File size: 4,873 Bytes
0795e9e
 
 
 
 
 
 
63849a0
0795e9e
 
 
 
 
 
63849a0
0795e9e
63849a0
 
 
 
 
 
0795e9e
63849a0
 
 
0795e9e
 
 
 
 
 
 
 
 
 
 
 
 
ea10cf7
0795e9e
63849a0
0795e9e
 
 
 
 
 
63849a0
0795e9e
 
 
 
 
 
 
 
 
 
 
63849a0
0795e9e
 
 
63849a0
0795e9e
 
 
63849a0
0795e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63849a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python

from __future__ import annotations

import functools
import os
import pathlib
import shlex
import subprocess
import sys
import urllib.request

if os.environ.get('SYSTEM') == 'spaces':
    import mim
    mim.install('mmcv-full==1.4', is_yes=True)

    subprocess.call(shlex.split('pip uninstall -y opencv-python'))
    subprocess.call(shlex.split('pip uninstall -y opencv-python-headless'))
    subprocess.call(
        shlex.split('pip install opencv-python-headless==4.5.5.64'))
    subprocess.call(shlex.split('pip install terminaltables==3.1.0'))
    subprocess.call(shlex.split('pip install mmpycocotools==12.0.3'))

    subprocess.call(shlex.split('pip install insightface==0.6.2'))
    subprocess.call(shlex.split('sed -i 23,26d __init__.py'),
                    cwd='insightface/detection/scrfd/mmdet')

import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn

sys.path.insert(0, 'insightface/detection/scrfd')

from mmdet.apis import inference_detector, init_detector, show_result_pyplot

TITLE = 'insightface Face Detection (SCRFD)'
DESCRIPTION = 'This is an unofficial demo for https://github.com/deepinsight/insightface/tree/master/detection/scrfd.'

HF_TOKEN = os.getenv('HF_TOKEN')


def load_model(model_size: str, device) -> nn.Module:
    ckpt_path = huggingface_hub.hf_hub_download(
        'hysts/insightface',
        f'models/scrfd_{model_size}/model.pth',
        use_auth_token=HF_TOKEN)
    scrfd_dir = 'insightface/detection/scrfd'
    config_path = f'{scrfd_dir}/configs/scrfd/scrfd_{model_size}.py'
    model = init_detector(config_path, ckpt_path, device.type)
    return model


def update_test_pipeline(model: nn.Module, mode: int):
    cfg = model.cfg
    pipelines = cfg.data.test.pipeline
    for pipeline in pipelines:
        if pipeline.type == 'MultiScaleFlipAug':
            if mode == 0:  # 640 scale
                pipeline.img_scale = (640, 640)
                if hasattr(pipeline, 'scale_factor'):
                    del pipeline.scale_factor
            elif mode == 1:  # for single scale in other pages
                pipeline.img_scale = (1100, 1650)
                if hasattr(pipeline, 'scale_factor'):
                    del pipeline.scale_factor
            elif mode == 2:  # original scale
                pipeline.img_scale = None
                pipeline.scale_factor = 1.0
            transforms = pipeline.transforms
            for transform in transforms:
                if transform.type == 'Pad':
                    if mode != 2:
                        transform.size = pipeline.img_scale
                        if hasattr(transform, 'size_divisor'):
                            del transform.size_divisor
                    else:
                        transform.size = None
                        transform.size_divisor = 32


def detect(image: np.ndarray, model_size: str, mode: int,
           face_score_threshold: float,
           detectors: dict[str, nn.Module]) -> np.ndarray:
    model = detectors[model_size]
    update_test_pipeline(model, mode)

    # RGB -> BGR
    image = image[:, :, ::-1]
    preds = inference_detector(model, image)
    boxes = preds[0]

    res = image.copy()
    for box in boxes:
        box, score = box[:4], box[4]
        if score < face_score_threshold:
            continue
        box = np.round(box).astype(int)

        line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
        cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0),
                      line_width)

    res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
    return res


device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model_sizes = [
    '500m',
    '1g',
    '2.5g',
    '10g',
    '34g',
]
detectors = {
    model_size: load_model(model_size, device=device)
    for model_size in model_sizes
}
modes = [
    '(640, 640)',
    '(1100, 1650)',
    'original',
]

func = functools.partial(detect, detectors=detectors)

image_path = pathlib.Path('selfie.jpg')
if not image_path.exists():
    url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg'
    urllib.request.urlretrieve(url, image_path)
examples = [[image_path.as_posix(), '10g', modes[0], 0.3]]

gr.Interface(
    fn=func,
    inputs=[
        gr.Image(label='Input', type='numpy'),
        gr.Radio(label='Model', choices=model_sizes, type='value',
                 value='10g'),
        gr.Radio(label='Mode', choices=modes, type='index', value=modes[0]),
        gr.Slider(label='Face Score Threshold',
                  minimum=0,
                  maximum=1,
                  step=0.05,
                  default=0.3),
    ],
    outputs=gr.Image(label='Output', type='numpy'),
    examples=examples,
    title=TITLE,
    description=DESCRIPTION,
).queue().launch(show_api=False)