File size: 4,838 Bytes
4fb3c5e
 
 
 
cb229bd
4fb3c5e
 
cb229bd
4fb3c5e
 
6f3a230
 
4fb3c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb229bd
4fb3c5e
 
6f3a230
4fb3c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3a230
4fb3c5e
 
 
cb229bd
 
 
 
4fb3c5e
 
 
 
 
cb229bd
 
4fb3c5e
cb229bd
4fb3c5e
cb229bd
4fb3c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb229bd
 
 
 
 
 
 
 
 
 
 
b6c80e7
 
cb229bd
 
 
 
0dc864d
cb229bd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import annotations

import logging
import os
import random
import sys

import numpy as np
import PIL.Image
import torch
from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline,
                       DiffusionPipeline, PNDMPipeline, PNDMScheduler)

HF_TOKEN = os.environ['HF_TOKEN']

formatter = logging.Formatter(
    '[%(asctime)s] %(name)s %(levelname)s: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S')
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(formatter)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.propagate = False
logger.addHandler(stream_handler)


class Model:

    MODEL_NAMES = [
        'ddpm-128-exp000',
    ]

    def __init__(self, device: str | torch.device):
        self.device = torch.device(device)
        self._download_all_models()

        self.model_name = self.MODEL_NAMES[0]
        self.scheduler_type = 'DDIM'
        self.pipeline = self._load_pipeline(self.model_name,
                                            self.scheduler_type)
        self.rng = random.Random()

    def _load_pipeline(self, model_name: str,
                       scheduler_type: str) -> DiffusionPipeline:
        repo_id = f'hysts/diffusers-anime-faces-{model_name}'
        if scheduler_type == 'DDPM':
            pipeline = DDPMPipeline.from_pretrained(repo_id,
                                                    use_auth_token=HF_TOKEN)
        elif scheduler_type == 'DDIM':
            pipeline = DDIMPipeline.from_pretrained(repo_id,
                                                    use_auth_token=HF_TOKEN)
            config, _ = DDIMScheduler.extract_init_dict(
                dict(pipeline.scheduler.config))
            pipeline.scheduler = DDIMScheduler(**config)
        elif scheduler_type == 'PNDM':
            pipeline = PNDMPipeline.from_pretrained(repo_id,
                                                    use_auth_token=HF_TOKEN)
            config, _ = PNDMScheduler.extract_init_dict(
                dict(pipeline.scheduler.config))
            pipeline.scheduler = PNDMScheduler(**config)
        else:
            raise ValueError
        return pipeline

    def set_pipeline(self, model_name: str, scheduler_type: str) -> None:
        logger.info('--- set_pipeline ---')
        logger.info(f'{model_name=}, {scheduler_type=}')

        if model_name == self.model_name and scheduler_type == self.scheduler_type:
            logger.info('Skipping')
            logger.info('--- done ---')
            return
        self.model_name = model_name
        self.scheduler_type = scheduler_type
        self.pipeline = self._load_pipeline(model_name, scheduler_type)

        logger.info('--- done ---')

    def _download_all_models(self) -> None:
        for name in self.MODEL_NAMES:
            self._load_pipeline(name, 'DDPM')

    def generate(self,
                 seed: int,
                 num_steps: int,
                 num_images: int = 1) -> list[PIL.Image.Image]:
        logger.info('--- generate ---')
        logger.info(f'{seed=}, {num_steps=}')

        torch.manual_seed(seed)
        if self.scheduler_type == 'DDPM':
            res = self.pipeline(batch_size=num_images,
                                torch_device=self.device)['sample']
        elif self.scheduler_type in ['DDIM', 'PNDM']:
            res = self.pipeline(batch_size=num_images,
                                torch_device=self.device,
                                num_inference_steps=num_steps)['sample']
        else:
            raise ValueError

        logger.info('--- done ---')
        return res

    def run(
        self,
        model_name: str,
        scheduler_type: str,
        num_steps: int,
        seed: int,
    ) -> PIL.Image.Image:
        self.set_pipeline(model_name, scheduler_type)
        if scheduler_type == 'PNDM':
            num_steps = max(4, min(num_steps, 100))
        return self.generate(seed, num_steps)[0]

    @staticmethod
    def to_grid(images: list[PIL.Image.Image],
                ncols: int = 2) -> PIL.Image.Image:
        images = [np.asarray(image) for image in images]
        nrows = (len(images) + ncols - 1) // ncols
        h, w = images[0].shape[:2]
        d = nrows * ncols - len(images)
        if d > 0:
            images += [np.full((h, w, 3), 255, dtype=np.uint8)] * d
        grid = np.asarray(images).reshape(nrows, ncols, h, w, 3).transpose(
            0, 2, 1, 3, 4).reshape(nrows * h, ncols * w, 3)
        return PIL.Image.fromarray(grid)

    def run_simple(self) -> PIL.Image.Image:
        self.set_pipeline(self.MODEL_NAMES[0], 'DDIM')
        seed = self.rng.randint(0, 1000000)
        images = self.generate(seed, num_steps=10, num_images=4)
        return self.to_grid(images, 2)