Spaces:
Running
Running
File size: 4,146 Bytes
e909f79 cb2f6c2 e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 b565c7c e909f79 3f9cb7e b565c7c 3f9cb7e cb2f6c2 3f9cb7e d09e40b cb2f6c2 3f9cb7e b565c7c 3f9cb7e d09e40b 3f9cb7e cb2f6c2 3f9cb7e d09e40b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import shlex
import subprocess
import sys
import tarfile
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
if os.getenv("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="gan-control", stdin=f)
sys.path.insert(0, "gan-control/src")
from gan_control.inference.controller import Controller
TITLE = "GAN-Control"
DESCRIPTION = "https://github.com/amazon-research/gan-control"
def download_models() -> None:
model_dir = pathlib.Path("controller_age015id025exp02hai04ori02gam15")
if not model_dir.exists():
path = huggingface_hub.hf_hub_download(
"public-data/gan-control", "controller_age015id025exp02hai04ori02gam15.tar.gz"
)
with tarfile.open(path) as f:
f.extractall()
@torch.inference_mode()
def run(
seed: int,
truncation: float,
yaw: int,
pitch: int,
age: int,
hair_color_r: float,
hair_color_g: float,
hair_color_b: float,
nrows: int,
ncols: int,
controller: Controller,
device: torch.device,
) -> PIL.Image.Image:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
batch_size = nrows * ncols
latent_size = controller.config.model_config["latent_size"]
latent = torch.from_numpy(np.random.RandomState(seed).randn(batch_size, latent_size)).float().to(device)
initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch(
latent=latent, truncation=truncation
)
res0 = controller.make_resized_grid_image(initial_image_tensors, nrow=ncols)
pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32)
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
latent=initial_latent_w, input_is_latent=True, orientation=pose_control
)
res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
age_control = torch.tensor([[age]], dtype=torch.float32)
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
latent=initial_latent_w, input_is_latent=True, age=age_control
)
res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]], dtype=torch.float32) / 255
hair_color = torch.clamp(hair_color, 0, 1)
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
latent=initial_latent_w, input_is_latent=True, hair=hair_color
)
res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
return res0, res1, res2, res3
download_models()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
path = "controller_age015id025exp02hai04ori02gam15/"
controller = Controller(path, device)
fn = functools.partial(run, controller=controller, device=device)
demo = gr.Interface(
fn=fn,
inputs=[
gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=0),
gr.Slider(label="Truncation", minimum=0, maximum=1, step=0.1, value=0.7),
gr.Slider(label="Yaw", minimum=-90, maximum=90, step=1, value=30),
gr.Slider(label="Pitch", minimum=-90, maximum=90, step=1, value=0),
gr.Slider(label="Age", minimum=15, maximum=75, step=1, value=75),
gr.Slider(label="Hair Color (R)", minimum=0, maximum=255, step=1, value=186),
gr.Slider(label="Hair Color (G)", minimum=0, maximum=255, step=1, value=158),
gr.Slider(label="Hair Color (B)", minimum=0, maximum=255, step=1, value=92),
gr.Slider(label="Number of Rows", minimum=1, maximum=3, step=1, value=1),
gr.Slider(label="Number of Columns", minimum=1, maximum=5, step=1, value=5),
],
outputs=[
gr.Image(label="Generated Image"),
gr.Image(label="Head Pose Controlled"),
gr.Image(label="Age Controlled"),
gr.Image(label="Hair Color Controlled"),
],
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|