File size: 6,166 Bytes
b85fd0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import sys
import tarfile

import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import torch

sys.path.insert(0, 'face_detection')
sys.path.insert(0, 'face_alignment')
sys.path.insert(0, 'emotion_recognition')

from ibug.emotion_recognition import EmoNetPredictor
from ibug.face_alignment import FANPredictor
from ibug.face_detection import RetinaFacePredictor

REPO_URL = 'https://github.com/ibug-group/emotion_recognition'
TITLE = 'ibug-group/emotion_recognition'
DESCRIPTION = f'This is a demo for {REPO_URL}.'
ARTICLE = None

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_sample_images() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        image_dir.mkdir()
        dataset_repo = 'hysts/input-images'
        filenames = ['004.tar']
        for name in filenames:
            path = huggingface_hub.hf_hub_download(dataset_repo,
                                                   name,
                                                   repo_type='dataset',
                                                   use_auth_token=TOKEN)
            with tarfile.open(path) as f:
                f.extractall(image_dir.as_posix())
    return sorted(image_dir.rglob('*.jpg'))


def load_face_detector(device: torch.device) -> RetinaFacePredictor:
    model = RetinaFacePredictor(
        threshold=0.8,
        device=device,
        model=RetinaFacePredictor.get_model('mobilenet0.25'))
    return model


def load_landmark_detector(device: torch.device) -> FANPredictor:
    model = FANPredictor(device=device, model=FANPredictor.get_model('2dfan2'))
    return model


def load_model(model_name: str, device: torch.device) -> EmoNetPredictor:
    model = EmoNetPredictor(device=device,
                            model=EmoNetPredictor.get_model(model_name))
    return model


def predict(image: np.ndarray, model_name: str, max_num_faces: int,
            face_detector: RetinaFacePredictor,
            landmark_detector: FANPredictor,
            models: dict[str, EmoNetPredictor]) -> np.ndarray:
    model = models[model_name]
    if len(model.config.emotion_labels) == 8:
        colors = (
            (192, 192, 192),
            (0, 255, 0),
            (255, 0, 0),
            (0, 255, 255),
            (0, 128, 255),
            (255, 0, 128),
            (0, 0, 255),
            (128, 255, 0),
        )
    else:
        colors = (
            (192, 192, 192),
            (0, 255, 0),
            (255, 0, 0),
            (0, 255, 255),
            (0, 0, 255),
        )

    # RGB -> BGR
    image = image[:, :, ::-1]

    faces = face_detector(image, rgb=False)
    if len(faces) == 0:
        raise RuntimeError('No face was found.')
    faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces]
    faces = np.asarray(faces)
    _, _, features = landmark_detector(image,
                                       faces,
                                       rgb=False,
                                       return_features=True)
    emotions = model(features)

    res = image.copy()
    for index, face in enumerate(faces):
        box = np.round(face[:4]).astype(int)
        cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), 2)

        emotion = emotions['emotion'][index]
        valence = emotions['valence'][index]
        arousal = emotions['arousal'][index]
        emotion_label = model.config.emotion_labels[emotion].title()

        text_content = f'{emotion_label} ({valence: .01f}, {arousal: .01f})'
        cv2.putText(res,
                    text_content, (box[0], box[1] - 10),
                    cv2.FONT_HERSHEY_DUPLEX,
                    1,
                    colors[emotion],
                    lineType=cv2.LINE_AA)

    return res[:, :, ::-1]


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    face_detector = load_face_detector(device)
    landmark_detector = load_landmark_detector(device)

    model_names = [
        'emonet248',
        'emonet245',
        'emonet248_alt',
        'emonet245_alt',
    ]
    models = {name: load_model(name, device=device) for name in model_names}

    func = functools.partial(predict,
                             face_detector=face_detector,
                             landmark_detector=landmark_detector,
                             models=models)
    func = functools.update_wrapper(func, predict)

    image_paths = load_sample_images()
    examples = [[path.as_posix(), model_names[0], 30] for path in image_paths]

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='numpy', label='Input'),
            gr.inputs.Radio(model_names,
                            type='value',
                            default=model_names[0],
                            label='Model'),
            gr.inputs.Slider(
                1, 30, step=1, default=30, label='Max Number of Faces'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()