File size: 4,381 Bytes
a038241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import pathlib
import sys
import urllib.request
from typing import Union

import cv2
import gradio as gr
import numpy as np
import torch
import torch.nn as nn

sys.path.insert(0, 'face_detection')

from ibug.face_detection import RetinaFacePredictor, S3FDPredictor

REPO_URL = 'https://github.com/ibug-group/face_detection'
TITLE = 'ibug-group/face_detection'
DESCRIPTION = f'This is a demo for {REPO_URL}.'
ARTICLE = None


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--face-score-slider-step', type=float, default=0.05)
    parser.add_argument('--face-score-threshold', type=float, default=0.8)
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_model(
        model_name: str, threshold: float,
        device: torch.device) -> Union[RetinaFacePredictor, S3FDPredictor]:
    if model_name == 's3fd':
        model = S3FDPredictor(threshold=threshold, device=device)
    else:
        model_name = model_name.replace('retinaface_', '')
        model = RetinaFacePredictor(
            threshold=threshold,
            device=device,
            model=RetinaFacePredictor.get_model(model_name))
    return model


def detect(image: np.ndarray, model_name: str, face_score_threshold: float,
           detectors: dict[str, nn.Module]) -> np.ndarray:
    model = detectors[model_name]
    model.threshold = face_score_threshold

    # RGB -> BGR
    image = image[:, :, ::-1]
    preds = model(image, rgb=False)

    res = image.copy()
    for pred in preds:
        box = np.round(pred[:4]).astype(int)

        line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
        cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0),
                      line_width)

        if len(pred) == 15:
            pts = pred[5:].reshape(-1, 2)
            for pt in np.round(pts).astype(int):
                cv2.circle(res, tuple(pt), line_width, (0, 255, 0), cv2.FILLED)

    return res[:, :, ::-1]


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    model_names = [
        'retinaface_mobilenet0.25',
        'retinaface_resnet50',
        's3fd',
    ]
    detectors = {
        name: load_model(name,
                         threshold=args.face_score_threshold,
                         device=device)
        for name in model_names
    }

    func = functools.partial(detect, detectors=detectors)
    func = functools.update_wrapper(func, detect)

    image_path = pathlib.Path('selfie.jpg')
    if not image_path.exists():
        url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg'
        urllib.request.urlretrieve(url, image_path)
    examples = [[image_path.as_posix(), model_names[1], 0.8]]

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='numpy', label='Input'),
            gr.inputs.Radio(model_names,
                            type='value',
                            default='retinaface_resnet50',
                            label='Model'),
            gr.inputs.Slider(0,
                             1,
                             step=args.face_score_slider_step,
                             default=args.face_score_threshold,
                             label='Face Score Threshold'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()