Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pathlib | |
import subprocess | |
import sys | |
import tarfile | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
if os.getenv('SYSTEM') == 'spaces': | |
subprocess.run('git apply ../patch'.split(), cwd='gan-control') | |
sys.path.insert(0, 'gan-control/src') | |
from gan_control.inference.controller import Controller | |
TITLE = 'amazon-research/gan-control' | |
DESCRIPTION = '''This is an unofficial demo for https://github.com/amazon-research/gan-control. | |
Expected execution time on Hugging Face Spaces: 7s (for one image) | |
''' | |
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.gan-control" alt="visitor badge"/></center>' | |
TOKEN = os.environ['TOKEN'] | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
return parser.parse_args() | |
def download_models() -> None: | |
model_dir = pathlib.Path('controller_age015id025exp02hai04ori02gam15') | |
if not model_dir.exists(): | |
path = huggingface_hub.hf_hub_download( | |
'hysts/gan-control', | |
'controller_age015id025exp02hai04ori02gam15.tar.gz', | |
use_auth_token=TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall() | |
def run( | |
seed: int, | |
truncation: float, | |
yaw: int, | |
pitch: int, | |
age: int, | |
hair_color_r: float, | |
hair_color_g: float, | |
hair_color_b: float, | |
nrows: int, | |
ncols: int, | |
controller: Controller, | |
device: torch.device, | |
) -> PIL.Image.Image: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
batch_size = nrows * ncols | |
latent_size = controller.config.model_config['latent_size'] | |
latent = torch.from_numpy( | |
np.random.RandomState(seed).randn(batch_size, | |
latent_size)).float().to(device) | |
initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch( | |
latent=latent, truncation=truncation) | |
res0 = controller.make_resized_grid_image(initial_image_tensors, | |
nrow=ncols) | |
pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, | |
input_is_latent=True, | |
orientation=pose_control) | |
res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
age_control = torch.tensor([[age]], dtype=torch.float32) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, input_is_latent=True, age=age_control) | |
res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]], | |
dtype=torch.float32) / 255 | |
hair_color = torch.clamp(hair_color, 0, 1) | |
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
latent=initial_latent_w, input_is_latent=True, hair=hair_color) | |
res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
return res0, res1, res2, res3 | |
def main(): | |
args = parse_args() | |
device = torch.device(args.device) | |
download_models() | |
path = 'controller_age015id025exp02hai04ori02gam15/' | |
controller = Controller(path, device) | |
func = functools.partial(run, controller=controller, device=device) | |
func = functools.update_wrapper(func, run) | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Number(default=0, label='Seed'), | |
gr.inputs.Slider(0, 1, step=0.1, default=0.7, label='Truncation'), | |
gr.inputs.Slider(-90, 90, step=1, default=30, label='Yaw'), | |
gr.inputs.Slider(-90, 90, step=1, default=0, label='Pitch'), | |
gr.inputs.Slider(15, 75, step=1, default=75, label='Age'), | |
gr.inputs.Slider( | |
0, 255, step=1, default=186, label='Hair Color (R)'), | |
gr.inputs.Slider( | |
0, 255, step=1, default=158, label='Hair Color (G)'), | |
gr.inputs.Slider( | |
0, 255, step=1, default=92, label='Hair Color (B)'), | |
gr.inputs.Slider(1, 3, step=1, default=1, label='Number of Rows'), | |
gr.inputs.Slider( | |
1, 5, step=1, default=5, label='Number of Columns'), | |
], | |
[ | |
gr.outputs.Image(type='pil', label='Generated Image'), | |
gr.outputs.Image(type='pil', label='Head Pose Controlled'), | |
gr.outputs.Image(type='pil', label='Age Controlled'), | |
gr.outputs.Image(type='pil', label='Hair Color Controlled'), | |
], | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
theme=args.theme, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |