File size: 4,146 Bytes
e909f79
 
 
 
 
 
 
cb2f6c2
e909f79
 
 
 
 
 
 
 
 
 
b565c7c
 
 
e909f79
b565c7c
e909f79
 
 
b565c7c
 
e909f79
 
 
b565c7c
e909f79
 
b565c7c
 
e909f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b565c7c
 
e909f79
 
b565c7c
 
 
e909f79
 
 
b565c7c
 
e909f79
 
 
 
b565c7c
 
e909f79
 
b565c7c
e909f79
 
b565c7c
 
e909f79
 
 
 
 
3f9cb7e
 
b565c7c
 
3f9cb7e
cb2f6c2
3f9cb7e
d09e40b
cb2f6c2
3f9cb7e
b565c7c
 
 
 
 
 
 
 
 
 
3f9cb7e
 
d09e40b
 
 
 
3f9cb7e
cb2f6c2
3f9cb7e
d09e40b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python

from __future__ import annotations

import functools
import os
import pathlib
import shlex
import subprocess
import sys
import tarfile

import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch

if os.getenv("SYSTEM") == "spaces":
    with open("patch") as f:
        subprocess.run(shlex.split("patch -p1"), cwd="gan-control", stdin=f)

sys.path.insert(0, "gan-control/src")

from gan_control.inference.controller import Controller

TITLE = "GAN-Control"
DESCRIPTION = "https://github.com/amazon-research/gan-control"


def download_models() -> None:
    model_dir = pathlib.Path("controller_age015id025exp02hai04ori02gam15")
    if not model_dir.exists():
        path = huggingface_hub.hf_hub_download(
            "public-data/gan-control", "controller_age015id025exp02hai04ori02gam15.tar.gz"
        )
        with tarfile.open(path) as f:
            f.extractall()


@torch.inference_mode()
def run(
    seed: int,
    truncation: float,
    yaw: int,
    pitch: int,
    age: int,
    hair_color_r: float,
    hair_color_g: float,
    hair_color_b: float,
    nrows: int,
    ncols: int,
    controller: Controller,
    device: torch.device,
) -> PIL.Image.Image:
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
    batch_size = nrows * ncols
    latent_size = controller.config.model_config["latent_size"]
    latent = torch.from_numpy(np.random.RandomState(seed).randn(batch_size, latent_size)).float().to(device)

    initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch(
        latent=latent, truncation=truncation
    )
    res0 = controller.make_resized_grid_image(initial_image_tensors, nrow=ncols)

    pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w, input_is_latent=True, orientation=pose_control
    )
    res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    age_control = torch.tensor([[age]], dtype=torch.float32)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w, input_is_latent=True, age=age_control
    )
    res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]], dtype=torch.float32) / 255
    hair_color = torch.clamp(hair_color, 0, 1)
    image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
        latent=initial_latent_w, input_is_latent=True, hair=hair_color
    )
    res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols)

    return res0, res1, res2, res3


download_models()

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
path = "controller_age015id025exp02hai04ori02gam15/"
controller = Controller(path, device)
fn = functools.partial(run, controller=controller, device=device)

demo = gr.Interface(
    fn=fn,
    inputs=[
        gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=0),
        gr.Slider(label="Truncation", minimum=0, maximum=1, step=0.1, value=0.7),
        gr.Slider(label="Yaw", minimum=-90, maximum=90, step=1, value=30),
        gr.Slider(label="Pitch", minimum=-90, maximum=90, step=1, value=0),
        gr.Slider(label="Age", minimum=15, maximum=75, step=1, value=75),
        gr.Slider(label="Hair Color (R)", minimum=0, maximum=255, step=1, value=186),
        gr.Slider(label="Hair Color (G)", minimum=0, maximum=255, step=1, value=158),
        gr.Slider(label="Hair Color (B)", minimum=0, maximum=255, step=1, value=92),
        gr.Slider(label="Number of Rows", minimum=1, maximum=3, step=1, value=1),
        gr.Slider(label="Number of Columns", minimum=1, maximum=5, step=1, value=5),
    ],
    outputs=[
        gr.Image(label="Generated Image"),
        gr.Image(label="Head Pose Controlled"),
        gr.Image(label="Age Controlled"),
        gr.Image(label="Hair Color Controlled"),
    ],
    title=TITLE,
    description=DESCRIPTION,
)

if __name__ == "__main__":
    demo.queue(max_size=10).launch()