StdGEN / refine /mesh_refine.py
YulianSa's picture
bug fixed
522a413
import torch
import spaces
import numpy as np
import trimesh
from PIL import Image
from typing import List
from tqdm import tqdm
from sklearn.neighbors import KDTree
from refine.func import from_py3d_mesh, get_cameras_list, make_star_cameras_orthographic, multiview_color_projection, simple_clean_mesh, to_py3d_mesh, to_pyml_mesh
from refine.opt import MeshOptimizer
from refine.render import NormalsRenderer, calc_vertex_normals
import pytorch3d
from pytorch3d.structures import Meshes
import xatlas
import cv2
def mesh_uv_wrap(vertices, faces):
if len(faces) > 50000:
raise ValueError("The mesh has more than 50,000 faces, which is not supported.")
vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
return vertices[vmapping], indices, uvs
def stride_from_shape(shape):
stride = [1]
for x in reversed(shape[1:]):
stride.append(stride[-1] * x)
return list(reversed(stride))
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
# input: [..., C], D dimension + C channel
# count: [..., 1], D dimension
# indices: [N, D], long
# values: [N, C]
D = indices.shape[-1]
C = input.shape[-1]
size = input.shape[:-1]
stride = stride_from_shape(size)
assert len(size) == D
input = input.view(-1, C) # [HW, C]
count = count.view(-1, 1)
flatten_indices = (indices * torch.tensor(stride,
dtype=torch.long, device=indices.device)).sum(-1) # [N]
if weights is None:
weights = torch.ones_like(values[..., :1])
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
return input.view(*size, C), count.view(*size, 1)
def linear_grid_put_2d(H, W, coords, values, return_count=False):
# coords: [N, 2], float in [0, 1]
# values: [N, C]
C = values.shape[-1]
indices = coords * torch.tensor(
[H - 1, W - 1], dtype=torch.float32, device=coords.device
)
indices_00 = indices.floor().long() # [N, 2]
indices_00[:, 0].clamp_(0, H - 2)
indices_00[:, 1].clamp_(0, W - 2)
indices_01 = indices_00 + torch.tensor(
[0, 1], dtype=torch.long, device=indices.device
)
indices_10 = indices_00 + torch.tensor(
[1, 0], dtype=torch.long, device=indices.device
)
indices_11 = indices_00 + torch.tensor(
[1, 1], dtype=torch.long, device=indices.device
)
h = indices[..., 0] - indices_00[..., 0].float()
w = indices[..., 1] - indices_00[..., 1].float()
w_00 = (1 - h) * (1 - w)
w_01 = (1 - h) * w
w_10 = h * (1 - w)
w_11 = h * w
result = torch.zeros(H, W, C, device=values.device,
dtype=values.dtype) # [H, W, C]
count = torch.zeros(H, W, 1, device=values.device,
dtype=values.dtype) # [H, W, 1]
weights = torch.ones_like(values[..., :1]) # [N, 1]
result, count = scatter_add_nd_with_count(
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1))
if return_count:
return result, count
mask = (count.squeeze(-1) > 0)
result[mask] = result[mask] / count[mask].repeat(1, C)
return result, count.squeeze(-1) == 0
def remove_color(arr):
if arr.shape[-1] == 4:
arr = arr[..., :3]
# calc diffs
base = arr[0, 0]
diffs = np.abs(arr.astype(np.int32) - base.astype(np.int32)).sum(axis=-1)
alpha = (diffs <= 80)
arr[alpha] = 255
alpha = ~alpha
arr = np.concatenate([arr, alpha[..., None].astype(np.int32) * 255], axis=-1)
return arr
def simple_remove(imgs):
"""Only works for normal"""
if not isinstance(imgs, list):
imgs = [imgs]
single_input = True
else:
single_input = False
rets = []
for img in imgs:
arr = np.array(img)
arr = remove_color(arr)
rets.append(Image.fromarray(arr.astype(np.uint8)))
if single_input:
return rets[0]
return rets
def erode_alpha(img_list):
out_img_list = []
for idx, img in enumerate(img_list):
arr = np.array(img)
alpha = (arr[:, :, 3] > 127).astype(np.uint8)
# erode 1px
import cv2
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
alpha = (alpha * 255).astype(np.uint8)
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
out_img_list.append(img)
return out_img_list
def merge_small_faces(mesh, thres=1e-5):
area_faces = mesh.area_faces
small_faces = area_faces < thres
vertices = mesh.vertices
faces = mesh.faces
new_vertices = vertices.tolist()
vertex_mapping = {}
for face_idx in np.where(small_faces)[0]:
face = faces[face_idx]
v1, v2, v3 = face
center = np.mean(vertices[face], axis=0)
new_vertex_idx = len(new_vertices)
new_vertices.append(center)
vertex_mapping[v1] = new_vertex_idx
vertex_mapping[v2] = new_vertex_idx
vertex_mapping[v3] = new_vertex_idx
for k,v in vertex_mapping.items():
faces[faces == k] = v
faces = faces[~small_faces]
new_mesh = trimesh.Trimesh(vertices=new_vertices, faces=faces, postprocess=False)
new_mesh.remove_unreferenced_vertices()
new_mesh.remove_degenerate_faces()
new_mesh.remove_duplicate_faces()
return new_mesh
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
# Convert the background color to a PyTorch tensor
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
# Convert all images to PyTorch tensors and process them
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
# Avoid divide by zero and calculate the original image
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np
def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, fixed_v=None, fixed_f=None, lr=0.03, start_edge_len=0.15, end_edge_len=0.005,
decay=0.995, loss_expansion_weight=0.1, gain=0.1, remesh_interval=1, remesh_start=0, distract_mask=None, distract_bbox=None):
vertices, faces = vertices.cuda(), faces.cuda()
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.))
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len), lr=lr,
remesh_interval=remesh_interval, remesh_start=remesh_start)
_vertices = opt.vertices
_faces = opt.faces
if fixed_v is not None and fixed_f is not None:
kdtree = KDTree(fixed_v.cpu().numpy())
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
normals[:, 0] *= -1
normals[:, 2] *= -1
images = renderer.render(vertices,normals,faces)
loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean()
t_mask = images[..., -1] > 0.5
loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight
if distract_mask is not None:
hair_visible_normals = normals
hair_visible_normals[len(_vertices):] = -1.
_images = renderer.render(vertices,hair_visible_normals,faces)
loss_distract = (_images[0][distract_mask] - target_images[0][distract_mask]).pow(2).mean()
target_outside = target_images[0][..., :3].clone()
target_outside[~distract_mask] = 0.
loss_outside_distract = (_images[0][..., :3][~distract_mask] - target_outside[..., :3][~distract_mask]).pow(2).mean()
loss = loss + loss_distract * 1. + loss_outside_distract * 10.
if fixed_v is not None and fixed_f is not None:
_, idx = kdtree.query(_vertices.detach().cpu().numpy(), k=1)
idx = idx.squeeze()
anchors = fixed_v[idx].detach()
normals_fixed = calc_vertex_normals(fixed_v, fixed_f)
loss_anchor = (torch.clamp(((anchors - _vertices) * normals_fixed[idx]).sum(-1), min=-0)+0).pow(3)
loss_anchor_dist_mask = (anchors - _vertices).norm(dim=-1) < 0.05
loss_anchor = loss_anchor[loss_anchor_dist_mask].mean()
loss = loss + loss_anchor * 100.
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0 and i >= remesh_start:
_vertices,_faces = opt.remesh(poisson=False)
vertices, faces = opt._vertices.detach(), opt._faces.detach()
return vertices, faces
def run_mesh_refine(vertices, faces, pils: List[Image.Image], fixed_v=None, fixed_f=None, steps=100, start_edge_len=0.02, end_edge_len=0.005,
decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True, remesh_interval=20):
poission_steps = []
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) # 4s
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02)
_vertices = opt.vertices
_faces = opt.faces
alpha_init = None
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
images = renderer.render(vertices,normals,faces)
if alpha_init is None:
alpha_init = images.detach()
if i < update_warmup or i % update_normal_interval == 0:
with torch.no_grad():
py3d_mesh = to_py3d_mesh(vertices, faces, normals)
cameras = get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=vertices.device, focal=1/1.2)
_, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2,0.8,0.8,2,0.8,0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear'))
target_normal = target_normal * 2 - 1
target_normal = torch.nn.functional.normalize(target_normal, dim=-1)
target_normal[:, 0] *= -1
target_normal[:, 2] *= -1
debug_images = renderer.render(vertices,target_normal,faces)
d_mask = images[..., -1] > 0.5
loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_debug_l2 + loss_alpha_target_mask_l2
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0:
_vertices,_faces = opt.remesh(poisson=(i in poission_steps))
vertices, faces = opt._vertices.detach(), opt._faces.detach()
if process_outputs:
vertices = vertices / 2 * 1.35
vertices[..., [0, 2]] = - vertices[..., [0, 2]]
return vertices, faces
def geo_refine(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
print(mesh_v.device, mesh_f.device)
if fixed_v is not None:
print('fixed_v', fixed_v.shape, fixed_v.device)
if fixed_f is not None:
print('fixed_f', fixed_f.shape, fixed_f.device)
vertices, faces = geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=expansion_weight, fixed_v=fixed_v, fixed_f=fixed_f,
distract_mask=distract_mask, distract_bbox=distract_bbox, thres=thres, no_decompose=no_decompose)
vertices, faces = geo_refine_2(vertices, faces, fixed_v=fixed_v)
return geo_refine_3(vertices, faces, rgb_ls, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask)
def geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
rm_normals = simple_remove(normal_ls)
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
rgb_ls[idx] = Image.fromarray(np.concatenate([np.array(rgb_ls[idx])[..., :3], np.array(img)[:, :, 3:4]], axis=-1))
assert np.mean(np.array(rgb_ls[0])[..., 3]) < 250
rgb_ls = erode_alpha(rgb_ls)
stage1_lr = 0.08 if fixed_v is None else 0.01
stage1_remesh_interval = 1 if fixed_v is None else 30
if no_decompose:
stage1_lr = 0.03
stage1_remesh_interval = 30
if fixed_v is not None:
return mesh_v, mesh_f
vertices, faces = reconstruct_stage1(rm_normals, steps=200, vertices=mesh_v, faces=mesh_f, fixed_v=fixed_v, fixed_f=fixed_f,
lr=stage1_lr, remesh_interval=stage1_remesh_interval, start_edge_len=0.04,
end_edge_len=0.010, gain=0.05, loss_expansion_weight=expansion_weight,
distract_mask=distract_mask, distract_bbox=distract_bbox)
vertices, faces = run_mesh_refine(vertices, faces, rm_normals, fixed_v=fixed_v, fixed_f=fixed_f, steps=100, start_edge_len=0.010, end_edge_len=0.001,
decay=0.99, update_normal_interval=20, update_warmup=5, process_inputs=False, process_outputs=False, remesh_interval=1)
return vertices, faces
def geo_refine_2(vertices, faces, fixed_v=None):
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
# vertices, faces = trimesh.remesh.subdivide(vertices, faces)
return vertices, faces
def geo_refine_3(vertices_, faces_, rgb_ls, fixed_v=None, fixed_f=None, distract_mask=None):
# vertices, faces, uvs = mesh_uv_wrap(vertices_, faces_)
vmapping, indices, uvs = xatlas.parametrize(vertices_, faces_)
vertices, faces = vertices_[vmapping], indices
def subdivide(vertices, faces, uvs):
vertices, faces = trimesh.remesh.subdivide(
vertices=np.hstack((vertices, uvs.copy())),
faces=faces
)
return vertices[:, :3], faces, vertices[:, 3:]
if fixed_v is not None:
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
# dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
# dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
else:
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
origin_len_v, origin_len_f = len(dense_vertices), len(dense_faces)
# concatenate fixed_v and fixed_f
if fixed_v is not None and fixed_f is not None:
dense_vertices, dense_faces = np.concatenate([dense_vertices, fixed_v.detach().cpu().numpy()], axis=0), np.concatenate([dense_faces, fixed_f.detach().cpu().numpy() + len(dense_vertices)], axis=0)
dense_vertices, dense_faces = torch.from_numpy(dense_vertices).cuda(), torch.from_numpy(dense_faces.astype('int32')).cuda()
# reconstruct meshes
meshes = Meshes(verts=[dense_vertices], faces=[dense_faces], textures=pytorch3d.renderer.mesh.textures.TexturesVertex([torch.zeros_like(dense_vertices).float()]))
new_meshes = multiview_color_projection(meshes, rgb_ls, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([180, 225, 270, 0, 90, 135], "cuda", focal=1/1.2), weights=[2.0, 0.5, 0.0, 1.0, 0.0, 0.5] if distract_mask is None else [2.0, 0.0, 0.5, 1.0, 0.5, 0.0], distract_mask=distract_mask)
if fixed_v is not None and fixed_f is not None:
dense_vertices = dense_vertices[:origin_len_v]
dense_faces = dense_faces[:origin_len_f]
textures = new_meshes.textures.verts_features_packed()[:origin_len_v]
else:
textures = new_meshes.textures.verts_features_packed()
# distances = torch.cdist(torch.tensor(dense_atlas_vertices).cuda(), torch.tensor(dense_vertices).cuda())
# nearest_indices = torch.argmin(distances, dim=1)
# atlas_textures = textures[nearest_indices]
chunk_size = 500
atlas_textures_chunks = []
for i in range(0, len(dense_atlas_vertices), chunk_size):
chunk = dense_atlas_vertices[i:i+chunk_size]
distances = torch.cdist(torch.tensor(chunk).cuda(), torch.tensor(dense_vertices).cuda())
nearest_indices = torch.argmin(distances, dim=1)
atlas_textures_chunks.append(textures[nearest_indices])
atlas_textures = torch.cat(atlas_textures_chunks, dim=0)
dense_atlas_uvs = torch.tensor(dense_atlas_uvs, dtype=torch.float32).cuda()
tex_img, mask = linear_grid_put_2d(1024, 1024, dense_atlas_uvs, atlas_textures)
tex_img, mask = tex_img.cpu().numpy(), mask.cpu().numpy()
tex_img = cv2.inpaint((tex_img * 255).astype(np.uint8), (mask*255).astype('uint8'), 3, cv2.INPAINT_NS)
tex_img = Image.fromarray(np.transpose(tex_img,(1,0,2))[::-1])
mesh = trimesh.Trimesh(vertices, faces, process=False)
# material = trimesh.visual.texture.SimpleMaterial(image=tex_img, diffuse=(255, 255, 255))
material = trimesh.visual.material.PBRMaterial(
roughnessFactor=1.0,
baseColorTexture=tex_img,
baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
)
texture_visuals = trimesh.visual.TextureVisuals(uv=uvs, image=tex_img, material=material)
mesh.visual = texture_visuals
return mesh, torch.tensor(vertices).cuda(), torch.tensor(faces.astype('int64')).cuda()