File size: 35,848 Bytes
def0065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
import spaces
from PIL import Image

import io
import argparse
import os
import random
import tempfile
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np

import torch

from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms

from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
from einops import rearrange
from torchvision.utils import save_image
import json
import cv2

import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files
from rm_anime_bg.cli import get_mask, SCALE

import argparse
import os
import cv2
import glob
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, Optional,  List
from omegaconf import OmegaConf, DictConfig
from PIL import Image
from pathlib import Path
from dataclasses import dataclass
from typing import Dict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.utils import make_grid, save_image
from accelerate.utils import set_seed
from tqdm.auto import tqdm
from einops import rearrange, repeat
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline

import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm

from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
    FOV_to_intrinsics, 
    get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb
from slrm.utils.infer_util import images_to_video

import cv2
import numpy as np
import os
import trimesh
import argparse
import torch
import scipy
from PIL import Image

from refine.mesh_refine import geo_refine
from refine.func import make_star_cameras_orthographic
from refine.render import NormalsRenderer, calc_vertex_normals

import pytorch3d
from pytorch3d.structures import Meshes
from sklearn.neighbors import KDTree

from segment_anything import SamAutomaticMaskGenerator, sam_model_registry

check_min_version("0.24.0")
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']


@spaces.GPU
def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


session_infer_path = hf_hub_download(
    repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if "CUDAExecutionProvider" in rt.get_available_providers():
    providers = ["CUDAExecutionProvider"]

bkg_remover_session_infer = rt.InferenceSession(
    session_infer_path, providers=providers,
)

@spaces.GPU
def remove_background(
    img: np.ndarray,
    alpha_min: float,
    alpha_max: float,
) -> list:
    img = np.array(img)
    mask = get_mask(bkg_remover_session_infer, img)
    mask[mask < alpha_min] = 0.0
    mask[mask > alpha_max] = 1.0
    img_after = (mask * img).astype(np.uint8)
    mask = (mask * SCALE).astype(np.uint8)
    img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
    return Image.fromarray(img_after)


def process_image(image, totensor, width, height):
    assert image.mode == "RGBA"

    # Find non-transparent pixels
    non_transparent = np.nonzero(np.array(image)[..., 3])
    min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
    min_y, max_y = non_transparent[0].min(), non_transparent[0].max()    
    image = image.crop((min_x, min_y, max_x, max_y))

    # paste to center
    max_dim = max(image.width, image.height)
    max_height = int(max_dim * 1.2)
    max_width = int(max_dim / (height/width) * 1.2)
    new_image = Image.new("RGBA", (max_width, max_height))
    left = (max_width - image.width) // 2
    top = (max_height - image.height) // 2
    new_image.paste(image, (left, top))

    image = new_image.resize((width, height), resample=Image.BICUBIC)
    image = np.array(image)
    image = image.astype(np.float32) / 255.
    assert image.shape[-1] == 4  # RGBA
    alpha = image[..., 3:4]
    bg_color = np.array([1., 1., 1.], dtype=np.float32)
    image = image[..., :3] * alpha + bg_color * (1 - alpha)
    return totensor(image)


@spaces.GPU
@torch.no_grad()
def inference(validation_pipeline, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
              text_encoder, pretrained_model_path, validation, val_width, val_height, unet_condition_type,
              use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
    set_seed(seed)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    totensor = transforms.ToTensor()

    prompts = "high quality, best quality"
    prompt_ids = tokenizer(
        prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
        return_tensors="pt"
    ).input_ids[0]

    # (B*Nv, 3, H, W)
    B = 1
    if input_image.mode != "RGBA":
        # remove background
        input_image = remove_background(input_image, 0.1, 0.9)
    imgs_in = process_image(input_image, totensor, val_width, val_height)
    imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")

    with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
        imgs_in = imgs_in.to(device=device)
        # B*Nv images
        out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator, 
                                  num_inference_steps=timestep, prompt_ids=prompt_ids, 
                                  height=val_height, width=val_width, unet_condition_type=unet_condition_type, 
                                  use_noise=use_noise, **validation,)
        out = rearrange(out, "B C f H W -> (B f) C H W", f=1)

    print("OUT!!!!!!")

    img_buf = io.BytesIO()
    save_image(out[0], img_buf, format='PNG')
    img_buf.seek(0)
    img = Image.open(img_buf)

    print("OUT2!!!!!!")

    torch.cuda.empty_cache()
    return img


######### Multi View Part #############
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def tensor_to_numpy(tensor):
    return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()


@dataclass
class TestConfig:
    pretrained_model_name_or_path: str
    pretrained_unet_path:Optional[str]
    revision: Optional[str]
    validation_dataset: Dict
    save_dir: str
    seed: Optional[int]
    validation_batch_size: int
    dataloader_num_workers: int
    save_mode: str
    local_rank: int

    pipe_kwargs: Dict
    pipe_validation_kwargs: Dict
    unet_from_pretrained_kwargs: Dict
    validation_grid_nrow: int
    camera_embedding_lr_mult: float

    num_views: int
    camera_embedding_type: str

    pred_type: str
    regress_elevation: bool
    enable_xformers_memory_efficient_attention: bool

    cond_on_normals: bool
    cond_on_colors: bool
    
    regress_elevation: bool
    regress_focal_length: bool
    


def convert_to_numpy(tensor):
    return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()

def save_image(tensor):
    ndarr = convert_to_numpy(tensor)
    return save_image_numpy(ndarr)

def save_image_numpy(ndarr):
    im = Image.fromarray(ndarr)
    # pad to square
    if im.size[0] != im.size[1]:
        size = max(im.size)
        new_im = Image.new("RGB", (size, size))
        # set to white
        new_im.paste((255, 255, 255), (0, 0, size, size))
        new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
        im = new_im
    # resize to 1024x1024
    im = im.resize((1024, 1024), Image.LANCZOS)
    return im

@spaces.GPU
def run_multiview_infer(data, pipeline, cfg: TestConfig, num_levels=3):
    if cfg.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
    
    images_cond = []
    results = {}

    torch.cuda.empty_cache()
    images_cond.append(data['image_cond_rgb'][:, 0].cuda()) 
    imgs_in = torch.cat([data['image_cond_rgb']]*2, dim=0).cuda()
    num_views = imgs_in.shape[1]
    imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)

    target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]

    normal_prompt_embeddings, clr_prompt_embeddings = data['normal_prompt_embeddings'].cuda(), data['color_prompt_embeddings'].cuda()
    prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
    prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")

    # B*Nv images
    unet_out = pipeline(
        imgs_in, None, prompt_embeds=prompt_embeddings,
        generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
        height=cfg.height, width=cfg.width,
        num_inference_steps=40, eta=1.0,
        num_levels=num_levels,
    )

    for level in range(num_levels):
        out = unet_out[level].images
        bsz = out.shape[0] // 2

        normals_pred = out[:bsz]
        images_pred = out[bsz:]

        if num_levels == 2:
            results[level+1] = {'normals': [], 'images': []}
        else:
            results[level] = {'normals': [], 'images': []}

        for i in range(bsz//num_views):
            img_in_ = images_cond[-1][i].to(out.device)
            for j in range(num_views):
                view = VIEWS[j]
                idx = i*num_views + j
                normal = normals_pred[idx]
                color = images_pred[idx]

                ## save color and normal---------------------
                new_normal = save_image(normal)
                new_color = save_image(color)

                if num_levels == 2:
                    results[level+1]['normals'].append(new_normal)
                    results[level+1]['images'].append(new_color)
                else:
                    results[level]['normals'].append(new_normal)
                    results[level]['images'].append(new_color)

    torch.cuda.empty_cache()    
    return results

@spaces.GPU
def load_multiview_pipeline(cfg):
    pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
        cfg.pretrained_path,
        torch_dtype=torch.float16,)
    pipeline.unet.enable_xformers_memory_efficient_attention()
    if torch.cuda.is_available():
        pipeline.to(device)
    return pipeline


class InferAPI:
    def __init__(self,
                 canonical_configs,
                 multiview_configs,
                 slrm_configs,
                 refine_configs):
        self.canonical_configs = canonical_configs
        self.multiview_configs = multiview_configs
        self.slrm_configs = slrm_configs
        self.refine_configs = refine_configs

        repo_id = "hyz317/StdGEN"
        all_files = list_repo_files(repo_id, revision="main")
        for file in all_files:
            if os.path.exists(file):
                continue
            hf_hub_download(repo_id, file, local_dir="./ckpt")

        self.canonical_infer = InferCanonicalAPI(self.canonical_configs)
        # self.multiview_infer = InferMultiviewAPI(self.multiview_configs)
        # self.slrm_infer = InferSlrmAPI(self.slrm_configs)
        # self.refine_infer = InferRefineAPI(self.refine_configs)

    def genStage1(self, img, seed):
        return self.canonical_infer.gen(img, seed)

    def genStage2(self, img, seed, num_levels):
        return self.multiview_infer.gen(img, seed, num_levels)

    def genStage3(self, img):
        return self.slrm_infer.gen(img)

    def genStage4(self, meshes, imgs):
        return self.refine_infer.refine(meshes, imgs)


############## Refine ##############
def fix_vert_color_glb(mesh_path):
    from pygltflib import GLTF2, Material, PbrMetallicRoughness
    obj1 = GLTF2().load(mesh_path)
    obj1.meshes[0].primitives[0].material = 0
    obj1.materials.append(Material(
        pbrMetallicRoughness = PbrMetallicRoughness(
            baseColorFactor = [1.0, 1.0, 1.0, 1.0],
            metallicFactor = 0.,
            roughnessFactor = 1.0,
        ),
        emissiveFactor = [0.0, 0.0, 0.0],
        doubleSided = True,
    ))
    obj1.save(mesh_path)


def srgb_to_linear(c_srgb):
    c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
    return c_linear.clip(0, 1.)


def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
    # convert from pytorch3d meshes to trimesh mesh
    vertices = meshes.verts_packed().cpu().float().numpy()
    triangles = meshes.faces_packed().cpu().long().numpy()
    np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
    if save_glb_path.endswith(".glb"):
        # rotate 180 along +Y
        vertices[:, [0, 2]] = -vertices[:, [0, 2]]

    if apply_sRGB_to_LinearRGB:
        np_color = srgb_to_linear(np_color)
    assert vertices.shape[0] == np_color.shape[0]
    assert np_color.shape[1] == 3
    assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
    np_color = np.clip(np_color, 0, 1)
    mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
    mesh.remove_unreferenced_vertices()
    # save mesh
    mesh.export(save_glb_path)
    if save_glb_path.endswith(".glb"):
        fix_vert_color_glb(save_glb_path)
    print(f"saving to {save_glb_path}")


def calc_horizontal_offset(target_img, source_img):
    target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
    source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
    best_offset = -114514
    for offset in range(-200, 200):
        offset_mask = np.roll(source_mask, offset, axis=1)
        overlap = (target_mask & offset_mask).sum()
        if overlap > best_offset:
            best_offset = overlap
            best_offset_value = offset
    return best_offset_value


def calc_horizontal_offset2(target_mask, source_img):
    source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
    best_offset = -114514
    for offset in range(-200, 200):
        offset_mask = np.roll(source_mask, offset, axis=1)
        overlap = (target_mask & offset_mask).sum()
        if overlap > best_offset:
            best_offset = overlap
            best_offset_value = offset
    return best_offset_value


@spaces.GPU
def get_distract_mask(generator, color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
    distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
    if normal_0 is not None and normal_1 is not None:
        distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
    labeled_array, num_features = scipy.ndimage.label(distract_area)
    results = []

    random_sampled_points = []

    for i in range(num_features + 1):
        if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
            results.append((i, np.sum(labeled_array == i)))
            # random sample a point in the area
            points = np.argwhere(labeled_array == i)
            random_sampled_points.append(points[np.random.randint(0, points.shape[0])])

    results = sorted(results, key=lambda x: x[1], reverse=True)  # [1:]
    distract_mask = np.zeros_like(distract_area)
    distract_bbox = np.zeros_like(distract_area)
    for i, _ in results:
        distract_mask |= labeled_array == i
        bbox = np.argwhere(labeled_array == i)
        min_x, min_y = bbox.min(axis=0)
        max_x, max_y = bbox.max(axis=0)
        distract_bbox[min_x:max_x, min_y:max_y] = 1

    points = np.array(random_sampled_points)[:, ::-1]
    labels = np.ones(len(points), dtype=np.int32)

    masks = generator.generate((color_1 * 255).astype(np.uint8))

    outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres

    final_mask = np.zeros_like(distract_mask)
    for iii, mask in enumerate(masks):
        mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
        intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
        total = mask['segmentation'].sum()
        iou = intersection / total
        outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
        outside_total = mask['segmentation'].sum()
        outside_iou = outside_intersection / outside_total
        if iou > ratio and outside_iou < outside_ratio:
            final_mask |= mask['segmentation']

    # calculate coverage
    intersection = np.logical_and(final_mask, distract_mask).sum()
    total = distract_mask.sum()
    coverage = intersection / total

    if coverage < 0.8:
        # use original distract mask
        final_mask = (distract_mask.copy() * 255).astype(np.uint8)
        final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
        labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
        for i in range(num_features_dilate + 1):
            if np.sum(labeled_array_dilate == i) < 200:
                final_mask[labeled_array_dilate == i] = 255

        final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
        final_mask = final_mask > 127

    return distract_mask, distract_bbox, random_sampled_points, final_mask


class InferRefineAPI:
    @spaces.GPU
    def __init__(self, config):
        self.sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
        self.generator = SamAutomaticMaskGenerator(
            model=self.sam,
            points_per_side=64,
            pred_iou_thresh=0.80,
            stability_score_thresh=0.92,
            crop_n_layers=1,
            crop_n_points_downscale_factor=2,
            min_mask_region_area=100,
        )
        self.outside_ratio = 0.20

    @spaces.GPU
    def refine(self, meshes, imgs):
        fixed_v, fixed_f, fixed_t = None, None, None
        flow_vert, flow_vector = None, None
        last_colors, last_normals = None, None
        last_front_color, last_front_normal = None, None
        distract_mask = None

        mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
        mv = mv[[4, 3, 2, 0, 6, 5]]        
        renderer = NormalsRenderer(mv,proj,(1024,1024))

        results = []

        for name_idx, level in zip([2, 0, 1], [2, 1, 0]):
            mesh = trimesh.load(meshes[name_idx])
            new_mesh = mesh.split(only_watertight=False)
            new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
            mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
            mesh_v, mesh_f = mesh.vertices, mesh.faces

            if last_colors is None:
                images = renderer.render(
                    torch.tensor(mesh_v, device='cuda').float(),
                    torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
                    torch.tensor(mesh_f, device='cuda'),
                )
                mask = (images[..., 3] < 0.9).cpu().numpy()

            colors, normals = [], []
            for i in range(6):
                color = np.array(imgs[level]['images'][i])
                normal = np.array(imgs[level]['normals'][i])

                if last_colors is not None:
                    offset = calc_horizontal_offset(np.array(last_colors[i]), color)
                    # print('offset', i, offset)
                else:
                    offset = calc_horizontal_offset2(mask[i], color)
                    # print('init offset', i, offset)

                if offset != 0:
                    color = np.roll(color, offset, axis=1)
                    normal = np.roll(normal, offset, axis=1)

                color = Image.fromarray(color)
                normal = Image.fromarray(normal)
                colors.append(color)
                normals.append(normal)

            if last_front_color is not None and level == 0:
                original_mask, distract_bbox, _, distract_mask = get_distract_mask(self.generator, last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=self.outside_ratio)
            else:  
                distract_mask = None
                distract_bbox = None

            last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
            last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0

            if last_colors is None:
                from copy import deepcopy
                last_colors, last_normals = deepcopy(colors), deepcopy(normals)

            # my mesh flow weight by nearest vertexs
            if fixed_v is not None and fixed_f is not None and level == 1:
                t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)

                fixed_v_cpu = fixed_v.cpu().numpy()
                kdtree_anchor = KDTree(fixed_v_cpu)
                kdtree_mesh_v = KDTree(mesh_v)
                _, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
                _, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
                idx_anchor = idx_anchor.squeeze()
                neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v]  # V, 25, 3
                # calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
                neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
                neighbor_dists[neighbor_dists > 0.06] = 114514.
                neighbor_weights = torch.exp(-neighbor_dists * 1.)
                neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
                anchors = fixed_v[idx_anchor]  # V, 3
                anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor]  # V, 3
                dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
                vec_anchor = dis_anchor[:, None] * anchor_normals  # V, 3
                vec_anchor = vec_anchor[idx_mesh_v]  # V, 25, 3
                weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1)  # V, 3
                mesh_v += weighted_vec_anchor.cpu().numpy()

                t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)

            mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
            mesh_f = torch.tensor(mesh_f, device='cuda')

            new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)

            # my mesh flow weight by nearest vertexs
            try:
                if fixed_v is not None and fixed_f is not None and level != 0:
                    new_mesh_v = new_mesh.verts_packed().cpu().numpy()

                    fixed_v_cpu = fixed_v.cpu().numpy()
                    kdtree_anchor = KDTree(fixed_v_cpu)
                    kdtree_mesh_v = KDTree(new_mesh_v)
                    _, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
                    _, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
                    idx_anchor = idx_anchor.squeeze()
                    neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v]  # V, 25, 3
                    # calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
                    neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
                    neighbor_dists[neighbor_dists > 0.06] = 114514.
                    neighbor_weights = torch.exp(-neighbor_dists * 1.)
                    neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
                    anchors = fixed_v[idx_anchor]  # V, 3
                    anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor]  # V, 3
                    dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
                    vec_anchor = dis_anchor[:, None] * anchor_normals  # V, 3
                    vec_anchor = vec_anchor[idx_mesh_v]  # V, 25, 3
                    weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1)  # V, 3
                    new_mesh_v += weighted_vec_anchor.cpu().numpy()

                    # replace new_mesh verts with new_mesh_v
                    new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)

            except Exception as e:
                pass

            notsimp_v, notsimp_f, notsimp_t = new_mesh.verts_packed(), new_mesh.faces_packed(), new_mesh.textures.verts_features_packed()

            if fixed_v is None:
                fixed_v, fixed_f = simp_v, simp_f
                complete_v, complete_f, complete_t = notsimp_v, notsimp_f, notsimp_t
            else:
                fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
                fixed_v = torch.cat([fixed_v, simp_v], dim=0)
                
                complete_f = torch.cat([complete_f, notsimp_f + complete_v.shape[0]], dim=0)
                complete_v = torch.cat([complete_v, notsimp_v], dim=0)
                complete_t = torch.cat([complete_t, notsimp_t], dim=0)
            
            if level == 2:
                new_mesh = Meshes(verts=[new_mesh.verts_packed()], faces=[new_mesh.faces_packed()], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[torch.ones_like(new_mesh.textures.verts_features_packed(), device=new_mesh.verts_packed().device)*0.5]))

            save_py3dmesh_with_trimesh_fast(new_mesh, meshes[name_idx].replace('.obj', '_refined.obj'), apply_sRGB_to_LinearRGB=False)
            results.append(meshes[name_idx].replace('.obj', '_refined.obj'))

        # save whole mesh
        save_py3dmesh_with_trimesh_fast(Meshes(verts=[complete_v], faces=[complete_f], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[complete_t])), meshes[name_idx].replace('.obj', '_refined_whole.obj'), apply_sRGB_to_LinearRGB=False)
        results.append(meshes[name_idx].replace('.obj', '_refined_whole.obj'))

        return results


class InferSlrmAPI:
    @spaces.GPU
    def __init__(self, config):
        self.config_path = config['config_path']
        self.config = OmegaConf.load(self.config_path)
        self.config_name = os.path.basename(self.config_path).replace('.yaml', '')
        self.model_config = self.config.model_config
        self.infer_config = self.config.infer_config
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.model = instantiate_from_config(self.model_config)
        state_dict = torch.load(self.infer_config.model_path, map_location='cpu')
        self.model.load_state_dict(state_dict, strict=False)
        self.model = self.model.to(self.device)
        self.model.init_flexicubes_geometry(self.device, fovy=30.0, is_ortho=self.model.is_ortho)
        self.model = self.model.eval()

    @spaces.GPU
    def gen(self, imgs):
        imgs = [ cv2.imread(img[0])[:, :, ::-1] for img in imgs ]
        imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
        imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float()   # (6, 3, 1024, 1024)
        mesh_glb_fpaths = self.make3d(imgs)
        return mesh_glb_fpaths[1:4] + mesh_glb_fpaths[0:1]

    @spaces.GPU
    def make3d(self, images):
        input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)

        images = images.unsqueeze(0).to(device)
        images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

        mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
        print(mesh_fpath)
        mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
        mesh_dirname = os.path.dirname(mesh_fpath)

        with torch.no_grad():
            # get triplane
            planes = self.model.forward_planes(images, input_cameras.float())

            # get mesh
            mesh_glb_fpaths = []
            for j in range(4):
                mesh_glb_fpath = self.make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
                mesh_glb_fpaths.append(mesh_glb_fpath)

        return mesh_glb_fpaths

    @spaces.GPU
    def make_mesh(self, mesh_fpath, planes, level=None):
        mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
        mesh_dirname = os.path.dirname(mesh_fpath)
        mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
            
        with torch.no_grad():
            # get mesh
            mesh_out = self.model.extract_mesh(
                planes,
                use_texture_map=False,
                levels=torch.tensor([level]).to(device),
                **self.infer_config,
            )

            vertices, faces, vertex_colors = mesh_out
            vertices = vertices[:, [1, 2, 0]]

            if level == 2:
                # fill all vertex_colors with 127
                vertex_colors = np.ones_like(vertex_colors) * 127
            
            save_obj(vertices, faces, vertex_colors, mesh_fpath)

        return mesh_fpath

class InferMultiviewAPI:
    def __init__(self, config):
        parser = argparse.ArgumentParser()
        parser.add_argument("--seed", type=int, default=42)
        parser.add_argument("--num_views", type=int, default=6)
        parser.add_argument("--num_levels", type=int, default=3)
        parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
        parser.add_argument("--height", type=int, default=1024)
        parser.add_argument("--width", type=int, default=576)
        self.cfg = parser.parse_args()
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.pipeline = load_multiview_pipeline(self.cfg)
        self.results = {}
        if torch.cuda.is_available():
            self.pipeline.to(device)

        self.image_transforms = [transforms.Resize(int(max(self.cfg.height, self.cfg.width))),
                                 transforms.CenterCrop((self.cfg.height, self.cfg.width)),
                                 transforms.ToTensor(),
                                 transforms.Lambda(lambda x: x * 2. - 1),
                                 ]
        self.image_transforms = transforms.Compose(self.image_transforms)

        prompt_embeds_path = './multiview/fixed_prompt_embeds_6view'
        self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
        self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
        self.total_views = self.cfg.num_views


    def process_im(self, im):
        im = self.image_transforms(im)
        return im

    def gen(self, img, seed, num_levels):
        set_seed(seed)
        data = {}

        cond_im_rgb = self.process_im(img)
        cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0)
        data["image_cond_rgb"] = cond_im_rgb[None, ...]
        data["normal_prompt_embeddings"] = self.normal_text_embeds[None, ...]
        data["color_prompt_embeddings"] = self.color_text_embeds[None, ...]

        results = run_multiview_infer(data, self.pipeline, self.cfg, num_levels=num_levels)
        for k in results:
            self.results[k] = results[k]
        return results


class InferCanonicalAPI:
    def __init__(self, config):
        self.config = config
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        self.config_path = config['config_path']
        self.loaded_config = OmegaConf.load(self.config_path)

        self.setup(**self.loaded_config)

    def setup(self,
        validation: Dict,
        pretrained_model_path: str,
        local_crossattn: bool = True,
        unet_from_pretrained_kwargs=None,
        unet_condition_type=None,
        use_noise=True,
        noise_d=256,
        timestep: int = 40,
        width_input: int = 640,
        height_input: int = 1024,
    ):
        self.width_input = width_input
        self.height_input = height_input
        self.timestep = timestep
        self.use_noise = use_noise
        self.noise_d = noise_d
        self.validation = validation
        self.unet_condition_type = unet_condition_type
        self.pretrained_model_path = pretrained_model_path
        
        self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
        self.feature_extractor = CLIPImageProcessor()
        self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
        self.unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
        self.ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)

        self.text_encoder.to(device, dtype=weight_dtype)
        self.image_encoder.to(device, dtype=weight_dtype)
        self.vae.to(device, dtype=weight_dtype)
        self.ref_unet.to(device, dtype=weight_dtype)
        self.unet.to(device, dtype=weight_dtype)

        self.vae.requires_grad_(False)
        self.ref_unet.requires_grad_(False)
        self.unet.requires_grad_(False)

        self.noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
        self.validation_pipeline = CanonicalizationPipeline(
            vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, ref_unet=self.ref_unet,feature_extractor=self.feature_extractor,image_encoder=self.image_encoder,
            scheduler=self.noise_scheduler
        )
        self.validation_pipeline.set_progress_bar_config(disable=True)

    def canonicalize(self, image, seed):
        return inference(
            self.validation_pipeline, image, self.vae, self.feature_extractor, self.image_encoder, self.unet, self.ref_unet, self.tokenizer, self.text_encoder,
            self.pretrained_model_path, self.validation, self.width_input, self.height_input, self.unet_condition_type,
            use_noise=self.use_noise, noise_d=self.noise_d, crop=True, seed=seed, timestep=self.timestep
        )

    def gen(self, img_input, seed=0):
        if np.array(img_input).shape[-1] == 4 and np.array(img_input)[..., 3].min() == 255:
            # convert to RGB
            img_input = img_input.convert("RGB")
        img_output = self.canonicalize(img_input, seed)
        
        max_dim = max(img_output.width, img_output.height)
        new_image = Image.new("RGBA", (max_dim, max_dim))
        left = (max_dim - img_output.width) // 2
        top = (max_dim - img_output.height) // 2
        new_image.paste(img_output, (left, top))

        return new_image