Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
import spaces | |
import numpy as np | |
import trimesh | |
from PIL import Image | |
from typing import List | |
from tqdm import tqdm | |
from sklearn.neighbors import KDTree | |
from refine.func import from_py3d_mesh, get_cameras_list, make_star_cameras_orthographic, multiview_color_projection, simple_clean_mesh, to_py3d_mesh, to_pyml_mesh | |
from refine.opt import MeshOptimizer | |
from refine.render import NormalsRenderer, calc_vertex_normals | |
import pytorch3d | |
from pytorch3d.structures import Meshes | |
import xatlas | |
import cv2 | |
def mesh_uv_wrap(vertices, faces): | |
if len(faces) > 50000: | |
raise ValueError("The mesh has more than 50,000 faces, which is not supported.") | |
vmapping, indices, uvs = xatlas.parametrize(vertices, faces) | |
return vertices[vmapping], indices, uvs | |
def stride_from_shape(shape): | |
stride = [1] | |
for x in reversed(shape[1:]): | |
stride.append(stride[-1] * x) | |
return list(reversed(stride)) | |
def scatter_add_nd_with_count(input, count, indices, values, weights=None): | |
# input: [..., C], D dimension + C channel | |
# count: [..., 1], D dimension | |
# indices: [N, D], long | |
# values: [N, C] | |
D = indices.shape[-1] | |
C = input.shape[-1] | |
size = input.shape[:-1] | |
stride = stride_from_shape(size) | |
assert len(size) == D | |
input = input.view(-1, C) # [HW, C] | |
count = count.view(-1, 1) | |
flatten_indices = (indices * torch.tensor(stride, | |
dtype=torch.long, device=indices.device)).sum(-1) # [N] | |
if weights is None: | |
weights = torch.ones_like(values[..., :1]) | |
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values) | |
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights) | |
return input.view(*size, C), count.view(*size, 1) | |
def linear_grid_put_2d(H, W, coords, values, return_count=False): | |
# coords: [N, 2], float in [0, 1] | |
# values: [N, C] | |
C = values.shape[-1] | |
indices = coords * torch.tensor( | |
[H - 1, W - 1], dtype=torch.float32, device=coords.device | |
) | |
indices_00 = indices.floor().long() # [N, 2] | |
indices_00[:, 0].clamp_(0, H - 2) | |
indices_00[:, 1].clamp_(0, W - 2) | |
indices_01 = indices_00 + torch.tensor( | |
[0, 1], dtype=torch.long, device=indices.device | |
) | |
indices_10 = indices_00 + torch.tensor( | |
[1, 0], dtype=torch.long, device=indices.device | |
) | |
indices_11 = indices_00 + torch.tensor( | |
[1, 1], dtype=torch.long, device=indices.device | |
) | |
h = indices[..., 0] - indices_00[..., 0].float() | |
w = indices[..., 1] - indices_00[..., 1].float() | |
w_00 = (1 - h) * (1 - w) | |
w_01 = (1 - h) * w | |
w_10 = h * (1 - w) | |
w_11 = h * w | |
result = torch.zeros(H, W, C, device=values.device, | |
dtype=values.dtype) # [H, W, C] | |
count = torch.zeros(H, W, 1, device=values.device, | |
dtype=values.dtype) # [H, W, 1] | |
weights = torch.ones_like(values[..., :1]) # [N, 1] | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1)) | |
if return_count: | |
return result, count | |
mask = (count.squeeze(-1) > 0) | |
result[mask] = result[mask] / count[mask].repeat(1, C) | |
return result, count.squeeze(-1) == 0 | |
def remove_color(arr): | |
if arr.shape[-1] == 4: | |
arr = arr[..., :3] | |
# calc diffs | |
base = arr[0, 0] | |
diffs = np.abs(arr.astype(np.int32) - base.astype(np.int32)).sum(axis=-1) | |
alpha = (diffs <= 80) | |
arr[alpha] = 255 | |
alpha = ~alpha | |
arr = np.concatenate([arr, alpha[..., None].astype(np.int32) * 255], axis=-1) | |
return arr | |
def simple_remove(imgs): | |
"""Only works for normal""" | |
if not isinstance(imgs, list): | |
imgs = [imgs] | |
single_input = True | |
else: | |
single_input = False | |
rets = [] | |
for img in imgs: | |
arr = np.array(img) | |
arr = remove_color(arr) | |
rets.append(Image.fromarray(arr.astype(np.uint8))) | |
if single_input: | |
return rets[0] | |
return rets | |
def erode_alpha(img_list): | |
out_img_list = [] | |
for idx, img in enumerate(img_list): | |
arr = np.array(img) | |
alpha = (arr[:, :, 3] > 127).astype(np.uint8) | |
# erode 1px | |
import cv2 | |
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1) | |
alpha = (alpha * 255).astype(np.uint8) | |
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1)) | |
out_img_list.append(img) | |
return out_img_list | |
def merge_small_faces(mesh, thres=1e-5): | |
area_faces = mesh.area_faces | |
small_faces = area_faces < thres | |
vertices = mesh.vertices | |
faces = mesh.faces | |
new_vertices = vertices.tolist() | |
vertex_mapping = {} | |
for face_idx in np.where(small_faces)[0]: | |
face = faces[face_idx] | |
v1, v2, v3 = face | |
center = np.mean(vertices[face], axis=0) | |
new_vertex_idx = len(new_vertices) | |
new_vertices.append(center) | |
vertex_mapping[v1] = new_vertex_idx | |
vertex_mapping[v2] = new_vertex_idx | |
vertex_mapping[v3] = new_vertex_idx | |
for k,v in vertex_mapping.items(): | |
faces[faces == k] = v | |
faces = faces[~small_faces] | |
new_mesh = trimesh.Trimesh(vertices=new_vertices, faces=faces, postprocess=False) | |
new_mesh.remove_unreferenced_vertices() | |
new_mesh.remove_degenerate_faces() | |
new_mesh.remove_duplicate_faces() | |
return new_mesh | |
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"): | |
# Convert the background color to a PyTorch tensor | |
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device) | |
# Convert all images to PyTorch tensors and process them | |
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255 | |
img_nps = imgs[..., :3] | |
alpha_nps = imgs[..., 3] | |
ori_bkgds = img_nps[:, :1, :1] | |
# Avoid divide by zero and calculate the original image | |
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1) | |
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1) | |
ori_img_nps = torch.clamp(ori_img_nps, 0, 1) | |
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd) | |
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1) | |
return rgba_img_np | |
def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, fixed_v=None, fixed_f=None, lr=0.03, start_edge_len=0.15, end_edge_len=0.005, | |
decay=0.995, loss_expansion_weight=0.1, gain=0.1, remesh_interval=1, remesh_start=0, distract_mask=None, distract_bbox=None): | |
vertices, faces = vertices.cuda(), faces.cuda() | |
assert len(pils) == 6 | |
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2) | |
mv = mv[[4, 3, 2, 0, 6, 5]] | |
renderer = NormalsRenderer(mv,proj,list(pils[0].size)) | |
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) | |
# init from coarse mesh | |
opt = MeshOptimizer(vertices, faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len), lr=lr, | |
remesh_interval=remesh_interval, remesh_start=remesh_start) | |
_vertices = opt.vertices | |
_faces = opt.faces | |
if fixed_v is not None and fixed_f is not None: | |
kdtree = KDTree(fixed_v.cpu().numpy()) | |
mask = target_images[..., -1] < 0.5 | |
for i in tqdm(range(steps)): | |
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces | |
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices | |
opt.zero_grad() | |
opt._lr *= decay | |
normals = calc_vertex_normals(vertices,faces) | |
normals[:, 0] *= -1 | |
normals[:, 2] *= -1 | |
images = renderer.render(vertices,normals,faces) | |
loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean() | |
t_mask = images[..., -1] > 0.5 | |
loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean() | |
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean() | |
loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight | |
if distract_mask is not None: | |
hair_visible_normals = normals | |
hair_visible_normals[len(_vertices):] = -1. | |
_images = renderer.render(vertices,hair_visible_normals,faces) | |
loss_distract = (_images[0][distract_mask] - target_images[0][distract_mask]).pow(2).mean() | |
target_outside = target_images[0][..., :3].clone() | |
target_outside[~distract_mask] = 0. | |
loss_outside_distract = (_images[0][..., :3][~distract_mask] - target_outside[..., :3][~distract_mask]).pow(2).mean() | |
loss = loss + loss_distract * 1. + loss_outside_distract * 10. | |
if fixed_v is not None and fixed_f is not None: | |
_, idx = kdtree.query(_vertices.detach().cpu().numpy(), k=1) | |
idx = idx.squeeze() | |
anchors = fixed_v[idx].detach() | |
normals_fixed = calc_vertex_normals(fixed_v, fixed_f) | |
loss_anchor = (torch.clamp(((anchors - _vertices) * normals_fixed[idx]).sum(-1), min=-0)+0).pow(3) | |
loss_anchor_dist_mask = (anchors - _vertices).norm(dim=-1) < 0.05 | |
loss_anchor = loss_anchor[loss_anchor_dist_mask].mean() | |
loss = loss + loss_anchor * 100. | |
# out of box | |
loss_oob = (vertices.abs() > 0.99).float().mean() * 10 | |
loss = loss + loss_oob | |
loss.backward() | |
opt.step() | |
if i % remesh_interval == 0 and i >= remesh_start: | |
_vertices,_faces = opt.remesh(poisson=False) | |
vertices, faces = opt._vertices.detach(), opt._faces.detach() | |
return vertices, faces | |
def run_mesh_refine(vertices, faces, pils: List[Image.Image], fixed_v=None, fixed_f=None, steps=100, start_edge_len=0.02, end_edge_len=0.005, | |
decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True, remesh_interval=20): | |
poission_steps = [] | |
assert len(pils) == 6 | |
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2) | |
mv = mv[[4, 3, 2, 0, 6, 5]] | |
renderer = NormalsRenderer(mv,proj,list(pils[0].size)) | |
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) # 4s | |
# init from coarse mesh | |
opt = MeshOptimizer(vertices, faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02) | |
_vertices = opt.vertices | |
_faces = opt.faces | |
alpha_init = None | |
mask = target_images[..., -1] < 0.5 | |
for i in tqdm(range(steps)): | |
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces | |
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices | |
opt.zero_grad() | |
opt._lr *= decay | |
normals = calc_vertex_normals(vertices,faces) | |
images = renderer.render(vertices,normals,faces) | |
if alpha_init is None: | |
alpha_init = images.detach() | |
if i < update_warmup or i % update_normal_interval == 0: | |
with torch.no_grad(): | |
py3d_mesh = to_py3d_mesh(vertices, faces, normals) | |
cameras = get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=vertices.device, focal=1/1.2) | |
_, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2,0.8,0.8,2,0.8,0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear')) | |
target_normal = target_normal * 2 - 1 | |
target_normal = torch.nn.functional.normalize(target_normal, dim=-1) | |
target_normal[:, 0] *= -1 | |
target_normal[:, 2] *= -1 | |
debug_images = renderer.render(vertices,target_normal,faces) | |
d_mask = images[..., -1] > 0.5 | |
loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean() | |
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean() | |
loss = loss_debug_l2 + loss_alpha_target_mask_l2 | |
# out of box | |
loss_oob = (vertices.abs() > 0.99).float().mean() * 10 | |
loss = loss + loss_oob | |
loss.backward() | |
opt.step() | |
if i % remesh_interval == 0: | |
_vertices,_faces = opt.remesh(poisson=(i in poission_steps)) | |
vertices, faces = opt._vertices.detach(), opt._faces.detach() | |
if process_outputs: | |
vertices = vertices / 2 * 1.35 | |
vertices[..., [0, 2]] = - vertices[..., [0, 2]] | |
return vertices, faces | |
def geo_refine(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None, | |
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False): | |
print(mesh_v.device, mesh_f.device) | |
if fixed_v is not None: | |
print('fixed_v', fixed_v.shape, fixed_v.device) | |
if fixed_f is not None: | |
print('fixed_f', fixed_f.shape, fixed_f.device) | |
vertices, faces = geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=expansion_weight, fixed_v=fixed_v, fixed_f=fixed_f, | |
distract_mask=distract_mask, distract_bbox=distract_bbox, thres=thres, no_decompose=no_decompose) | |
vertices, faces = geo_refine_2(vertices, faces, fixed_v=fixed_v) | |
return geo_refine_3(vertices, faces, rgb_ls, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask) | |
def geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None, | |
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False): | |
rm_normals = simple_remove(normal_ls) | |
# transfer the alpha channel of rm_normals to img_list | |
for idx, img in enumerate(rm_normals): | |
rgb_ls[idx] = Image.fromarray(np.concatenate([np.array(rgb_ls[idx])[..., :3], np.array(img)[:, :, 3:4]], axis=-1)) | |
assert np.mean(np.array(rgb_ls[0])[..., 3]) < 250 | |
rgb_ls = erode_alpha(rgb_ls) | |
stage1_lr = 0.08 if fixed_v is None else 0.01 | |
stage1_remesh_interval = 1 if fixed_v is None else 30 | |
if no_decompose: | |
stage1_lr = 0.03 | |
stage1_remesh_interval = 30 | |
if fixed_v is not None: | |
return mesh_v, mesh_f | |
vertices, faces = reconstruct_stage1(rm_normals, steps=200, vertices=mesh_v, faces=mesh_f, fixed_v=fixed_v, fixed_f=fixed_f, | |
lr=stage1_lr, remesh_interval=stage1_remesh_interval, start_edge_len=0.04, | |
end_edge_len=0.010, gain=0.05, loss_expansion_weight=expansion_weight, | |
distract_mask=distract_mask, distract_bbox=distract_bbox) | |
vertices, faces = run_mesh_refine(vertices, faces, rm_normals, fixed_v=fixed_v, fixed_f=fixed_f, steps=100, start_edge_len=0.010, end_edge_len=0.001, | |
decay=0.99, update_normal_interval=20, update_warmup=5, process_inputs=False, process_outputs=False, remesh_interval=1) | |
return vertices, faces | |
def geo_refine_2(vertices, faces, fixed_v=None): | |
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25) | |
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed() | |
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy() | |
# vertices, faces = trimesh.remesh.subdivide(vertices, faces) | |
return vertices, faces | |
def geo_refine_3(vertices_, faces_, rgb_ls, fixed_v=None, fixed_f=None, distract_mask=None): | |
# vertices, faces, uvs = mesh_uv_wrap(vertices_, faces_) | |
vmapping, indices, uvs = xatlas.parametrize(vertices_, faces_) | |
vertices, faces = vertices_[vmapping], indices | |
def subdivide(vertices, faces, uvs): | |
vertices, faces = trimesh.remesh.subdivide( | |
vertices=np.hstack((vertices, uvs.copy())), | |
faces=faces | |
) | |
return vertices[:, :3], faces, vertices[:, 3:] | |
if fixed_v is not None: | |
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs) | |
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs) | |
# dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs) | |
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_) | |
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces) | |
# dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces) | |
else: | |
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs) | |
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs) | |
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_) | |
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces) | |
origin_len_v, origin_len_f = len(dense_vertices), len(dense_faces) | |
# concatenate fixed_v and fixed_f | |
if fixed_v is not None and fixed_f is not None: | |
dense_vertices, dense_faces = np.concatenate([dense_vertices, fixed_v.detach().cpu().numpy()], axis=0), np.concatenate([dense_faces, fixed_f.detach().cpu().numpy() + len(dense_vertices)], axis=0) | |
dense_vertices, dense_faces = torch.from_numpy(dense_vertices).cuda(), torch.from_numpy(dense_faces.astype('int32')).cuda() | |
# reconstruct meshes | |
meshes = Meshes(verts=[dense_vertices], faces=[dense_faces], textures=pytorch3d.renderer.mesh.textures.TexturesVertex([torch.zeros_like(dense_vertices).float()])) | |
new_meshes = multiview_color_projection(meshes, rgb_ls, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([180, 225, 270, 0, 90, 135], "cuda", focal=1/1.2), weights=[2.0, 0.5, 0.0, 1.0, 0.0, 0.5] if distract_mask is None else [2.0, 0.0, 0.5, 1.0, 0.5, 0.0], distract_mask=distract_mask) | |
if fixed_v is not None and fixed_f is not None: | |
dense_vertices = dense_vertices[:origin_len_v] | |
dense_faces = dense_faces[:origin_len_f] | |
textures = new_meshes.textures.verts_features_packed()[:origin_len_v] | |
else: | |
textures = new_meshes.textures.verts_features_packed() | |
# distances = torch.cdist(torch.tensor(dense_atlas_vertices).cuda(), torch.tensor(dense_vertices).cuda()) | |
# nearest_indices = torch.argmin(distances, dim=1) | |
# atlas_textures = textures[nearest_indices] | |
chunk_size = 500 | |
atlas_textures_chunks = [] | |
for i in range(0, len(dense_atlas_vertices), chunk_size): | |
chunk = dense_atlas_vertices[i:i+chunk_size] | |
distances = torch.cdist(torch.tensor(chunk).cuda(), torch.tensor(dense_vertices).cuda()) | |
nearest_indices = torch.argmin(distances, dim=1) | |
atlas_textures_chunks.append(textures[nearest_indices]) | |
atlas_textures = torch.cat(atlas_textures_chunks, dim=0) | |
dense_atlas_uvs = torch.tensor(dense_atlas_uvs, dtype=torch.float32).cuda() | |
tex_img, mask = linear_grid_put_2d(1024, 1024, dense_atlas_uvs, atlas_textures) | |
tex_img, mask = tex_img.cpu().numpy(), mask.cpu().numpy() | |
tex_img = cv2.inpaint((tex_img * 255).astype(np.uint8), (mask*255).astype('uint8'), 3, cv2.INPAINT_NS) | |
tex_img = Image.fromarray(np.transpose(tex_img,(1,0,2))[::-1]) | |
mesh = trimesh.Trimesh(vertices, faces, process=False) | |
# material = trimesh.visual.texture.SimpleMaterial(image=tex_img, diffuse=(255, 255, 255)) | |
material = trimesh.visual.material.PBRMaterial( | |
roughnessFactor=1.0, | |
baseColorTexture=tex_img, | |
baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8) | |
) | |
texture_visuals = trimesh.visual.TextureVisuals(uv=uvs, image=tex_img, material=material) | |
mesh.visual = texture_visuals | |
return mesh, torch.tensor(vertices).cuda(), torch.tensor(faces.astype('int64')).cuda() | |