Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,166 Bytes
b85fd0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import sys
import tarfile
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import torch
sys.path.insert(0, 'face_detection')
sys.path.insert(0, 'face_alignment')
sys.path.insert(0, 'emotion_recognition')
from ibug.emotion_recognition import EmoNetPredictor
from ibug.face_alignment import FANPredictor
from ibug.face_detection import RetinaFacePredictor
REPO_URL = 'https://github.com/ibug-group/emotion_recognition'
TITLE = 'ibug-group/emotion_recognition'
DESCRIPTION = f'This is a demo for {REPO_URL}.'
ARTICLE = None
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_sample_images() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
image_dir.mkdir()
dataset_repo = 'hysts/input-images'
filenames = ['004.tar']
for name in filenames:
path = huggingface_hub.hf_hub_download(dataset_repo,
name,
repo_type='dataset',
use_auth_token=TOKEN)
with tarfile.open(path) as f:
f.extractall(image_dir.as_posix())
return sorted(image_dir.rglob('*.jpg'))
def load_face_detector(device: torch.device) -> RetinaFacePredictor:
model = RetinaFacePredictor(
threshold=0.8,
device=device,
model=RetinaFacePredictor.get_model('mobilenet0.25'))
return model
def load_landmark_detector(device: torch.device) -> FANPredictor:
model = FANPredictor(device=device, model=FANPredictor.get_model('2dfan2'))
return model
def load_model(model_name: str, device: torch.device) -> EmoNetPredictor:
model = EmoNetPredictor(device=device,
model=EmoNetPredictor.get_model(model_name))
return model
def predict(image: np.ndarray, model_name: str, max_num_faces: int,
face_detector: RetinaFacePredictor,
landmark_detector: FANPredictor,
models: dict[str, EmoNetPredictor]) -> np.ndarray:
model = models[model_name]
if len(model.config.emotion_labels) == 8:
colors = (
(192, 192, 192),
(0, 255, 0),
(255, 0, 0),
(0, 255, 255),
(0, 128, 255),
(255, 0, 128),
(0, 0, 255),
(128, 255, 0),
)
else:
colors = (
(192, 192, 192),
(0, 255, 0),
(255, 0, 0),
(0, 255, 255),
(0, 0, 255),
)
# RGB -> BGR
image = image[:, :, ::-1]
faces = face_detector(image, rgb=False)
if len(faces) == 0:
raise RuntimeError('No face was found.')
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces]
faces = np.asarray(faces)
_, _, features = landmark_detector(image,
faces,
rgb=False,
return_features=True)
emotions = model(features)
res = image.copy()
for index, face in enumerate(faces):
box = np.round(face[:4]).astype(int)
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), 2)
emotion = emotions['emotion'][index]
valence = emotions['valence'][index]
arousal = emotions['arousal'][index]
emotion_label = model.config.emotion_labels[emotion].title()
text_content = f'{emotion_label} ({valence: .01f}, {arousal: .01f})'
cv2.putText(res,
text_content, (box[0], box[1] - 10),
cv2.FONT_HERSHEY_DUPLEX,
1,
colors[emotion],
lineType=cv2.LINE_AA)
return res[:, :, ::-1]
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
face_detector = load_face_detector(device)
landmark_detector = load_landmark_detector(device)
model_names = [
'emonet248',
'emonet245',
'emonet248_alt',
'emonet245_alt',
]
models = {name: load_model(name, device=device) for name in model_names}
func = functools.partial(predict,
face_detector=face_detector,
landmark_detector=landmark_detector,
models=models)
func = functools.update_wrapper(func, predict)
image_paths = load_sample_images()
examples = [[path.as_posix(), model_names[0], 30] for path in image_paths]
gr.Interface(
func,
[
gr.inputs.Image(type='numpy', label='Input'),
gr.inputs.Radio(model_names,
type='value',
default=model_names[0],
label='Model'),
gr.inputs.Slider(
1, 30, step=1, default=30, label='Max Number of Faces'),
],
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|