StdGEN / infer_api_bk.py
YulianSa's picture
update
def0065
raw
history blame
35.8 kB
import spaces
from PIL import Image
import io
import argparse
import os
import random
import tempfile
from typing import Dict, Optional, Tuple
from omegaconf import OmegaConf
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils import check_min_version
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
from torchvision import transforms
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
from einops import rearrange
from torchvision.utils import save_image
import json
import cv2
import onnxruntime as rt
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files
from rm_anime_bg.cli import get_mask, SCALE
import argparse
import os
import cv2
import glob
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, Optional, List
from omegaconf import OmegaConf, DictConfig
from PIL import Image
from pathlib import Path
from dataclasses import dataclass
from typing import Dict
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import torchvision.transforms.functional as TF
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision.utils import make_grid, save_image
from accelerate.utils import set_seed
from tqdm.auto import tqdm
from einops import rearrange, repeat
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline
import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm
from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
FOV_to_intrinsics,
get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb
from slrm.utils.infer_util import images_to_video
import cv2
import numpy as np
import os
import trimesh
import argparse
import torch
import scipy
from PIL import Image
from refine.mesh_refine import geo_refine
from refine.func import make_star_cameras_orthographic
from refine.render import NormalsRenderer, calc_vertex_normals
import pytorch3d
from pytorch3d.structures import Meshes
from sklearn.neighbors import KDTree
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
check_min_version("0.24.0")
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
@spaces.GPU
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
session_infer_path = hf_hub_download(
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
)
providers: list[str] = ["CPUExecutionProvider"]
if "CUDAExecutionProvider" in rt.get_available_providers():
providers = ["CUDAExecutionProvider"]
bkg_remover_session_infer = rt.InferenceSession(
session_infer_path, providers=providers,
)
@spaces.GPU
def remove_background(
img: np.ndarray,
alpha_min: float,
alpha_max: float,
) -> list:
img = np.array(img)
mask = get_mask(bkg_remover_session_infer, img)
mask[mask < alpha_min] = 0.0
mask[mask > alpha_max] = 1.0
img_after = (mask * img).astype(np.uint8)
mask = (mask * SCALE).astype(np.uint8)
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
return Image.fromarray(img_after)
def process_image(image, totensor, width, height):
assert image.mode == "RGBA"
# Find non-transparent pixels
non_transparent = np.nonzero(np.array(image)[..., 3])
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
image = image.crop((min_x, min_y, max_x, max_y))
# paste to center
max_dim = max(image.width, image.height)
max_height = int(max_dim * 1.2)
max_width = int(max_dim / (height/width) * 1.2)
new_image = Image.new("RGBA", (max_width, max_height))
left = (max_width - image.width) // 2
top = (max_height - image.height) // 2
new_image.paste(image, (left, top))
image = new_image.resize((width, height), resample=Image.BICUBIC)
image = np.array(image)
image = image.astype(np.float32) / 255.
assert image.shape[-1] == 4 # RGBA
alpha = image[..., 3:4]
bg_color = np.array([1., 1., 1.], dtype=np.float32)
image = image[..., :3] * alpha + bg_color * (1 - alpha)
return totensor(image)
@spaces.GPU
@torch.no_grad()
def inference(validation_pipeline, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
text_encoder, pretrained_model_path, validation, val_width, val_height, unet_condition_type,
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
set_seed(seed)
generator = torch.Generator(device=device).manual_seed(seed)
totensor = transforms.ToTensor()
prompts = "high quality, best quality"
prompt_ids = tokenizer(
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
return_tensors="pt"
).input_ids[0]
# (B*Nv, 3, H, W)
B = 1
if input_image.mode != "RGBA":
# remove background
input_image = remove_background(input_image, 0.1, 0.9)
imgs_in = process_image(input_image, totensor, val_width, val_height)
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
imgs_in = imgs_in.to(device=device)
# B*Nv images
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
num_inference_steps=timestep, prompt_ids=prompt_ids,
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
use_noise=use_noise, **validation,)
out = rearrange(out, "B C f H W -> (B f) C H W", f=1)
print("OUT!!!!!!")
img_buf = io.BytesIO()
save_image(out[0], img_buf, format='PNG')
img_buf.seek(0)
img = Image.open(img_buf)
print("OUT2!!!!!!")
torch.cuda.empty_cache()
return img
######### Multi View Part #############
weight_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def tensor_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
pretrained_unet_path:Optional[str]
revision: Optional[str]
validation_dataset: Dict
save_dir: str
seed: Optional[int]
validation_batch_size: int
dataloader_num_workers: int
save_mode: str
local_rank: int
pipe_kwargs: Dict
pipe_validation_kwargs: Dict
unet_from_pretrained_kwargs: Dict
validation_grid_nrow: int
camera_embedding_lr_mult: float
num_views: int
camera_embedding_type: str
pred_type: str
regress_elevation: bool
enable_xformers_memory_efficient_attention: bool
cond_on_normals: bool
cond_on_colors: bool
regress_elevation: bool
regress_focal_length: bool
def convert_to_numpy(tensor):
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
def save_image(tensor):
ndarr = convert_to_numpy(tensor)
return save_image_numpy(ndarr)
def save_image_numpy(ndarr):
im = Image.fromarray(ndarr)
# pad to square
if im.size[0] != im.size[1]:
size = max(im.size)
new_im = Image.new("RGB", (size, size))
# set to white
new_im.paste((255, 255, 255), (0, 0, size, size))
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
im = new_im
# resize to 1024x1024
im = im.resize((1024, 1024), Image.LANCZOS)
return im
@spaces.GPU
def run_multiview_infer(data, pipeline, cfg: TestConfig, num_levels=3):
if cfg.seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
images_cond = []
results = {}
torch.cuda.empty_cache()
images_cond.append(data['image_cond_rgb'][:, 0].cuda())
imgs_in = torch.cat([data['image_cond_rgb']]*2, dim=0).cuda()
num_views = imgs_in.shape[1]
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]
normal_prompt_embeddings, clr_prompt_embeddings = data['normal_prompt_embeddings'].cuda(), data['color_prompt_embeddings'].cuda()
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
# B*Nv images
unet_out = pipeline(
imgs_in, None, prompt_embeds=prompt_embeddings,
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
height=cfg.height, width=cfg.width,
num_inference_steps=40, eta=1.0,
num_levels=num_levels,
)
for level in range(num_levels):
out = unet_out[level].images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
if num_levels == 2:
results[level+1] = {'normals': [], 'images': []}
else:
results[level] = {'normals': [], 'images': []}
for i in range(bsz//num_views):
img_in_ = images_cond[-1][i].to(out.device)
for j in range(num_views):
view = VIEWS[j]
idx = i*num_views + j
normal = normals_pred[idx]
color = images_pred[idx]
## save color and normal---------------------
new_normal = save_image(normal)
new_color = save_image(color)
if num_levels == 2:
results[level+1]['normals'].append(new_normal)
results[level+1]['images'].append(new_color)
else:
results[level]['normals'].append(new_normal)
results[level]['images'].append(new_color)
torch.cuda.empty_cache()
return results
@spaces.GPU
def load_multiview_pipeline(cfg):
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
cfg.pretrained_path,
torch_dtype=torch.float16,)
pipeline.unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipeline.to(device)
return pipeline
class InferAPI:
def __init__(self,
canonical_configs,
multiview_configs,
slrm_configs,
refine_configs):
self.canonical_configs = canonical_configs
self.multiview_configs = multiview_configs
self.slrm_configs = slrm_configs
self.refine_configs = refine_configs
repo_id = "hyz317/StdGEN"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists(file):
continue
hf_hub_download(repo_id, file, local_dir="./ckpt")
self.canonical_infer = InferCanonicalAPI(self.canonical_configs)
# self.multiview_infer = InferMultiviewAPI(self.multiview_configs)
# self.slrm_infer = InferSlrmAPI(self.slrm_configs)
# self.refine_infer = InferRefineAPI(self.refine_configs)
def genStage1(self, img, seed):
return self.canonical_infer.gen(img, seed)
def genStage2(self, img, seed, num_levels):
return self.multiview_infer.gen(img, seed, num_levels)
def genStage3(self, img):
return self.slrm_infer.gen(img)
def genStage4(self, meshes, imgs):
return self.refine_infer.refine(meshes, imgs)
############## Refine ##############
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
np_color = np.clip(np_color, 0, 1)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def calc_horizontal_offset(target_img, source_img):
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def calc_horizontal_offset2(target_mask, source_img):
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
@spaces.GPU
def get_distract_mask(generator, color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
if normal_0 is not None and normal_1 is not None:
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
labeled_array, num_features = scipy.ndimage.label(distract_area)
results = []
random_sampled_points = []
for i in range(num_features + 1):
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
results.append((i, np.sum(labeled_array == i)))
# random sample a point in the area
points = np.argwhere(labeled_array == i)
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
distract_mask = np.zeros_like(distract_area)
distract_bbox = np.zeros_like(distract_area)
for i, _ in results:
distract_mask |= labeled_array == i
bbox = np.argwhere(labeled_array == i)
min_x, min_y = bbox.min(axis=0)
max_x, max_y = bbox.max(axis=0)
distract_bbox[min_x:max_x, min_y:max_y] = 1
points = np.array(random_sampled_points)[:, ::-1]
labels = np.ones(len(points), dtype=np.int32)
masks = generator.generate((color_1 * 255).astype(np.uint8))
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
final_mask = np.zeros_like(distract_mask)
for iii, mask in enumerate(masks):
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
total = mask['segmentation'].sum()
iou = intersection / total
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
outside_total = mask['segmentation'].sum()
outside_iou = outside_intersection / outside_total
if iou > ratio and outside_iou < outside_ratio:
final_mask |= mask['segmentation']
# calculate coverage
intersection = np.logical_and(final_mask, distract_mask).sum()
total = distract_mask.sum()
coverage = intersection / total
if coverage < 0.8:
# use original distract mask
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
for i in range(num_features_dilate + 1):
if np.sum(labeled_array_dilate == i) < 200:
final_mask[labeled_array_dilate == i] = 255
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
final_mask = final_mask > 127
return distract_mask, distract_bbox, random_sampled_points, final_mask
class InferRefineAPI:
@spaces.GPU
def __init__(self, config):
self.sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
self.generator = SamAutomaticMaskGenerator(
model=self.sam,
points_per_side=64,
pred_iou_thresh=0.80,
stability_score_thresh=0.92,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100,
)
self.outside_ratio = 0.20
@spaces.GPU
def refine(self, meshes, imgs):
fixed_v, fixed_f, fixed_t = None, None, None
flow_vert, flow_vector = None, None
last_colors, last_normals = None, None
last_front_color, last_front_normal = None, None
distract_mask = None
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,(1024,1024))
results = []
for name_idx, level in zip([2, 0, 1], [2, 1, 0]):
mesh = trimesh.load(meshes[name_idx])
new_mesh = mesh.split(only_watertight=False)
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
mesh_v, mesh_f = mesh.vertices, mesh.faces
if last_colors is None:
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
colors, normals = [], []
for i in range(6):
color = np.array(imgs[level]['images'][i])
normal = np.array(imgs[level]['normals'][i])
if last_colors is not None:
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
# print('offset', i, offset)
else:
offset = calc_horizontal_offset2(mask[i], color)
# print('init offset', i, offset)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
if last_front_color is not None and level == 0:
original_mask, distract_bbox, _, distract_mask = get_distract_mask(self.generator, last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=self.outside_ratio)
else:
distract_mask = None
distract_bbox = None
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0
if last_colors is None:
from copy import deepcopy
last_colors, last_normals = deepcopy(colors), deepcopy(normals)
# my mesh flow weight by nearest vertexs
if fixed_v is not None and fixed_f is not None and level == 1:
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(mesh_v)
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
mesh_v += weighted_vec_anchor.cpu().numpy()
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
mesh_f = torch.tensor(mesh_f, device='cuda')
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)
# my mesh flow weight by nearest vertexs
try:
if fixed_v is not None and fixed_f is not None and level != 0:
new_mesh_v = new_mesh.verts_packed().cpu().numpy()
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(new_mesh_v)
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
new_mesh_v += weighted_vec_anchor.cpu().numpy()
# replace new_mesh verts with new_mesh_v
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
except Exception as e:
pass
notsimp_v, notsimp_f, notsimp_t = new_mesh.verts_packed(), new_mesh.faces_packed(), new_mesh.textures.verts_features_packed()
if fixed_v is None:
fixed_v, fixed_f = simp_v, simp_f
complete_v, complete_f, complete_t = notsimp_v, notsimp_f, notsimp_t
else:
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
complete_f = torch.cat([complete_f, notsimp_f + complete_v.shape[0]], dim=0)
complete_v = torch.cat([complete_v, notsimp_v], dim=0)
complete_t = torch.cat([complete_t, notsimp_t], dim=0)
if level == 2:
new_mesh = Meshes(verts=[new_mesh.verts_packed()], faces=[new_mesh.faces_packed()], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[torch.ones_like(new_mesh.textures.verts_features_packed(), device=new_mesh.verts_packed().device)*0.5]))
save_py3dmesh_with_trimesh_fast(new_mesh, meshes[name_idx].replace('.obj', '_refined.obj'), apply_sRGB_to_LinearRGB=False)
results.append(meshes[name_idx].replace('.obj', '_refined.obj'))
# save whole mesh
save_py3dmesh_with_trimesh_fast(Meshes(verts=[complete_v], faces=[complete_f], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[complete_t])), meshes[name_idx].replace('.obj', '_refined_whole.obj'), apply_sRGB_to_LinearRGB=False)
results.append(meshes[name_idx].replace('.obj', '_refined_whole.obj'))
return results
class InferSlrmAPI:
@spaces.GPU
def __init__(self, config):
self.config_path = config['config_path']
self.config = OmegaConf.load(self.config_path)
self.config_name = os.path.basename(self.config_path).replace('.yaml', '')
self.model_config = self.config.model_config
self.infer_config = self.config.infer_config
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = instantiate_from_config(self.model_config)
state_dict = torch.load(self.infer_config.model_path, map_location='cpu')
self.model.load_state_dict(state_dict, strict=False)
self.model = self.model.to(self.device)
self.model.init_flexicubes_geometry(self.device, fovy=30.0, is_ortho=self.model.is_ortho)
self.model = self.model.eval()
@spaces.GPU
def gen(self, imgs):
imgs = [ cv2.imread(img[0])[:, :, ::-1] for img in imgs ]
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
mesh_glb_fpaths = self.make3d(imgs)
return mesh_glb_fpaths[1:4] + mesh_glb_fpaths[0:1]
@spaces.GPU
def make3d(self, images):
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
with torch.no_grad():
# get triplane
planes = self.model.forward_planes(images, input_cameras.float())
# get mesh
mesh_glb_fpaths = []
for j in range(4):
mesh_glb_fpath = self.make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
mesh_glb_fpaths.append(mesh_glb_fpath)
return mesh_glb_fpaths
@spaces.GPU
def make_mesh(self, mesh_fpath, planes, level=None):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
# get mesh
mesh_out = self.model.extract_mesh(
planes,
use_texture_map=False,
levels=torch.tensor([level]).to(device),
**self.infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
if level == 2:
# fill all vertex_colors with 127
vertex_colors = np.ones_like(vertex_colors) * 127
save_obj(vertices, faces, vertex_colors, mesh_fpath)
return mesh_fpath
class InferMultiviewAPI:
def __init__(self, config):
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--num_views", type=int, default=6)
parser.add_argument("--num_levels", type=int, default=3)
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--width", type=int, default=576)
self.cfg = parser.parse_args()
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.pipeline = load_multiview_pipeline(self.cfg)
self.results = {}
if torch.cuda.is_available():
self.pipeline.to(device)
self.image_transforms = [transforms.Resize(int(max(self.cfg.height, self.cfg.width))),
transforms.CenterCrop((self.cfg.height, self.cfg.width)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2. - 1),
]
self.image_transforms = transforms.Compose(self.image_transforms)
prompt_embeds_path = './multiview/fixed_prompt_embeds_6view'
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
self.total_views = self.cfg.num_views
def process_im(self, im):
im = self.image_transforms(im)
return im
def gen(self, img, seed, num_levels):
set_seed(seed)
data = {}
cond_im_rgb = self.process_im(img)
cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0)
data["image_cond_rgb"] = cond_im_rgb[None, ...]
data["normal_prompt_embeddings"] = self.normal_text_embeds[None, ...]
data["color_prompt_embeddings"] = self.color_text_embeds[None, ...]
results = run_multiview_infer(data, self.pipeline, self.cfg, num_levels=num_levels)
for k in results:
self.results[k] = results[k]
return results
class InferCanonicalAPI:
def __init__(self, config):
self.config = config
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.config_path = config['config_path']
self.loaded_config = OmegaConf.load(self.config_path)
self.setup(**self.loaded_config)
def setup(self,
validation: Dict,
pretrained_model_path: str,
local_crossattn: bool = True,
unet_from_pretrained_kwargs=None,
unet_condition_type=None,
use_noise=True,
noise_d=256,
timestep: int = 40,
width_input: int = 640,
height_input: int = 1024,
):
self.width_input = width_input
self.height_input = height_input
self.timestep = timestep
self.use_noise = use_noise
self.noise_d = noise_d
self.validation = validation
self.unet_condition_type = unet_condition_type
self.pretrained_model_path = pretrained_model_path
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
self.feature_extractor = CLIPImageProcessor()
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
self.unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
self.ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
self.text_encoder.to(device, dtype=weight_dtype)
self.image_encoder.to(device, dtype=weight_dtype)
self.vae.to(device, dtype=weight_dtype)
self.ref_unet.to(device, dtype=weight_dtype)
self.unet.to(device, dtype=weight_dtype)
self.vae.requires_grad_(False)
self.ref_unet.requires_grad_(False)
self.unet.requires_grad_(False)
self.noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
self.validation_pipeline = CanonicalizationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, ref_unet=self.ref_unet,feature_extractor=self.feature_extractor,image_encoder=self.image_encoder,
scheduler=self.noise_scheduler
)
self.validation_pipeline.set_progress_bar_config(disable=True)
def canonicalize(self, image, seed):
return inference(
self.validation_pipeline, image, self.vae, self.feature_extractor, self.image_encoder, self.unet, self.ref_unet, self.tokenizer, self.text_encoder,
self.pretrained_model_path, self.validation, self.width_input, self.height_input, self.unet_condition_type,
use_noise=self.use_noise, noise_d=self.noise_d, crop=True, seed=seed, timestep=self.timestep
)
def gen(self, img_input, seed=0):
if np.array(img_input).shape[-1] == 4 and np.array(img_input)[..., 3].min() == 255:
# convert to RGB
img_input = img_input.convert("RGB")
img_output = self.canonicalize(img_input, seed)
max_dim = max(img_output.width, img_output.height)
new_image = Image.new("RGBA", (max_dim, max_dim))
left = (max_dim - img_output.width) // 2
top = (max_dim - img_output.height) // 2
new_image.paste(img_output, (left, top))
return new_image