YulianSa commited on
Commit
c794eba
·
1 Parent(s): 508502c
Files changed (3) hide show
  1. app.py +3 -3
  2. infer_multiview.py +0 -1
  3. refine/mesh_refine.py +1 -1
app.py CHANGED
@@ -47,7 +47,7 @@ This is official demo for our CVPR 2025 paper <a href="">StdGEN: Semantic-Decomp
47
 
48
  Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.
49
 
50
- ❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with lower quality. We perform only color back-projection to clothes and hair. Please refer to GitHub repo for complete version.
51
  1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.
52
 
53
  2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.
@@ -112,7 +112,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
112
  )
113
  seed_input = gr.Number(
114
  label="Seed",
115
- value=42,
116
  precision=0,
117
  interactive=True
118
  )
@@ -127,7 +127,7 @@ with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation fr
127
  )
128
  seed_input2 = gr.Number(
129
  label="Seed",
130
- value=42,
131
  precision=0,
132
  interactive=True
133
  )
 
47
 
48
  Code: <a href='https://github.com/hyz317/StdGEN' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2411.05738' target='_blank'>ArXiv</a>.
49
 
50
+ ❗️❗️❗️**Important Notes:** This is only a **PREVIEW** version with **coarse precision geometry and texture** due to gradio use. We skip some refinement process and perform only color back-projection to clothes and hair. Please refer to GitHub repo for complete version.
51
  1. Refinement stage takes about ~2.5min, and the mesh result may possibly delayed due to the server load, please wait patiently.
52
 
53
  2. You can upload any reference image (with or without background), A-pose images are also supported (white bkg required). If the image has an alpha channel (transparency), background segmentation will be automatically performed. Alternatively, you can pre-segment the background using other tools and upload the result directly.
 
112
  )
113
  seed_input = gr.Number(
114
  label="Seed",
115
+ value=50,
116
  precision=0,
117
  interactive=True
118
  )
 
127
  )
128
  seed_input2 = gr.Number(
129
  label="Seed",
130
+ value=50,
131
  precision=0,
132
  interactive=True
133
  )
infer_multiview.py CHANGED
@@ -227,7 +227,6 @@ def load_multiview_pipeline(cfg):
227
  cfg.pretrained_path,
228
  torch_dtype=torch.float16,)
229
  pipeline.unet.enable_xformers_memory_efficient_attention()
230
- import pdb; pdb.set_trace()
231
  if torch.cuda.is_available():
232
  pipeline.to(device)
233
  return pipeline
 
227
  cfg.pretrained_path,
228
  torch_dtype=torch.float16,)
229
  pipeline.unet.enable_xformers_memory_efficient_attention()
 
230
  if torch.cuda.is_available():
231
  pipeline.to(device)
232
  return pipeline
refine/mesh_refine.py CHANGED
@@ -313,7 +313,7 @@ def geo_refine_2(vertices, faces, fixed_v=None):
313
  meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
314
  simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
315
  vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
316
- vertices, faces = trimesh.remesh.subdivide(vertices, faces)
317
  if fixed_v is not None:
318
  vertices, faces = trimesh.remesh.subdivide(vertices, faces)
319
  return vertices, faces
 
313
  meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
314
  simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
315
  vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
316
+ # vertices, faces = trimesh.remesh.subdivide(vertices, faces)
317
  if fixed_v is not None:
318
  vertices, faces = trimesh.remesh.subdivide(vertices, faces)
319
  return vertices, faces