:
29
- - id: mypy
30
- args: ['--ignore-missing-imports']
31
- - repo: https://github.com/google/yapf
32
- rev: v0.32.0
33
- hooks:
34
- - id: yapf
35
- args: ['--parallel', '--in-place']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.5.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.13.2
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.8.0
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ [
33
+ "types-python-slugify",
34
+ "types-requests",
35
+ "types-PyYAML",
36
+ "types-pytz",
37
+ ]
38
+ - repo: https://github.com/psf/black
39
+ rev: 24.2.0
40
+ hooks:
41
+ - id: black
42
+ language_version: python3.10
43
+ args: ["--line-length", "119"]
44
+ - repo: https://github.com/kynan/nbstripout
45
+ rev: 0.7.1
46
+ hooks:
47
+ - id: nbstripout
48
+ args:
49
+ [
50
+ "--extra-keys",
51
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
52
+ ]
53
+ - repo: https://github.com/nbQA-dev/nbQA
54
+ rev: 1.7.1
55
+ hooks:
56
+ - id: nbqa-black
57
+ - id: nbqa-pyupgrade
58
+ args: ["--py37-plus"]
59
+ - id: nbqa-isort
60
+ args: ["--float-to-top"]
.vscode/settings.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "ms-python.black-formatter",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.organizeImports": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "black-formatter.args": [
15
+ "--line-length=119"
16
+ ],
17
+ "isort.args": ["--profile", "black"],
18
+ "flake8.args": [
19
+ "--max-line-length=119"
20
+ ],
21
+ "ruff.lint.args": [
22
+ "--line-length=119"
23
+ ],
24
+ "notebook.output.scrolling": true,
25
+ "notebook.formatOnCellExecution": true,
26
+ "notebook.formatOnSave.enabled": true,
27
+ "notebook.codeActionsOnSave": {
28
+ "source.organizeImports": "explicit"
29
+ }
30
+ }
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🌍
4
  colorFrom: green
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.36.1
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: green
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 4.19.2
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py CHANGED
@@ -9,14 +9,9 @@ import shlex
9
  import subprocess
10
  import tarfile
11
 
12
- if os.getenv('SYSTEM') == 'spaces':
13
- subprocess.run(
14
- shlex.split(
15
- 'pip install git+https://github.com/facebookresearch/detectron2@v0.6'
16
- ))
17
- subprocess.run(
18
- shlex.split(
19
- 'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87'))
20
 
21
  import gradio as gr
22
  import huggingface_hub
@@ -27,26 +22,24 @@ from detectron2.data.detection_utils import read_image
27
  from detectron2.engine.defaults import DefaultPredictor
28
  from detectron2.utils.visualizer import Visualizer
29
 
30
- DESCRIPTION = '# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)'
31
 
32
- MODEL_REPO = 'public-data/Yet-Another-Anime-Segmenter'
33
 
34
 
35
  def load_sample_image_paths() -> list[pathlib.Path]:
36
- image_dir = pathlib.Path('images')
37
  if not image_dir.exists():
38
- dataset_repo = 'hysts/sample-images-TADNE'
39
- path = huggingface_hub.hf_hub_download(dataset_repo,
40
- 'images.tar.gz',
41
- repo_type='dataset')
42
  with tarfile.open(path) as f:
43
  f.extractall()
44
- return sorted(image_dir.glob('*'))
45
 
46
 
47
  def load_model(device: torch.device) -> DefaultPredictor:
48
- config_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.yaml')
49
- model_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'SOLOv2.pth')
50
  cfg = get_cfg()
51
  cfg.merge_from_file(config_path)
52
  cfg.MODEL.WEIGHTS = model_path
@@ -55,14 +48,14 @@ def load_model(device: torch.device) -> DefaultPredictor:
55
  return DefaultPredictor(cfg)
56
 
57
 
58
- def predict(image_path: str, class_score_threshold: float,
59
- mask_score_threshold: float,
60
- model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]:
61
  model.score_threshold = class_score_threshold
62
  model.mask_threshold = mask_score_threshold
63
- image = read_image(image_path, format='BGR')
64
  preds = model(image)
65
- instances = preds['instances'].to('cpu')
66
 
67
  visualizer = Visualizer(image[:, :, ::-1])
68
  vis = visualizer.draw_instance_predictions(predictions=instances)
@@ -78,37 +71,38 @@ def predict(image_path: str, class_score_threshold: float,
78
  image_paths = load_sample_image_paths()
79
  examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths]
80
 
81
- device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
82
  model = load_model(device)
83
 
84
  fn = functools.partial(predict, model=model)
85
 
86
- with gr.Blocks(css='style.css') as demo:
87
  gr.Markdown(DESCRIPTION)
88
  with gr.Row():
89
  with gr.Column():
90
- image = gr.Image(label='Input', type='filepath')
91
- class_score_threshold = gr.Slider(label='Score Threshold',
92
- minimum=0,
93
- maximum=1,
94
- step=0.05,
95
- value=0.1)
96
- mask_score_threshold = gr.Slider(label='Mask Score Threshold',
97
- minimum=0,
98
- maximum=1,
99
- step=0.05,
100
- value=0.5)
101
- run_button = gr.Button('Run')
102
  with gr.Column():
103
- result_instances = gr.Image(label='Instances')
104
- result_masked = gr.Image(label='Masked')
105
 
106
  inputs = [image, class_score_threshold, mask_score_threshold]
107
  outputs = [result_instances, result_masked]
108
- gr.Examples(examples=examples,
109
- inputs=inputs,
110
- outputs=outputs,
111
- fn=fn,
112
- cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
113
- run_button.click(fn=fn, inputs=inputs, outputs=outputs, api_name='predict')
114
- demo.queue(max_size=15).launch()
 
 
 
 
 
 
 
 
 
 
9
  import subprocess
10
  import tarfile
11
 
12
+ if os.getenv("SYSTEM") == "spaces":
13
+ subprocess.run(shlex.split("pip install git+https://github.com/facebookresearch/detectron2@v0.6"))
14
+ subprocess.run(shlex.split("pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87"))
 
 
 
 
 
15
 
16
  import gradio as gr
17
  import huggingface_hub
 
22
  from detectron2.engine.defaults import DefaultPredictor
23
  from detectron2.utils.visualizer import Visualizer
24
 
25
+ DESCRIPTION = "# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)"
26
 
27
+ MODEL_REPO = "public-data/Yet-Another-Anime-Segmenter"
28
 
29
 
30
  def load_sample_image_paths() -> list[pathlib.Path]:
31
+ image_dir = pathlib.Path("images")
32
  if not image_dir.exists():
33
+ dataset_repo = "hysts/sample-images-TADNE"
34
+ path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
 
 
35
  with tarfile.open(path) as f:
36
  f.extractall()
37
+ return sorted(image_dir.glob("*"))
38
 
39
 
40
  def load_model(device: torch.device) -> DefaultPredictor:
41
+ config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.yaml")
42
+ model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.pth")
43
  cfg = get_cfg()
44
  cfg.merge_from_file(config_path)
45
  cfg.MODEL.WEIGHTS = model_path
 
48
  return DefaultPredictor(cfg)
49
 
50
 
51
+ def predict(
52
+ image_path: str, class_score_threshold: float, mask_score_threshold: float, model: DefaultPredictor
53
+ ) -> tuple[np.ndarray, np.ndarray]:
54
  model.score_threshold = class_score_threshold
55
  model.mask_threshold = mask_score_threshold
56
+ image = read_image(image_path, format="BGR")
57
  preds = model(image)
58
+ instances = preds["instances"].to("cpu")
59
 
60
  visualizer = Visualizer(image[:, :, ::-1])
61
  vis = visualizer.draw_instance_predictions(predictions=instances)
 
71
  image_paths = load_sample_image_paths()
72
  examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths]
73
 
74
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
75
  model = load_model(device)
76
 
77
  fn = functools.partial(predict, model=model)
78
 
79
+ with gr.Blocks(css="style.css") as demo:
80
  gr.Markdown(DESCRIPTION)
81
  with gr.Row():
82
  with gr.Column():
83
+ image = gr.Image(label="Input", type="filepath")
84
+ class_score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.1)
85
+ mask_score_threshold = gr.Slider(label="Mask Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5)
86
+ run_button = gr.Button("Run")
 
 
 
 
 
 
 
 
87
  with gr.Column():
88
+ result_instances = gr.Image(label="Instances")
89
+ result_masked = gr.Image(label="Masked")
90
 
91
  inputs = [image, class_score_threshold, mask_score_threshold]
92
  outputs = [result_instances, result_masked]
93
+ gr.Examples(
94
+ examples=examples,
95
+ inputs=inputs,
96
+ outputs=outputs,
97
+ fn=fn,
98
+ cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
99
+ )
100
+ run_button.click(
101
+ fn=fn,
102
+ inputs=inputs,
103
+ outputs=outputs,
104
+ api_name="predict",
105
+ )
106
+
107
+ if __name__ == "__main__":
108
+ demo.queue(max_size=15).launch()
style.css CHANGED
@@ -1,3 +1,11 @@
1
  h1 {
2
  text-align: center;
 
 
 
 
 
 
 
 
3
  }
 
1
  h1 {
2
  text-align: center;
3
+ display: block;
4
+ }
5
+
6
+ #duplicate-button {
7
+ margin: auto;
8
+ color: #fff;
9
+ background: #1565c0;
10
+ border-radius: 100vh;
11
  }