Spaces:
Running
on
L40S
Running
on
L40S
update
Browse files- app.py +67 -20
- infer_refine.py +67 -66
- pre-requirements.txt +1 -0
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
import glob
|
5 |
import torch
|
6 |
import random
|
|
|
7 |
from tempfile import NamedTemporaryFile
|
8 |
from PIL import Image
|
9 |
import os
|
@@ -74,29 +75,73 @@ If you find our work useful for your research or applications, please cite using
|
|
74 |
If you have any questions, feel free to open a discussion or contact us at <b>hyz22@mails.tsinghua.edu.cn</b>.
|
75 |
"""
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# 示例占位函数 - 需替换实际模型
|
78 |
def arbitrary_to_apose(image, seed):
|
79 |
# convert image to PIL.Image
|
80 |
image = Image.fromarray(image)
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def apose_to_multiview(apose_img, seed):
|
84 |
# convert image to PIL.Image
|
85 |
apose_img = Image.fromarray(apose_img)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
apose_img = Image.fromarray(apose_img)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return refined
|
101 |
|
102 |
with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation from Single Images") as demo:
|
@@ -112,7 +157,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
112 |
)
|
113 |
seed_input = gr.Number(
|
114 |
label="Seed",
|
115 |
-
value=
|
116 |
precision=0,
|
117 |
interactive=True
|
118 |
)
|
@@ -131,6 +176,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
131 |
precision=0,
|
132 |
interactive=True
|
133 |
)
|
|
|
134 |
view_btn = gr.Button("Generate Multi-view Images")
|
135 |
|
136 |
with gr.Column():
|
@@ -141,6 +187,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
141 |
interactive=False,
|
142 |
height="None"
|
143 |
)
|
|
|
144 |
mesh_btn = gr.Button("Reconstruct")
|
145 |
|
146 |
with gr.Row():
|
@@ -165,20 +212,20 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
165 |
view_btn.click(
|
166 |
apose_to_multiview,
|
167 |
inputs=[a_pose_image, seed_input2],
|
168 |
-
outputs=multiview_gallery
|
169 |
)
|
170 |
|
171 |
mesh_btn.click(
|
172 |
multiview_to_mesh,
|
173 |
-
inputs=multiview_gallery,
|
174 |
-
outputs=[*mesh_cols, full_mesh]
|
175 |
)
|
176 |
|
177 |
refine_btn.click(
|
178 |
refine_mesh,
|
179 |
-
inputs=[a_pose_image, *mesh_cols, seed_input2],
|
180 |
outputs=[refined_meshes[2], refined_meshes[0], refined_meshes[1], refined_full_mesh]
|
181 |
)
|
182 |
|
183 |
if __name__ == "__main__":
|
184 |
-
demo.launch()
|
|
|
4 |
import glob
|
5 |
import torch
|
6 |
import random
|
7 |
+
import imagehash
|
8 |
from tempfile import NamedTemporaryFile
|
9 |
from PIL import Image
|
10 |
import os
|
|
|
75 |
If you have any questions, feel free to open a discussion or contact us at <b>hyz22@mails.tsinghua.edu.cn</b>.
|
76 |
"""
|
77 |
|
78 |
+
cache_arbitrary = {}
|
79 |
+
cache_multiview = [ {}, {}, {} ]
|
80 |
+
cache_slrm = {}
|
81 |
+
cache_refine = {}
|
82 |
+
|
83 |
+
tmp_path = '/tmp'
|
84 |
+
|
85 |
# 示例占位函数 - 需替换实际模型
|
86 |
def arbitrary_to_apose(image, seed):
|
87 |
# convert image to PIL.Image
|
88 |
image = Image.fromarray(image)
|
89 |
+
image_hash = str(imagehash.average_hash(image)) + '_' + str(seed)
|
90 |
+
if image_hash not in cache_arbitrary:
|
91 |
+
apose_img = infer_api.genStage1(image, seed)
|
92 |
+
apose_img.save(f'{tmp_path}/{image_hash}.png')
|
93 |
+
cache_arbitrary[image_hash] = f'{tmp_path}/{image_hash}.png'
|
94 |
+
print(f'cached apose image: {image_hash}')
|
95 |
+
return apose_img
|
96 |
+
else:
|
97 |
+
apose_img = Image.open(cache_arbitrary[image_hash])
|
98 |
+
print(f'loaded cached apose image: {image_hash}')
|
99 |
+
return apose_img
|
100 |
|
101 |
def apose_to_multiview(apose_img, seed):
|
102 |
# convert image to PIL.Image
|
103 |
apose_img = Image.fromarray(apose_img)
|
104 |
+
image_hash = str(imagehash.average_hash(apose_img)) + '_' + str(seed)
|
105 |
+
if image_hash not in cache_multiview[0]:
|
106 |
+
results = infer_api.genStage2(apose_img, seed, num_levels=1)
|
107 |
+
for idx, img in enumerate(results[0]["images"]):
|
108 |
+
img.save(f'{tmp_path}/{image_hash}_images_{idx}.png')
|
109 |
+
for idx, img in enumerate(results[0]["normals"]):
|
110 |
+
img.save(f'{tmp_path}/{image_hash}_normals_{idx}.png')
|
111 |
+
cache_multiview[0][image_hash] = {
|
112 |
+
"images": [f'{tmp_path}/{image_hash}_images_{idx}.png' for idx in range(len(results[0]["images"]))],
|
113 |
+
"normals": [f'{tmp_path}/{image_hash}_normals_{idx}.png' for idx in range(len(results[0]["normals"]))]
|
114 |
+
}
|
115 |
+
print(f'cached multiview images: {image_hash}')
|
116 |
+
return results[0]["images"], image_hash
|
117 |
+
else:
|
118 |
+
print(f'loaded cached multiview images: {image_hash}')
|
119 |
+
return [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]], image_hash
|
120 |
+
|
121 |
+
def multiview_to_mesh(images, image_hash):
|
122 |
+
if image_hash not in cache_slrm:
|
123 |
+
mesh_files = infer_api.genStage3(images)
|
124 |
+
cache_slrm[image_hash] = mesh_files
|
125 |
+
print(f'cached slrm files: {image_hash}')
|
126 |
+
else:
|
127 |
+
mesh_files = cache_slrm[image_hash]
|
128 |
+
print(f'loaded cached slrm files: {image_hash}')
|
129 |
+
return *mesh_files, image_hash
|
130 |
+
|
131 |
+
def refine_mesh(apose_img, mesh1, mesh2, mesh3, seed, image_hash):
|
132 |
apose_img = Image.fromarray(apose_img)
|
133 |
+
if image_hash not in cache_refine:
|
134 |
+
results = infer_api.genStage2(apose_img, seed, num_levels=2)
|
135 |
+
results[0] = {}
|
136 |
+
results[0]["images"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["images"]]
|
137 |
+
results[0]["normals"] = [Image.open(img_path) for img_path in cache_multiview[0][image_hash]["normals"]]
|
138 |
+
refined = infer_api.genStage4([mesh1, mesh2, mesh3], results)
|
139 |
+
cache_refine[image_hash] = refined
|
140 |
+
print(f'cached refined mesh: {image_hash}')
|
141 |
+
else:
|
142 |
+
refined = cache_refine[image_hash]
|
143 |
+
print(f'loaded cached refined mesh: {image_hash}')
|
144 |
+
|
145 |
return refined
|
146 |
|
147 |
with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation from Single Images") as demo:
|
|
|
157 |
)
|
158 |
seed_input = gr.Number(
|
159 |
label="Seed",
|
160 |
+
value=52,
|
161 |
precision=0,
|
162 |
interactive=True
|
163 |
)
|
|
|
176 |
precision=0,
|
177 |
interactive=True
|
178 |
)
|
179 |
+
state2 = gr.State(value="")
|
180 |
view_btn = gr.Button("Generate Multi-view Images")
|
181 |
|
182 |
with gr.Column():
|
|
|
187 |
interactive=False,
|
188 |
height="None"
|
189 |
)
|
190 |
+
state3 = gr.State(value="")
|
191 |
mesh_btn = gr.Button("Reconstruct")
|
192 |
|
193 |
with gr.Row():
|
|
|
212 |
view_btn.click(
|
213 |
apose_to_multiview,
|
214 |
inputs=[a_pose_image, seed_input2],
|
215 |
+
outputs=[multiview_gallery, state2]
|
216 |
)
|
217 |
|
218 |
mesh_btn.click(
|
219 |
multiview_to_mesh,
|
220 |
+
inputs=[multiview_gallery, state2],
|
221 |
+
outputs=[*mesh_cols, full_mesh, state3]
|
222 |
)
|
223 |
|
224 |
refine_btn.click(
|
225 |
refine_mesh,
|
226 |
+
inputs=[a_pose_image, *mesh_cols, seed_input2, state3],
|
227 |
outputs=[refined_meshes[2], refined_meshes[0], refined_meshes[1], refined_full_mesh]
|
228 |
)
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
+
demo.launch(server_name="0.0.0.0", share=True, server_port=24527)
|
infer_refine.py
CHANGED
@@ -16,16 +16,16 @@ from sklearn.neighbors import KDTree
|
|
16 |
|
17 |
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
18 |
|
19 |
-
sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
|
20 |
-
generator = SamAutomaticMaskGenerator(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
|
30 |
|
31 |
def fix_vert_color_glb(mesh_path):
|
@@ -49,28 +49,59 @@ def srgb_to_linear(c_srgb):
|
|
49 |
return c_linear.clip(0, 1.)
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
|
53 |
-
#
|
54 |
vertices = meshes.verts_packed().cpu().float().numpy()
|
55 |
triangles = meshes.faces_packed().cpu().long().numpy()
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
if save_glb_path.endswith(".glb"):
|
58 |
-
# rotate 180 along +Y
|
59 |
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
|
60 |
|
61 |
-
|
62 |
-
np_color = srgb_to_linear(np_color)
|
63 |
-
assert vertices.shape[0] == np_color.shape[0]
|
64 |
-
assert np_color.shape[1] == 3
|
65 |
-
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
|
66 |
-
np_color = np.clip(np_color, 0, 1)
|
67 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
|
68 |
mesh.remove_unreferenced_vertices()
|
69 |
-
|
|
|
70 |
mesh.export(save_glb_path)
|
71 |
-
if save_glb_path.endswith(".glb"):
|
72 |
-
|
73 |
-
print(f"
|
74 |
|
75 |
|
76 |
def calc_horizontal_offset(target_img, source_img):
|
@@ -124,43 +155,7 @@ def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25
|
|
124 |
max_x, max_y = bbox.max(axis=0)
|
125 |
distract_bbox[min_x:max_x, min_y:max_y] = 1
|
126 |
|
127 |
-
|
128 |
-
labels = np.ones(len(points), dtype=np.int32)
|
129 |
-
|
130 |
-
masks = generator.generate((color_1 * 255).astype(np.uint8))
|
131 |
-
|
132 |
-
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
|
133 |
-
|
134 |
-
final_mask = np.zeros_like(distract_mask)
|
135 |
-
for iii, mask in enumerate(masks):
|
136 |
-
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
|
137 |
-
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
|
138 |
-
total = mask['segmentation'].sum()
|
139 |
-
iou = intersection / total
|
140 |
-
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
|
141 |
-
outside_total = mask['segmentation'].sum()
|
142 |
-
outside_iou = outside_intersection / outside_total
|
143 |
-
if iou > ratio and outside_iou < outside_ratio:
|
144 |
-
final_mask |= mask['segmentation']
|
145 |
-
|
146 |
-
# calculate coverage
|
147 |
-
intersection = np.logical_and(final_mask, distract_mask).sum()
|
148 |
-
total = distract_mask.sum()
|
149 |
-
coverage = intersection / total
|
150 |
-
|
151 |
-
if coverage < 0.8:
|
152 |
-
# use original distract mask
|
153 |
-
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
|
154 |
-
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
155 |
-
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
|
156 |
-
for i in range(num_features_dilate + 1):
|
157 |
-
if np.sum(labeled_array_dilate == i) < 200:
|
158 |
-
final_mask[labeled_array_dilate == i] = 255
|
159 |
-
|
160 |
-
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
161 |
-
final_mask = final_mask > 127
|
162 |
-
|
163 |
-
return distract_mask, distract_bbox, random_sampled_points, final_mask
|
164 |
|
165 |
|
166 |
if __name__ == '__main__':
|
@@ -172,6 +167,9 @@ if __name__ == '__main__':
|
|
172 |
parser.add_argument('--no_decompose', action='store_true')
|
173 |
args = parser.parse_args()
|
174 |
|
|
|
|
|
|
|
175 |
for test_idx in os.listdir(args.input_mv_dir):
|
176 |
mv_root_dir = os.path.join(args.input_mv_dir, test_idx)
|
177 |
obj_dir = os.path.join(args.input_obj_dir, test_idx)
|
@@ -228,7 +226,7 @@ if __name__ == '__main__':
|
|
228 |
normals.append(normal)
|
229 |
|
230 |
if last_front_color is not None and level == 0:
|
231 |
-
|
232 |
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255)
|
233 |
else:
|
234 |
distract_mask = None
|
@@ -275,7 +273,7 @@ if __name__ == '__main__':
|
|
275 |
# my mesh flow weight by nearest vertexs
|
276 |
try:
|
277 |
if fixed_v is not None and fixed_f is not None and level != 0:
|
278 |
-
new_mesh_v = new_mesh.
|
279 |
|
280 |
fixed_v_cpu = fixed_v.cpu().numpy()
|
281 |
kdtree_anchor = KDTree(fixed_v_cpu)
|
@@ -297,14 +295,13 @@ if __name__ == '__main__':
|
|
297 |
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
298 |
new_mesh_v += weighted_vec_anchor.cpu().numpy()
|
299 |
|
300 |
-
|
301 |
-
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
|
302 |
|
303 |
except Exception as e:
|
304 |
pass
|
305 |
|
306 |
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
|
307 |
-
|
308 |
|
309 |
if fixed_v is None:
|
310 |
fixed_v, fixed_f = simp_v, simp_f
|
@@ -312,6 +309,10 @@ if __name__ == '__main__':
|
|
312 |
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
|
313 |
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
|
314 |
|
|
|
|
|
|
|
|
|
315 |
|
316 |
else:
|
317 |
mesh = trimesh.load(obj_dir + f'_0.obj')
|
|
|
16 |
|
17 |
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
18 |
|
19 |
+
# sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
|
20 |
+
# generator = SamAutomaticMaskGenerator(
|
21 |
+
# model=sam,
|
22 |
+
# points_per_side=64,
|
23 |
+
# pred_iou_thresh=0.80,
|
24 |
+
# stability_score_thresh=0.92,
|
25 |
+
# crop_n_layers=1,
|
26 |
+
# crop_n_points_downscale_factor=2,
|
27 |
+
# min_mask_region_area=100,
|
28 |
+
# )
|
29 |
|
30 |
|
31 |
def fix_vert_color_glb(mesh_path):
|
|
|
49 |
return c_linear.clip(0, 1.)
|
50 |
|
51 |
|
52 |
+
import trimesh
|
53 |
+
import numpy as np
|
54 |
+
from pytorch3d.structures import Meshes
|
55 |
+
from pytorch3d.renderer import TexturesUV
|
56 |
+
|
57 |
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
|
58 |
+
# Convert from pytorch3d meshes to trimesh mesh
|
59 |
vertices = meshes.verts_packed().cpu().float().numpy()
|
60 |
triangles = meshes.faces_packed().cpu().long().numpy()
|
61 |
+
|
62 |
+
# Check if the mesh uses TexturesUV
|
63 |
+
if isinstance(meshes.textures, TexturesUV):
|
64 |
+
# Extract UV coordinates and texture map
|
65 |
+
verts_uvs = meshes.textures.verts_uvs_padded()[0].cpu().numpy() # UV coordinates (N, 2)
|
66 |
+
faces_uvs = meshes.textures.faces_uvs_padded()[0].cpu().numpy() # UV face indices (M, 3)
|
67 |
+
texture_map = meshes.textures.maps_padded()[0].cpu().numpy() # Texture map (H, W, 3 or 4)
|
68 |
+
|
69 |
+
# Convert texture map to trimesh-compatible format
|
70 |
+
if apply_sRGB_to_LinearRGB:
|
71 |
+
texture_map = srgb_to_linear(texture_map)
|
72 |
+
texture_map = np.clip(texture_map, 0, 1) # Ensure values are in [0, 1]
|
73 |
+
material = trimesh.visual.texture.SimpleMaterial(image=texture_data, diffuse=(255, 255, 255))
|
74 |
+
|
75 |
+
# Create a trimesh.Trimesh object with UVs and texture
|
76 |
+
mesh = trimesh.Trimesh(
|
77 |
+
vertices=vertices,
|
78 |
+
faces=triangles,
|
79 |
+
visual=trimesh.visual.TextureVisuals(
|
80 |
+
uv=verts_uvs, # UV coordinates
|
81 |
+
image=texture_map, # Texture map
|
82 |
+
material=material # Material with texture
|
83 |
+
)
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
# Fallback to vertex colors if TexturesUV is not used
|
87 |
+
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
|
88 |
+
if apply_sRGB_to_LinearRGB:
|
89 |
+
np_color = srgb_to_linear(np_color)
|
90 |
+
np_color = np.clip(np_color, 0, 1)
|
91 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
|
92 |
+
|
93 |
+
# Rotate 180 degrees along +Y if saving as GLB
|
94 |
if save_glb_path.endswith(".glb"):
|
|
|
95 |
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
|
96 |
|
97 |
+
# Remove unreferenced vertices
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
mesh.remove_unreferenced_vertices()
|
99 |
+
|
100 |
+
# Save mesh
|
101 |
mesh.export(save_glb_path)
|
102 |
+
# if save_glb_path.endswith(".glb"):
|
103 |
+
# fix_vert_color_glb(save_glb_path)
|
104 |
+
print(f"Saving to {save_glb_path}")
|
105 |
|
106 |
|
107 |
def calc_horizontal_offset(target_img, source_img):
|
|
|
155 |
max_x, max_y = bbox.max(axis=0)
|
156 |
distract_bbox[min_x:max_x, min_y:max_y] = 1
|
157 |
|
158 |
+
return distract_mask, distract_bbox, _, _
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
|
161 |
if __name__ == '__main__':
|
|
|
167 |
parser.add_argument('--no_decompose', action='store_true')
|
168 |
args = parser.parse_args()
|
169 |
|
170 |
+
import time
|
171 |
+
start_time = time.time()
|
172 |
+
|
173 |
for test_idx in os.listdir(args.input_mv_dir):
|
174 |
mv_root_dir = os.path.join(args.input_mv_dir, test_idx)
|
175 |
obj_dir = os.path.join(args.input_obj_dir, test_idx)
|
|
|
226 |
normals.append(normal)
|
227 |
|
228 |
if last_front_color is not None and level == 0:
|
229 |
+
distract_mask, distract_bbox, _, _ = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=args.outside_ratio)
|
230 |
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255)
|
231 |
else:
|
232 |
distract_mask = None
|
|
|
273 |
# my mesh flow weight by nearest vertexs
|
274 |
try:
|
275 |
if fixed_v is not None and fixed_f is not None and level != 0:
|
276 |
+
new_mesh_v = new_mesh.vertices.copy()
|
277 |
|
278 |
fixed_v_cpu = fixed_v.cpu().numpy()
|
279 |
kdtree_anchor = KDTree(fixed_v_cpu)
|
|
|
295 |
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
296 |
new_mesh_v += weighted_vec_anchor.cpu().numpy()
|
297 |
|
298 |
+
new_mesh.vertices = new_mesh_v
|
|
|
299 |
|
300 |
except Exception as e:
|
301 |
pass
|
302 |
|
303 |
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
|
304 |
+
new_mesh.export(f'{args.output_dir}/{test_idx}/out_{level}.glb')
|
305 |
|
306 |
if fixed_v is None:
|
307 |
fixed_v, fixed_f = simp_v, simp_f
|
|
|
309 |
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
|
310 |
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
|
311 |
|
312 |
+
# input("Press Enter to continue...")
|
313 |
+
|
314 |
+
print('finish', time.time() - start_time)
|
315 |
+
|
316 |
|
317 |
else:
|
318 |
mesh = trimesh.load(obj_dir + f'_0.obj')
|
pre-requirements.txt
CHANGED
@@ -23,3 +23,4 @@ scikit-learn
|
|
23 |
pygltflib
|
24 |
pymeshlab==2022.2.post3
|
25 |
pytorch_lightning
|
|
|
|
23 |
pygltflib
|
24 |
pymeshlab==2022.2.post3
|
25 |
pytorch_lightning
|
26 |
+
imagehash
|