from __future__ import annotations import logging import os import sys import PIL.Image import torch from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline, PNDMPipeline, PNDMScheduler) HF_TOKEN = os.environ['HF_TOKEN'] formatter = logging.Formatter( '[%(asctime)s] %(name)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') stream_handler = logging.StreamHandler(stream=sys.stdout) stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(formatter) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logger.propagate = False logger.addHandler(stream_handler) class Model: MODEL_NAMES = [ 'ddpm-128-exp000', ] def __init__(self, device: str | torch.device): self.device = torch.device(device) self._download_all_models() self.model_name = self.MODEL_NAMES[0] self.scheduler_type = 'DDIM' self.pipeline = self._load_pipeline(self.model_name, self.scheduler_type) def _load_pipeline(self, model_name: str, scheduler_type: str) -> DDIMPipeline | DDPMPipeline: repo_id = f'hysts/diffusers-anime-faces-{model_name}' if scheduler_type == 'DDPM': pipeline = DDPMPipeline.from_pretrained(repo_id, use_auth_token=HF_TOKEN) elif scheduler_type == 'DDIM': pipeline = DDIMPipeline.from_pretrained(repo_id, use_auth_token=HF_TOKEN) config, _ = DDIMScheduler.extract_init_dict( dict(pipeline.scheduler.config)) pipeline.scheduler = DDIMScheduler(**config) elif scheduler_type == 'PNDM': pipeline = PNDMPipeline.from_pretrained(repo_id, use_auth_token=HF_TOKEN) config, _ = PNDMScheduler.extract_init_dict( dict(pipeline.scheduler.config)) pipeline.scheduler = PNDMScheduler(**config) else: raise ValueError return pipeline def set_pipeline(self, model_name: str, scheduler_type: str) -> None: logger.info('--- set_pipeline ---') logger.info(f'{model_name=}, {scheduler_type=}') if model_name == self.model_name and scheduler_type == self.scheduler_type: logger.info('Skipping') logger.info('--- done ---') return self.model_name = model_name self.scheduler_type = scheduler_type self.pipeline = self._load_pipeline(model_name, scheduler_type) logger.info('--- done ---') def _download_all_models(self): for name in self.MODEL_NAMES: self._load_pipeline(name, 'DDPM') def generate(self, seed: int, num_steps: int) -> PIL.Image.Image: logger.info('--- generate ---') logger.info(f'{seed=}, {num_steps=}') torch.manual_seed(seed) if self.scheduler_type == 'DDPM': res = self.pipeline(batch_size=1, torch_device=self.device)['sample'][0] elif self.scheduler_type in ['DDIM', 'PNDM']: res = self.pipeline(batch_size=1, torch_device=self.device, num_inference_steps=num_steps)['sample'][0] else: raise ValueError logger.info('--- done ---') return res def run( self, model_name: str, scheduler_type: str, num_steps: int, seed: int, ) -> PIL.Image.Image: self.set_pipeline(model_name, scheduler_type) if scheduler_type == 'PNDM': num_steps = max(4, min(num_steps, 100)) return self.generate(seed, num_steps)