Spaces:
Runtime error
Runtime error
Add an option to show denoising process
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ def create_simple_demo(model: Model) -> gr.Blocks:
|
|
22 |
|
23 |
|
24 |
def create_advanced_demo(model: Model) -> gr.Blocks:
|
25 |
-
def
|
26 |
visible = name != 'DDPM'
|
27 |
if name == 'PNDM':
|
28 |
minimum = 4
|
@@ -35,6 +35,9 @@ def create_advanced_demo(model: Model) -> gr.Blocks:
|
|
35 |
maximum=maximum,
|
36 |
value=20)
|
37 |
|
|
|
|
|
|
|
38 |
with gr.Blocks() as demo:
|
39 |
gr.Markdown(DESCRIPTION)
|
40 |
|
@@ -60,9 +63,14 @@ def create_advanced_demo(model: Model) -> gr.Blocks:
|
|
60 |
step=1,
|
61 |
value=1234,
|
62 |
label='Seed')
|
|
|
|
|
63 |
run_button = gr.Button('Run')
|
64 |
with gr.Column():
|
65 |
result = gr.Image(show_label=False, elem_id='result')
|
|
|
|
|
|
|
66 |
|
67 |
model_name.change(fn=model.set_pipeline,
|
68 |
inputs=[
|
@@ -70,7 +78,7 @@ def create_advanced_demo(model: Model) -> gr.Blocks:
|
|
70 |
scheduler_type,
|
71 |
],
|
72 |
outputs=None)
|
73 |
-
scheduler_type.change(fn=
|
74 |
inputs=scheduler_type,
|
75 |
outputs=num_steps,
|
76 |
queue=False)
|
@@ -80,6 +88,9 @@ def create_advanced_demo(model: Model) -> gr.Blocks:
|
|
80 |
scheduler_type,
|
81 |
],
|
82 |
outputs=None)
|
|
|
|
|
|
|
83 |
run_button.click(fn=model.run,
|
84 |
inputs=[
|
85 |
model_name,
|
@@ -87,10 +98,12 @@ def create_advanced_demo(model: Model) -> gr.Blocks:
|
|
87 |
num_steps,
|
88 |
randomize_seed,
|
89 |
seed,
|
|
|
90 |
],
|
91 |
outputs=[
|
92 |
result,
|
93 |
seed,
|
|
|
94 |
])
|
95 |
return demo
|
96 |
|
|
|
22 |
|
23 |
|
24 |
def create_advanced_demo(model: Model) -> gr.Blocks:
|
25 |
+
def update_num_steps(name: str) -> dict:
|
26 |
visible = name != 'DDPM'
|
27 |
if name == 'PNDM':
|
28 |
minimum = 4
|
|
|
35 |
maximum=maximum,
|
36 |
value=20)
|
37 |
|
38 |
+
def show_denoising_changed(selected: bool) -> dict:
|
39 |
+
return gr.Video.update(visible=selected)
|
40 |
+
|
41 |
with gr.Blocks() as demo:
|
42 |
gr.Markdown(DESCRIPTION)
|
43 |
|
|
|
63 |
step=1,
|
64 |
value=1234,
|
65 |
label='Seed')
|
66 |
+
show_denoising = gr.Checkbox(value=False,
|
67 |
+
label='Show Denoising')
|
68 |
run_button = gr.Button('Run')
|
69 |
with gr.Column():
|
70 |
result = gr.Image(show_label=False, elem_id='result')
|
71 |
+
result_video = gr.Video(show_label=False,
|
72 |
+
visible=False,
|
73 |
+
elem_id='result-video')
|
74 |
|
75 |
model_name.change(fn=model.set_pipeline,
|
76 |
inputs=[
|
|
|
78 |
scheduler_type,
|
79 |
],
|
80 |
outputs=None)
|
81 |
+
scheduler_type.change(fn=update_num_steps,
|
82 |
inputs=scheduler_type,
|
83 |
outputs=num_steps,
|
84 |
queue=False)
|
|
|
88 |
scheduler_type,
|
89 |
],
|
90 |
outputs=None)
|
91 |
+
show_denoising.change(fn=show_denoising_changed,
|
92 |
+
inputs=show_denoising,
|
93 |
+
outputs=result_video)
|
94 |
run_button.click(fn=model.run,
|
95 |
inputs=[
|
96 |
model_name,
|
|
|
98 |
num_steps,
|
99 |
randomize_seed,
|
100 |
seed,
|
101 |
+
show_denoising,
|
102 |
],
|
103 |
outputs=[
|
104 |
result,
|
105 |
seed,
|
106 |
+
result_video,
|
107 |
])
|
108 |
return demo
|
109 |
|
model.py
CHANGED
@@ -4,10 +4,13 @@ import logging
|
|
4 |
import os
|
5 |
import random
|
6 |
import sys
|
|
|
7 |
|
|
|
8 |
import numpy as np
|
9 |
import PIL.Image
|
10 |
import torch
|
|
|
11 |
from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline,
|
12 |
DiffusionPipeline, PNDMPipeline, PNDMScheduler)
|
13 |
|
@@ -101,20 +104,58 @@ class Model:
|
|
101 |
logger.info('--- done ---')
|
102 |
return res
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
self.set_pipeline(model_name, scheduler_type)
|
113 |
if scheduler_type == 'PNDM':
|
114 |
num_steps = max(4, min(num_steps, 100))
|
115 |
if randomize_seed:
|
116 |
seed = self.rng.randint(0, 100000)
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
@staticmethod
|
120 |
def to_grid(images: list[PIL.Image.Image],
|
|
|
4 |
import os
|
5 |
import random
|
6 |
import sys
|
7 |
+
import tempfile
|
8 |
|
9 |
+
import imageio
|
10 |
import numpy as np
|
11 |
import PIL.Image
|
12 |
import torch
|
13 |
+
import tqdm.auto
|
14 |
from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline,
|
15 |
DiffusionPipeline, PNDMPipeline, PNDMScheduler)
|
16 |
|
|
|
104 |
logger.info('--- done ---')
|
105 |
return res
|
106 |
|
107 |
+
@staticmethod
|
108 |
+
def postprocess(sample: torch.Tensor) -> np.ndarray:
|
109 |
+
res = (sample / 2 + 0.5).clamp(0, 1)
|
110 |
+
res = (res * 255).to(torch.uint8)
|
111 |
+
res = res.cpu().permute(0, 2, 3, 1).numpy()
|
112 |
+
return res
|
113 |
+
|
114 |
+
@torch.inference_mode()
|
115 |
+
def generate_with_video(self, seed: int,
|
116 |
+
num_steps: int) -> tuple[PIL.Image.Image, str]:
|
117 |
+
logger.info('--- generate_with_video ---')
|
118 |
+
if self.scheduler_type == 'DDPM':
|
119 |
+
num_steps = 1000
|
120 |
+
fps = 100
|
121 |
+
else:
|
122 |
+
fps = 10
|
123 |
+
logger.info(f'{seed=}, {num_steps=}')
|
124 |
+
|
125 |
+
model = self.pipeline.unet.to(self.device)
|
126 |
+
scheduler = self.pipeline.scheduler
|
127 |
+
scheduler.set_timesteps(num_inference_steps=num_steps)
|
128 |
+
input_shape = (1, model.config.in_channels, model.config.sample_size,
|
129 |
+
model.config.sample_size)
|
130 |
+
torch.manual_seed(seed)
|
131 |
+
|
132 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
133 |
+
writer = imageio.get_writer(out_file.name, fps=fps)
|
134 |
+
sample = torch.randn(input_shape).to(self.device)
|
135 |
+
for t in tqdm.auto.tqdm(scheduler.timesteps):
|
136 |
+
out = model(sample, t)['sample']
|
137 |
+
sample = scheduler.step(out, t, sample)['prev_sample']
|
138 |
+
res = self.postprocess(sample)[0]
|
139 |
+
writer.append_data(res)
|
140 |
+
writer.close()
|
141 |
+
|
142 |
+
logger.info('--- done ---')
|
143 |
+
return res, out_file.name
|
144 |
+
|
145 |
+
def run(self, model_name: str, scheduler_type: str, num_steps: int,
|
146 |
+
randomize_seed: bool, seed: int, visualize_denoising: bool
|
147 |
+
) -> tuple[PIL.Image.Image, int, str | None]:
|
148 |
self.set_pipeline(model_name, scheduler_type)
|
149 |
if scheduler_type == 'PNDM':
|
150 |
num_steps = max(4, min(num_steps, 100))
|
151 |
if randomize_seed:
|
152 |
seed = self.rng.randint(0, 100000)
|
153 |
+
|
154 |
+
if not visualize_denoising:
|
155 |
+
return self.generate(seed, num_steps)[0], seed, None
|
156 |
+
else:
|
157 |
+
res, filename = self.generate_with_video(seed, num_steps)
|
158 |
+
return res, seed, filename
|
159 |
|
160 |
@staticmethod
|
161 |
def to_grid(images: list[PIL.Image.Image],
|
style.css
CHANGED
@@ -9,6 +9,10 @@ div#result {
|
|
9 |
max-width: 400px;
|
10 |
max-height: 400px;
|
11 |
}
|
|
|
|
|
|
|
|
|
12 |
img#visitor-badge {
|
13 |
display: block;
|
14 |
margin: auto;
|
|
|
9 |
max-width: 400px;
|
10 |
max-height: 400px;
|
11 |
}
|
12 |
+
div#result-video {
|
13 |
+
max-width: 400px;
|
14 |
+
max-height: 400px;
|
15 |
+
}
|
16 |
img#visitor-badge {
|
17 |
display: block;
|
18 |
margin: auto;
|