Spaces:
Running
on
L40S
Running
on
L40S
update
Browse files- app.py +3 -3
- infer_multiview.py +0 -1
- refine/mesh_refine.py +1 -1
app.py
CHANGED
@@ -47,7 +47,7 @@ This is official demo for our CVPR 2025 paper <a href="">StdGEN: Semantic-Decomp
|
|
47 |
|
48 |
Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.
|
49 |
|
50 |
-
❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with
|
51 |
1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.
|
52 |
|
53 |
2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.
|
@@ -112,7 +112,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
112 |
)
|
113 |
seed_input = gr.Number(
|
114 |
label="Seed",
|
115 |
-
value=
|
116 |
precision=0,
|
117 |
interactive=True
|
118 |
)
|
@@ -127,7 +127,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
|
|
127 |
)
|
128 |
seed_input2 = gr.Number(
|
129 |
label="Seed",
|
130 |
-
value=
|
131 |
precision=0,
|
132 |
interactive=True
|
133 |
)
|
|
|
47 |
|
48 |
Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.
|
49 |
|
50 |
+
❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with **coarse precision geometry and texture** due to gradio use. We skip some refinement process and perform only color back-projection to clothes and hair. Please refer to GitHub repo for complete version.
|
51 |
1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.
|
52 |
|
53 |
2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.
|
|
|
112 |
)
|
113 |
seed_input = gr.Number(
|
114 |
label="Seed",
|
115 |
+
value=50,
|
116 |
precision=0,
|
117 |
interactive=True
|
118 |
)
|
|
|
127 |
)
|
128 |
seed_input2 = gr.Number(
|
129 |
label="Seed",
|
130 |
+
value=50,
|
131 |
precision=0,
|
132 |
interactive=True
|
133 |
)
|
infer_multiview.py
CHANGED
@@ -227,7 +227,6 @@ def load_multiview_pipeline(cfg):
|
|
227 |
cfg.pretrained_path,
|
228 |
torch_dtype=torch.float16,)
|
229 |
pipeline.unet.enable_xformers_memory_efficient_attention()
|
230 |
-
import pdb; pdb.set_trace()
|
231 |
if torch.cuda.is_available():
|
232 |
pipeline.to(device)
|
233 |
return pipeline
|
|
|
227 |
cfg.pretrained_path,
|
228 |
torch_dtype=torch.float16,)
|
229 |
pipeline.unet.enable_xformers_memory_efficient_attention()
|
|
|
230 |
if torch.cuda.is_available():
|
231 |
pipeline.to(device)
|
232 |
return pipeline
|
refine/mesh_refine.py
CHANGED
@@ -313,7 +313,7 @@ def geo_refine_2(vertices, faces, fixed_v=None):
|
|
313 |
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
|
314 |
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
|
315 |
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
|
316 |
-
vertices, faces = trimesh.remesh.subdivide(vertices, faces)
|
317 |
if fixed_v is not None:
|
318 |
vertices, faces = trimesh.remesh.subdivide(vertices, faces)
|
319 |
return vertices, faces
|
|
|
313 |
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
|
314 |
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
|
315 |
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
|
316 |
+
# vertices, faces = trimesh.remesh.subdivide(vertices, faces)
|
317 |
if fixed_v is not None:
|
318 |
vertices, faces = trimesh.remesh.subdivide(vertices, faces)
|
319 |
return vertices, faces
|