Spaces:
Running
on
L40S
Running
on
L40S
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +4 -0
- app.py +139 -0
- blender/blender_lrm_script.py +1387 -0
- blender/distributed_uniform_lrm.py +122 -0
- blender/install_addon.py +15 -0
- canonicalize/__init__.py +0 -0
- canonicalize/models/attention.py +344 -0
- canonicalize/models/imageproj.py +118 -0
- canonicalize/models/refunet.py +127 -0
- canonicalize/models/resnet.py +209 -0
- canonicalize/models/transformer_mv2d.py +976 -0
- canonicalize/models/unet.py +475 -0
- canonicalize/models/unet_blocks.py +596 -0
- canonicalize/models/unet_mv2d_blocks.py +924 -0
- canonicalize/models/unet_mv2d_condition.py +1502 -0
- canonicalize/models/unet_mv2d_ref.py +1543 -0
- canonicalize/pipeline_canonicalize.py +518 -0
- canonicalize/util.py +128 -0
- configs/canonicalization-infer.yaml +22 -0
- configs/mesh-slrm-infer.yaml +25 -0
- data/test_list.json +111 -0
- data/train_list.json +0 -0
- infer_api.py +881 -0
- infer_canonicalize.py +215 -0
- infer_multiview.py +274 -0
- infer_refine.py +353 -0
- infer_slrm.py +199 -0
- input_cases/1.png +0 -0
- input_cases/2.png +0 -0
- input_cases/3.png +0 -0
- input_cases/4.png +0 -0
- input_cases/ayaka.png +0 -0
- input_cases/firefly2.png +0 -0
- input_cases_apose/1.png +0 -0
- input_cases_apose/2.png +0 -0
- input_cases_apose/3.png +0 -0
- input_cases_apose/4.png +0 -0
- input_cases_apose/ayaka.png +0 -0
- input_cases_apose/belle.png +0 -0
- input_cases_apose/firefly.png +0 -0
- multiview/__init__.py +0 -0
- multiview/fixed_prompt_embeds_6view/clr_embeds.pt +3 -0
- multiview/fixed_prompt_embeds_6view/normal_embeds.pt +3 -0
- multiview/models/transformer_mv2d_image.py +995 -0
- multiview/models/transformer_mv2d_rowwise.py +972 -0
- multiview/models/transformer_mv2d_self_rowwise.py +1042 -0
- multiview/models/unet_mv2d_blocks.py +980 -0
- multiview/models/unet_mv2d_condition.py +1685 -0
- multiview/pipeline_multiclass.py +656 -0
- refine/func.py +427 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ckpt
|
2 |
+
result
|
3 |
+
**/__pycache__/
|
4 |
+
**/.DS_Store
|
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import glob
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
from tempfile import NamedTemporaryFile
|
7 |
+
from infer_api import InferAPI
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
config_canocalize = {
|
11 |
+
'config_path': './configs/canonicalization-infer.yaml',
|
12 |
+
}
|
13 |
+
config_multiview = {}
|
14 |
+
config_slrm = {
|
15 |
+
'config_path': './configs/mesh-slrm-infer.yaml'
|
16 |
+
}
|
17 |
+
config_refine = {}
|
18 |
+
|
19 |
+
EXAMPLE_IMAGES = glob.glob("./input_cases/*")
|
20 |
+
EXAMPLE_APOSE_IMAGES = glob.glob("./input_cases_apose/*")
|
21 |
+
|
22 |
+
infer_api = InferAPI(config_canocalize, config_multiview, config_slrm, config_refine)
|
23 |
+
|
24 |
+
REMINDER = """
|
25 |
+
### Reminder:
|
26 |
+
1. **Reference Image**:
|
27 |
+
- You can upload any reference image (with or without background).
|
28 |
+
- If the image has an alpha channel (transparency), background segmentation will be automatically performed.
|
29 |
+
- Alternatively, you can pre-segment the background using other tools and upload the result directly.
|
30 |
+
- A-pose images are also supported.
|
31 |
+
|
32 |
+
2. Real person images generally work well, but note that normals may appear smoother than expected. You can try to use other monocular normal estimation models.
|
33 |
+
|
34 |
+
3. The base human model in the output is uncolored due to potential NSFW concerns. If you need colored results, please refer to the official GitHub repository for instructions.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# 示例占位函数 - 需替换实际模型
|
38 |
+
def arbitrary_to_apose(image, seed):
|
39 |
+
# convert image to PIL.Image
|
40 |
+
image = Image.fromarray(image)
|
41 |
+
return infer_api.genStage1(image, seed)
|
42 |
+
|
43 |
+
def apose_to_multiview(apose_img, seed):
|
44 |
+
# convert image to PIL.Image
|
45 |
+
apose_img = Image.fromarray(apose_img)
|
46 |
+
return infer_api.genStage2(apose_img, seed, num_levels=1)[0]["images"]
|
47 |
+
|
48 |
+
def multiview_to_mesh(images):
|
49 |
+
mesh_files = infer_api.genStage3(images)
|
50 |
+
return mesh_files
|
51 |
+
|
52 |
+
def refine_mesh(apose_img, mesh1, mesh2, mesh3, seed):
|
53 |
+
apose_img = Image.fromarray(apose_img)
|
54 |
+
infer_api.genStage2(apose_img, seed, num_levels=2)
|
55 |
+
print(infer_api.multiview_infer.results.keys())
|
56 |
+
refined = infer_api.genStage4([mesh1, mesh2, mesh3], infer_api.multiview_infer.results)
|
57 |
+
return refined
|
58 |
+
|
59 |
+
with gr.Blocks(title="StdGEN: Semantically Decomposed 3D Character Generation from Single Images") as demo:
|
60 |
+
gr.Markdown(REMINDER)
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column():
|
63 |
+
gr.Markdown("## 1. Reference Image to A-pose Image")
|
64 |
+
input_image = gr.Image(label="Input Reference Image", type="numpy", width=384, height=384)
|
65 |
+
gr.Examples(
|
66 |
+
examples=EXAMPLE_IMAGES,
|
67 |
+
inputs=input_image,
|
68 |
+
label="Click to use sample images",
|
69 |
+
)
|
70 |
+
seed_input = gr.Number(
|
71 |
+
label="Seed",
|
72 |
+
value=42,
|
73 |
+
precision=0,
|
74 |
+
interactive=True
|
75 |
+
)
|
76 |
+
pose_btn = gr.Button("Convert")
|
77 |
+
with gr.Column():
|
78 |
+
gr.Markdown("## 2. Multi-view Generation")
|
79 |
+
a_pose_image = gr.Image(label="A-pose Result", type="numpy", width=384, height=384)
|
80 |
+
gr.Examples(
|
81 |
+
examples=EXAMPLE_APOSE_IMAGES,
|
82 |
+
inputs=a_pose_image,
|
83 |
+
label="Click to use sample A-pose images",
|
84 |
+
)
|
85 |
+
seed_input2 = gr.Number(
|
86 |
+
label="Seed",
|
87 |
+
value=42,
|
88 |
+
precision=0,
|
89 |
+
interactive=True
|
90 |
+
)
|
91 |
+
view_btn = gr.Button("Generate Multi-view Images")
|
92 |
+
|
93 |
+
with gr.Column():
|
94 |
+
gr.Markdown("## 3. Semantic-aware Reconstruction")
|
95 |
+
multiview_gallery = gr.Gallery(
|
96 |
+
label="Multi-view results",
|
97 |
+
columns=2,
|
98 |
+
interactive=False,
|
99 |
+
height="None"
|
100 |
+
)
|
101 |
+
mesh_btn = gr.Button("Reconstruct")
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
mesh_cols = [gr.Model3D(label=f"Mesh {i+1}", interactive=False, height=384) for i in range(3)]
|
105 |
+
full_mesh = gr.Model3D(label="Whole Mesh", height=384)
|
106 |
+
refine_btn = gr.Button("Refine")
|
107 |
+
|
108 |
+
gr.Markdown("## 4. Mesh refinement")
|
109 |
+
with gr.Row():
|
110 |
+
refined_meshes = [gr.Model3D(label=f"refined mesh {i+1}", height=384) for i in range(3)]
|
111 |
+
refined_full_mesh = gr.Model3D(label="refined whole mesh", height=384)
|
112 |
+
|
113 |
+
# 交互逻辑
|
114 |
+
pose_btn.click(
|
115 |
+
arbitrary_to_apose,
|
116 |
+
inputs=[input_image, seed_input],
|
117 |
+
outputs=a_pose_image
|
118 |
+
)
|
119 |
+
|
120 |
+
view_btn.click(
|
121 |
+
apose_to_multiview,
|
122 |
+
inputs=[a_pose_image, seed_input2],
|
123 |
+
outputs=multiview_gallery
|
124 |
+
)
|
125 |
+
|
126 |
+
mesh_btn.click(
|
127 |
+
multiview_to_mesh,
|
128 |
+
inputs=multiview_gallery,
|
129 |
+
outputs=[*mesh_cols, full_mesh]
|
130 |
+
)
|
131 |
+
|
132 |
+
refine_btn.click(
|
133 |
+
refine_mesh,
|
134 |
+
inputs=[a_pose_image, *mesh_cols, seed_input2],
|
135 |
+
outputs=[refined_meshes[2], refined_meshes[0], refined_meshes[1], refined_full_mesh]
|
136 |
+
)
|
137 |
+
|
138 |
+
if __name__ == "__main__":
|
139 |
+
demo.launch()
|
blender/blender_lrm_script.py
ADDED
@@ -0,0 +1,1387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Blender script to render images of 3D models."""
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import sys
|
9 |
+
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple
|
10 |
+
|
11 |
+
import bpy
|
12 |
+
import numpy as np
|
13 |
+
from mathutils import Matrix, Vector
|
14 |
+
import pdb
|
15 |
+
MAX_DEPTH = 5.0
|
16 |
+
import shutil
|
17 |
+
IMPORT_FUNCTIONS: Dict[str, Callable] = {
|
18 |
+
"obj": bpy.ops.import_scene.obj,
|
19 |
+
"glb": bpy.ops.import_scene.gltf,
|
20 |
+
"gltf": bpy.ops.import_scene.gltf,
|
21 |
+
"usd": bpy.ops.import_scene.usd,
|
22 |
+
"fbx": bpy.ops.import_scene.fbx,
|
23 |
+
"stl": bpy.ops.import_mesh.stl,
|
24 |
+
"usda": bpy.ops.import_scene.usda,
|
25 |
+
"dae": bpy.ops.wm.collada_import,
|
26 |
+
"ply": bpy.ops.import_mesh.ply,
|
27 |
+
"abc": bpy.ops.wm.alembic_import,
|
28 |
+
"blend": bpy.ops.wm.append,
|
29 |
+
"vrm": bpy.ops.import_scene.vrm,
|
30 |
+
}
|
31 |
+
|
32 |
+
configs = {
|
33 |
+
"custom2": {"camera_pose": "z-circular-elevated", 'elevation_range': [0,0], "rotate": 0.0},
|
34 |
+
"custom_top": {"camera_pose": "z-circular-elevated", 'elevation_range': [90,90], "rotate": 0.0, "render_num": 1},
|
35 |
+
"custom_bottom": {"camera_pose": "z-circular-elevated", 'elevation_range': [-90,-90], "rotate": 0.0, "render_num": 1},
|
36 |
+
"custom_face": {"camera_pose": "z-circular-elevated", 'elevation_range': [0,0], "rotate": 0.0, "render_num": 8},
|
37 |
+
"random": {"camera_pose": "random", 'elevation_range': [-90,90], "rotate": 0.0, "render_num": 20},
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
def reset_cameras() -> None:
|
42 |
+
"""Resets the cameras in the scene to a single default camera."""
|
43 |
+
# Delete all existing cameras
|
44 |
+
bpy.ops.object.select_all(action="DESELECT")
|
45 |
+
bpy.ops.object.select_by_type(type="CAMERA")
|
46 |
+
bpy.ops.object.delete()
|
47 |
+
|
48 |
+
# Create a new camera with default properties
|
49 |
+
bpy.ops.object.camera_add()
|
50 |
+
|
51 |
+
# Rename the new camera to 'NewDefaultCamera'
|
52 |
+
new_camera = bpy.context.active_object
|
53 |
+
new_camera.name = "Camera"
|
54 |
+
|
55 |
+
# Set the new camera as the active camera for the scene
|
56 |
+
scene.camera = new_camera
|
57 |
+
|
58 |
+
|
59 |
+
def _sample_spherical(
|
60 |
+
radius_min: float = 1.5,
|
61 |
+
radius_max: float = 2.0,
|
62 |
+
maxz: float = 1.6,
|
63 |
+
minz: float = -0.75,
|
64 |
+
) -> np.ndarray:
|
65 |
+
"""Sample a random point in a spherical shell.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
radius_min (float): Minimum radius of the spherical shell.
|
69 |
+
radius_max (float): Maximum radius of the spherical shell.
|
70 |
+
maxz (float): Maximum z value of the spherical shell.
|
71 |
+
minz (float): Minimum z value of the spherical shell.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
np.ndarray: A random (x, y, z) point in the spherical shell.
|
75 |
+
"""
|
76 |
+
correct = False
|
77 |
+
vec = np.array([0, 0, 0])
|
78 |
+
while not correct:
|
79 |
+
vec = np.random.uniform(-1, 1, 3)
|
80 |
+
# vec[2] = np.abs(vec[2])
|
81 |
+
radius = np.random.uniform(radius_min, radius_max, 1)
|
82 |
+
vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
|
83 |
+
if maxz > vec[2] > minz:
|
84 |
+
correct = True
|
85 |
+
return vec
|
86 |
+
|
87 |
+
|
88 |
+
def randomize_camera(
|
89 |
+
radius_min: float = 1.5,
|
90 |
+
radius_max: float = 2.2,
|
91 |
+
maxz: float = 2.2,
|
92 |
+
minz: float = -2.2,
|
93 |
+
only_northern_hemisphere: bool = False,
|
94 |
+
) -> bpy.types.Object:
|
95 |
+
"""Randomizes the camera location and rotation inside of a spherical shell.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
radius_min (float, optional): Minimum radius of the spherical shell. Defaults to
|
99 |
+
1.5.
|
100 |
+
radius_max (float, optional): Maximum radius of the spherical shell. Defaults to
|
101 |
+
2.0.
|
102 |
+
maxz (float, optional): Maximum z value of the spherical shell. Defaults to 1.6.
|
103 |
+
minz (float, optional): Minimum z value of the spherical shell. Defaults to
|
104 |
+
-0.75.
|
105 |
+
only_northern_hemisphere (bool, optional): Whether to only sample points in the
|
106 |
+
northern hemisphere. Defaults to False.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
bpy.types.Object: The camera object.
|
110 |
+
"""
|
111 |
+
|
112 |
+
x, y, z = _sample_spherical(
|
113 |
+
radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
|
114 |
+
)
|
115 |
+
camera = bpy.data.objects["Camera"]
|
116 |
+
|
117 |
+
# only positive z
|
118 |
+
if only_northern_hemisphere:
|
119 |
+
z = abs(z)
|
120 |
+
|
121 |
+
camera.location = Vector(np.array([x, y, z]))
|
122 |
+
|
123 |
+
direction = -camera.location
|
124 |
+
rot_quat = direction.to_track_quat("-Z", "Y")
|
125 |
+
camera.rotation_euler = rot_quat.to_euler()
|
126 |
+
|
127 |
+
return camera
|
128 |
+
|
129 |
+
|
130 |
+
cached_cameras = []
|
131 |
+
|
132 |
+
def randomize_camera_with_cache(
|
133 |
+
radius_min: float = 1.5,
|
134 |
+
radius_max: float = 2.2,
|
135 |
+
maxz: float = 2.2,
|
136 |
+
minz: float = -2.2,
|
137 |
+
only_northern_hemisphere: bool = False,
|
138 |
+
idx: int = 0,
|
139 |
+
) -> bpy.types.Object:
|
140 |
+
|
141 |
+
assert len(cached_cameras) >= idx
|
142 |
+
|
143 |
+
if len(cached_cameras) == idx:
|
144 |
+
x, y, z = _sample_spherical(
|
145 |
+
radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
|
146 |
+
)
|
147 |
+
cached_cameras.append((x, y, z))
|
148 |
+
else:
|
149 |
+
x, y, z = cached_cameras[idx]
|
150 |
+
|
151 |
+
camera = bpy.data.objects["Camera"]
|
152 |
+
|
153 |
+
# only positive z
|
154 |
+
if only_northern_hemisphere:
|
155 |
+
z = abs(z)
|
156 |
+
|
157 |
+
camera.location = Vector(np.array([x, y, z]))
|
158 |
+
|
159 |
+
direction = -camera.location
|
160 |
+
rot_quat = direction.to_track_quat("-Z", "Y")
|
161 |
+
camera.rotation_euler = rot_quat.to_euler()
|
162 |
+
|
163 |
+
return camera
|
164 |
+
|
165 |
+
|
166 |
+
def set_camera(direction, camera_dist=2.0, camera_offset=0.0):
|
167 |
+
camera = bpy.data.objects["Camera"]
|
168 |
+
camera_pos = -camera_dist * direction
|
169 |
+
if type(camera_offset) == float:
|
170 |
+
camera_offset = Vector(np.array([0., 0., 0.]))
|
171 |
+
camera_pos += camera_offset
|
172 |
+
camera.location = camera_pos
|
173 |
+
|
174 |
+
# https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically
|
175 |
+
rot_quat = direction.to_track_quat("-Z", "Y")
|
176 |
+
camera.rotation_euler = rot_quat.to_euler()
|
177 |
+
return camera
|
178 |
+
|
179 |
+
|
180 |
+
def _set_camera_at_size(i: int, scale: float = 1.5) -> bpy.types.Object:
|
181 |
+
"""Debugging function to set the camera on the 6 faces of a cube.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
i (int): Index of the face of the cube.
|
185 |
+
scale (float, optional): Scale of the cube. Defaults to 1.5.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
bpy.types.Object: The camera object.
|
189 |
+
"""
|
190 |
+
if i == 0:
|
191 |
+
x, y, z = scale, 0, 0
|
192 |
+
elif i == 1:
|
193 |
+
x, y, z = -scale, 0, 0
|
194 |
+
elif i == 2:
|
195 |
+
x, y, z = 0, scale, 0
|
196 |
+
elif i == 3:
|
197 |
+
x, y, z = 0, -scale, 0
|
198 |
+
elif i == 4:
|
199 |
+
x, y, z = 0, 0, scale
|
200 |
+
elif i == 5:
|
201 |
+
x, y, z = 0, 0, -scale
|
202 |
+
else:
|
203 |
+
raise ValueError(f"Invalid index: i={i}, must be int in range [0, 5].")
|
204 |
+
camera = bpy.data.objects["Camera"]
|
205 |
+
camera.location = Vector(np.array([x, y, z]))
|
206 |
+
direction = -camera.location
|
207 |
+
rot_quat = direction.to_track_quat("-Z", "Y")
|
208 |
+
camera.rotation_euler = rot_quat.to_euler()
|
209 |
+
return camera
|
210 |
+
|
211 |
+
|
212 |
+
def _create_light(
|
213 |
+
name: str,
|
214 |
+
light_type: Literal["POINT", "SUN", "SPOT", "AREA"],
|
215 |
+
location: Tuple[float, float, float],
|
216 |
+
rotation: Tuple[float, float, float],
|
217 |
+
energy: float,
|
218 |
+
use_shadow: bool = False,
|
219 |
+
specular_factor: float = 1.0,
|
220 |
+
):
|
221 |
+
"""Creates a light object.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
name (str): Name of the light object.
|
225 |
+
light_type (Literal["POINT", "SUN", "SPOT", "AREA"]): Type of the light.
|
226 |
+
location (Tuple[float, float, float]): Location of the light.
|
227 |
+
rotation (Tuple[float, float, float]): Rotation of the light.
|
228 |
+
energy (float): Energy of the light.
|
229 |
+
use_shadow (bool, optional): Whether to use shadows. Defaults to False.
|
230 |
+
specular_factor (float, optional): Specular factor of the light. Defaults to 1.0.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
bpy.types.Object: The light object.
|
234 |
+
"""
|
235 |
+
|
236 |
+
light_data = bpy.data.lights.new(name=name, type=light_type)
|
237 |
+
light_object = bpy.data.objects.new(name, light_data)
|
238 |
+
bpy.context.collection.objects.link(light_object)
|
239 |
+
light_object.location = location
|
240 |
+
light_object.rotation_euler = rotation
|
241 |
+
light_data.use_shadow = use_shadow
|
242 |
+
light_data.specular_factor = specular_factor
|
243 |
+
light_data.energy = energy
|
244 |
+
return light_object
|
245 |
+
|
246 |
+
|
247 |
+
def reset_scene() -> None:
|
248 |
+
"""Resets the scene to a clean state.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
None
|
252 |
+
"""
|
253 |
+
# delete everything that isn't part of a camera or a light
|
254 |
+
for obj in bpy.data.objects:
|
255 |
+
if obj.type not in {"CAMERA", "LIGHT"}:
|
256 |
+
bpy.data.objects.remove(obj, do_unlink=True)
|
257 |
+
|
258 |
+
# delete all the materials
|
259 |
+
for material in bpy.data.materials:
|
260 |
+
bpy.data.materials.remove(material, do_unlink=True)
|
261 |
+
|
262 |
+
# delete all the textures
|
263 |
+
for texture in bpy.data.textures:
|
264 |
+
bpy.data.textures.remove(texture, do_unlink=True)
|
265 |
+
|
266 |
+
# delete all the images
|
267 |
+
for image in bpy.data.images:
|
268 |
+
bpy.data.images.remove(image, do_unlink=True)
|
269 |
+
|
270 |
+
# delete all the collider collections
|
271 |
+
for collider in bpy.data.collections:
|
272 |
+
if collider.name != "Collection":
|
273 |
+
bpy.data.collections.remove(collider, do_unlink=True)
|
274 |
+
|
275 |
+
|
276 |
+
def load_object(object_path: str) -> None:
|
277 |
+
"""Loads a model with a supported file extension into the scene.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
object_path (str): Path to the model file.
|
281 |
+
|
282 |
+
Raises:
|
283 |
+
ValueError: If the file extension is not supported.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
None
|
287 |
+
"""
|
288 |
+
file_extension = object_path.split(".")[-1].lower()
|
289 |
+
if file_extension is None:
|
290 |
+
raise ValueError(f"Unsupported file type: {object_path}")
|
291 |
+
|
292 |
+
if file_extension == "usdz":
|
293 |
+
# install usdz io package
|
294 |
+
dirname = os.path.dirname(os.path.realpath(__file__))
|
295 |
+
usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
|
296 |
+
bpy.ops.preferences.addon_install(filepath=usdz_package)
|
297 |
+
# enable it
|
298 |
+
addon_name = "io_scene_usdz"
|
299 |
+
bpy.ops.preferences.addon_enable(module=addon_name)
|
300 |
+
# import the usdz
|
301 |
+
from io_scene_usdz.import_usdz import import_usdz
|
302 |
+
|
303 |
+
import_usdz(context, filepath=object_path, materials=True, animations=True)
|
304 |
+
return None
|
305 |
+
|
306 |
+
# load from existing import functions
|
307 |
+
import_function = IMPORT_FUNCTIONS[file_extension]
|
308 |
+
|
309 |
+
if file_extension == "blend":
|
310 |
+
import_function(directory=object_path, link=False)
|
311 |
+
elif file_extension in {"glb", "gltf"}:
|
312 |
+
import_function(filepath=object_path, merge_vertices=True)
|
313 |
+
else:
|
314 |
+
import_function(filepath=object_path)
|
315 |
+
|
316 |
+
|
317 |
+
def scene_bbox(
|
318 |
+
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
|
319 |
+
) -> Tuple[Vector, Vector]:
|
320 |
+
"""Returns the bounding box of the scene.
|
321 |
+
|
322 |
+
Taken from Shap-E rendering script
|
323 |
+
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
|
324 |
+
|
325 |
+
Args:
|
326 |
+
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
|
327 |
+
the bounding box for the given object. Defaults to None.
|
328 |
+
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
|
329 |
+
to False.
|
330 |
+
|
331 |
+
Raises:
|
332 |
+
RuntimeError: If there are no objects in the scene.
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
|
336 |
+
"""
|
337 |
+
bbox_min = (math.inf,) * 3
|
338 |
+
bbox_max = (-math.inf,) * 3
|
339 |
+
found = False
|
340 |
+
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
|
341 |
+
found = True
|
342 |
+
for coord in obj.bound_box:
|
343 |
+
coord = Vector(coord)
|
344 |
+
if not ignore_matrix:
|
345 |
+
coord = obj.matrix_world @ coord
|
346 |
+
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
|
347 |
+
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
|
348 |
+
|
349 |
+
if not found:
|
350 |
+
raise RuntimeError("no objects in scene to compute bounding box for")
|
351 |
+
|
352 |
+
return Vector(bbox_min), Vector(bbox_max)
|
353 |
+
|
354 |
+
|
355 |
+
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
|
356 |
+
"""Returns all root objects in the scene.
|
357 |
+
|
358 |
+
Yields:
|
359 |
+
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
|
360 |
+
scene.
|
361 |
+
"""
|
362 |
+
for obj in bpy.context.scene.objects.values():
|
363 |
+
if not obj.parent:
|
364 |
+
yield obj
|
365 |
+
|
366 |
+
|
367 |
+
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
|
368 |
+
"""Returns all meshes in the scene.
|
369 |
+
|
370 |
+
Yields:
|
371 |
+
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
|
372 |
+
"""
|
373 |
+
for obj in bpy.context.scene.objects.values():
|
374 |
+
if isinstance(obj.data, (bpy.types.Mesh)):
|
375 |
+
yield obj
|
376 |
+
|
377 |
+
|
378 |
+
def get_3x4_RT_matrix_from_blender(cam: bpy.types.Object) -> Matrix:
|
379 |
+
"""Returns the 3x4 RT matrix from the given camera.
|
380 |
+
|
381 |
+
Taken from Zero123, which in turn was taken from
|
382 |
+
https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
|
383 |
+
|
384 |
+
Args:
|
385 |
+
cam (bpy.types.Object): The camera object.
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
Matrix: The 3x4 RT matrix from the given camera.
|
389 |
+
"""
|
390 |
+
# Use matrix_world instead to account for all constraints
|
391 |
+
location, rotation = cam.matrix_world.decompose()[0:2]
|
392 |
+
R_world2bcam = rotation.to_matrix().transposed()
|
393 |
+
|
394 |
+
# Use location from matrix_world to account for constraints:
|
395 |
+
T_world2bcam = -1 * R_world2bcam @ location
|
396 |
+
|
397 |
+
# put into 3x4 matrix
|
398 |
+
RT = Matrix(
|
399 |
+
(
|
400 |
+
R_world2bcam[0][:] + (T_world2bcam[0],),
|
401 |
+
R_world2bcam[1][:] + (T_world2bcam[1],),
|
402 |
+
R_world2bcam[2][:] + (T_world2bcam[2],),
|
403 |
+
)
|
404 |
+
)
|
405 |
+
return RT
|
406 |
+
|
407 |
+
|
408 |
+
def delete_invisible_objects() -> None:
|
409 |
+
"""Deletes all invisible objects in the scene.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
None
|
413 |
+
"""
|
414 |
+
bpy.ops.object.select_all(action="DESELECT")
|
415 |
+
for obj in scene.objects:
|
416 |
+
if obj.hide_viewport or obj.hide_render:
|
417 |
+
obj.hide_viewport = False
|
418 |
+
obj.hide_render = False
|
419 |
+
obj.hide_select = False
|
420 |
+
obj.select_set(True)
|
421 |
+
bpy.ops.object.delete()
|
422 |
+
|
423 |
+
# Delete invisible collections
|
424 |
+
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
|
425 |
+
for col in invisible_collections:
|
426 |
+
bpy.data.collections.remove(col)
|
427 |
+
|
428 |
+
|
429 |
+
def normalize_scene() -> None:
|
430 |
+
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
|
431 |
+
at the origin.
|
432 |
+
|
433 |
+
Mostly taken from the Point-E / Shap-E rendering script
|
434 |
+
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
|
435 |
+
but fix for multiple root objects: (see bug report here:
|
436 |
+
https://github.com/openai/shap-e/pull/60).
|
437 |
+
|
438 |
+
Returns:
|
439 |
+
None
|
440 |
+
"""
|
441 |
+
if len(list(get_scene_root_objects())) > 1:
|
442 |
+
# create an empty object to be used as a parent for all root objects
|
443 |
+
parent_empty = bpy.data.objects.new("ParentEmpty", None)
|
444 |
+
bpy.context.scene.collection.objects.link(parent_empty)
|
445 |
+
|
446 |
+
# parent all root objects to the empty object
|
447 |
+
for obj in get_scene_root_objects():
|
448 |
+
if obj != parent_empty:
|
449 |
+
obj.parent = parent_empty
|
450 |
+
|
451 |
+
bbox_min, bbox_max = scene_bbox()
|
452 |
+
scale = 1 / max(bbox_max - bbox_min)
|
453 |
+
for obj in get_scene_root_objects():
|
454 |
+
obj.scale = obj.scale * scale
|
455 |
+
|
456 |
+
# Apply scale to matrix_world.
|
457 |
+
bpy.context.view_layer.update()
|
458 |
+
bbox_min, bbox_max = scene_bbox()
|
459 |
+
offset = -(bbox_min + bbox_max) / 2
|
460 |
+
for obj in get_scene_root_objects():
|
461 |
+
obj.matrix_world.translation += offset
|
462 |
+
bpy.ops.object.select_all(action="DESELECT")
|
463 |
+
|
464 |
+
# unparent the camera
|
465 |
+
bpy.data.objects["Camera"].parent = None
|
466 |
+
|
467 |
+
|
468 |
+
def delete_missing_textures() -> Dict[str, Any]:
|
469 |
+
"""Deletes all missing textures in the scene.
|
470 |
+
|
471 |
+
Returns:
|
472 |
+
Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color".
|
473 |
+
"count" is the number of missing textures, "files" is a list of the missing
|
474 |
+
texture file paths, and "file_path_to_color" is a dictionary mapping the
|
475 |
+
missing texture file paths to a random color.
|
476 |
+
"""
|
477 |
+
missing_file_count = 0
|
478 |
+
out_files = []
|
479 |
+
file_path_to_color = {}
|
480 |
+
|
481 |
+
# Check all materials in the scene
|
482 |
+
for material in bpy.data.materials:
|
483 |
+
if material.use_nodes:
|
484 |
+
for node in material.node_tree.nodes:
|
485 |
+
if node.type == "TEX_IMAGE":
|
486 |
+
image = node.image
|
487 |
+
if image is not None:
|
488 |
+
file_path = bpy.path.abspath(image.filepath)
|
489 |
+
if file_path == "":
|
490 |
+
# means it's embedded
|
491 |
+
continue
|
492 |
+
|
493 |
+
if not os.path.exists(file_path):
|
494 |
+
# Find the connected Principled BSDF node
|
495 |
+
connected_node = node.outputs[0].links[0].to_node
|
496 |
+
|
497 |
+
if connected_node.type == "BSDF_PRINCIPLED":
|
498 |
+
if file_path not in file_path_to_color:
|
499 |
+
# Set a random color for the unique missing file path
|
500 |
+
random_color = [random.random() for _ in range(3)]
|
501 |
+
file_path_to_color[file_path] = random_color + [1]
|
502 |
+
|
503 |
+
connected_node.inputs[
|
504 |
+
"Base Color"
|
505 |
+
].default_value = file_path_to_color[file_path]
|
506 |
+
|
507 |
+
# Delete the TEX_IMAGE node
|
508 |
+
material.node_tree.nodes.remove(node)
|
509 |
+
missing_file_count += 1
|
510 |
+
out_files.append(image.filepath)
|
511 |
+
return {
|
512 |
+
"count": missing_file_count,
|
513 |
+
"files": out_files,
|
514 |
+
"file_path_to_color": file_path_to_color,
|
515 |
+
}
|
516 |
+
|
517 |
+
|
518 |
+
def _get_random_color() -> Tuple[float, float, float, float]:
|
519 |
+
"""Generates a random RGB-A color.
|
520 |
+
|
521 |
+
The alpha value is always 1.
|
522 |
+
|
523 |
+
Returns:
|
524 |
+
Tuple[float, float, float, float]: A random RGB-A color. Each value is in the
|
525 |
+
range [0, 1].
|
526 |
+
"""
|
527 |
+
return (random.random(), random.random(), random.random(), 1)
|
528 |
+
|
529 |
+
|
530 |
+
def _apply_color_to_object(
|
531 |
+
obj: bpy.types.Object, color: Tuple[float, float, float, float]
|
532 |
+
) -> None:
|
533 |
+
"""Applies the given color to the object.
|
534 |
+
|
535 |
+
Args:
|
536 |
+
obj (bpy.types.Object): The object to apply the color to.
|
537 |
+
color (Tuple[float, float, float, float]): The color to apply to the object.
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
None
|
541 |
+
"""
|
542 |
+
mat = bpy.data.materials.new(name=f"RandomMaterial_{obj.name}")
|
543 |
+
mat.use_nodes = True
|
544 |
+
nodes = mat.node_tree.nodes
|
545 |
+
principled_bsdf = nodes.get("Principled BSDF")
|
546 |
+
if principled_bsdf:
|
547 |
+
principled_bsdf.inputs["Base Color"].default_value = color
|
548 |
+
obj.data.materials.append(mat)
|
549 |
+
|
550 |
+
|
551 |
+
class MetadataExtractor:
|
552 |
+
"""Class to extract metadata from a Blender scene."""
|
553 |
+
|
554 |
+
def __init__(
|
555 |
+
self, object_path: str, scene: bpy.types.Scene, bdata: bpy.types.BlendData
|
556 |
+
) -> None:
|
557 |
+
"""Initializes the MetadataExtractor.
|
558 |
+
|
559 |
+
Args:
|
560 |
+
object_path (str): Path to the object file.
|
561 |
+
scene (bpy.types.Scene): The current scene object from `bpy.context.scene`.
|
562 |
+
bdata (bpy.types.BlendData): The current blender data from `bpy.data`.
|
563 |
+
|
564 |
+
Returns:
|
565 |
+
None
|
566 |
+
"""
|
567 |
+
self.object_path = object_path
|
568 |
+
self.scene = scene
|
569 |
+
self.bdata = bdata
|
570 |
+
|
571 |
+
def get_poly_count(self) -> int:
|
572 |
+
"""Returns the total number of polygons in the scene."""
|
573 |
+
total_poly_count = 0
|
574 |
+
for obj in self.scene.objects:
|
575 |
+
if obj.type == "MESH":
|
576 |
+
total_poly_count += len(obj.data.polygons)
|
577 |
+
return total_poly_count
|
578 |
+
|
579 |
+
def get_vertex_count(self) -> int:
|
580 |
+
"""Returns the total number of vertices in the scene."""
|
581 |
+
total_vertex_count = 0
|
582 |
+
for obj in self.scene.objects:
|
583 |
+
if obj.type == "MESH":
|
584 |
+
total_vertex_count += len(obj.data.vertices)
|
585 |
+
return total_vertex_count
|
586 |
+
|
587 |
+
def get_edge_count(self) -> int:
|
588 |
+
"""Returns the total number of edges in the scene."""
|
589 |
+
total_edge_count = 0
|
590 |
+
for obj in self.scene.objects:
|
591 |
+
if obj.type == "MESH":
|
592 |
+
total_edge_count += len(obj.data.edges)
|
593 |
+
return total_edge_count
|
594 |
+
|
595 |
+
def get_lamp_count(self) -> int:
|
596 |
+
"""Returns the number of lamps in the scene."""
|
597 |
+
return sum(1 for obj in self.scene.objects if obj.type == "LIGHT")
|
598 |
+
|
599 |
+
def get_mesh_count(self) -> int:
|
600 |
+
"""Returns the number of meshes in the scene."""
|
601 |
+
return sum(1 for obj in self.scene.objects if obj.type == "MESH")
|
602 |
+
|
603 |
+
def get_material_count(self) -> int:
|
604 |
+
"""Returns the number of materials in the scene."""
|
605 |
+
return len(self.bdata.materials)
|
606 |
+
|
607 |
+
def get_object_count(self) -> int:
|
608 |
+
"""Returns the number of objects in the scene."""
|
609 |
+
return len(self.bdata.objects)
|
610 |
+
|
611 |
+
def get_animation_count(self) -> int:
|
612 |
+
"""Returns the number of animations in the scene."""
|
613 |
+
return len(self.bdata.actions)
|
614 |
+
|
615 |
+
def get_linked_files(self) -> List[str]:
|
616 |
+
"""Returns the filepaths of all linked files."""
|
617 |
+
image_filepaths = self._get_image_filepaths()
|
618 |
+
material_filepaths = self._get_material_filepaths()
|
619 |
+
linked_libraries_filepaths = self._get_linked_libraries_filepaths()
|
620 |
+
|
621 |
+
all_filepaths = (
|
622 |
+
image_filepaths | material_filepaths | linked_libraries_filepaths
|
623 |
+
)
|
624 |
+
if "" in all_filepaths:
|
625 |
+
all_filepaths.remove("")
|
626 |
+
return list(all_filepaths)
|
627 |
+
|
628 |
+
def _get_image_filepaths(self) -> Set[str]:
|
629 |
+
"""Returns the filepaths of all images used in the scene."""
|
630 |
+
filepaths = set()
|
631 |
+
for image in self.bdata.images:
|
632 |
+
if image.source == "FILE":
|
633 |
+
filepaths.add(bpy.path.abspath(image.filepath))
|
634 |
+
return filepaths
|
635 |
+
|
636 |
+
def _get_material_filepaths(self) -> Set[str]:
|
637 |
+
"""Returns the filepaths of all images used in materials."""
|
638 |
+
filepaths = set()
|
639 |
+
for material in self.bdata.materials:
|
640 |
+
if material.use_nodes:
|
641 |
+
for node in material.node_tree.nodes:
|
642 |
+
if node.type == "TEX_IMAGE":
|
643 |
+
image = node.image
|
644 |
+
if image is not None:
|
645 |
+
filepaths.add(bpy.path.abspath(image.filepath))
|
646 |
+
return filepaths
|
647 |
+
|
648 |
+
def _get_linked_libraries_filepaths(self) -> Set[str]:
|
649 |
+
"""Returns the filepaths of all linked libraries."""
|
650 |
+
filepaths = set()
|
651 |
+
for library in self.bdata.libraries:
|
652 |
+
filepaths.add(bpy.path.abspath(library.filepath))
|
653 |
+
return filepaths
|
654 |
+
|
655 |
+
def get_scene_size(self) -> Dict[str, list]:
|
656 |
+
"""Returns the size of the scene bounds in meters."""
|
657 |
+
bbox_min, bbox_max = scene_bbox()
|
658 |
+
return {"bbox_max": list(bbox_max), "bbox_min": list(bbox_min)}
|
659 |
+
|
660 |
+
def get_shape_key_count(self) -> int:
|
661 |
+
"""Returns the number of shape keys in the scene."""
|
662 |
+
total_shape_key_count = 0
|
663 |
+
for obj in self.scene.objects:
|
664 |
+
if obj.type == "MESH":
|
665 |
+
shape_keys = obj.data.shape_keys
|
666 |
+
if shape_keys is not None:
|
667 |
+
total_shape_key_count += (
|
668 |
+
len(shape_keys.key_blocks) - 1
|
669 |
+
) # Subtract 1 to exclude the Basis shape key
|
670 |
+
return total_shape_key_count
|
671 |
+
|
672 |
+
def get_armature_count(self) -> int:
|
673 |
+
"""Returns the number of armatures in the scene."""
|
674 |
+
total_armature_count = 0
|
675 |
+
for obj in self.scene.objects:
|
676 |
+
if obj.type == "ARMATURE":
|
677 |
+
total_armature_count += 1
|
678 |
+
return total_armature_count
|
679 |
+
|
680 |
+
def read_file_size(self) -> int:
|
681 |
+
"""Returns the size of the file in bytes."""
|
682 |
+
return os.path.getsize(self.object_path)
|
683 |
+
|
684 |
+
def get_metadata(self) -> Dict[str, Any]:
|
685 |
+
"""Returns the metadata of the scene.
|
686 |
+
|
687 |
+
Returns:
|
688 |
+
Dict[str, Any]: Dictionary of the metadata with keys for "file_size",
|
689 |
+
"poly_count", "vert_count", "edge_count", "material_count", "object_count",
|
690 |
+
"lamp_count", "mesh_count", "animation_count", "linked_files", "scene_size",
|
691 |
+
"shape_key_count", and "armature_count".
|
692 |
+
"""
|
693 |
+
return {
|
694 |
+
"file_size": self.read_file_size(),
|
695 |
+
"poly_count": self.get_poly_count(),
|
696 |
+
"vert_count": self.get_vertex_count(),
|
697 |
+
"edge_count": self.get_edge_count(),
|
698 |
+
"material_count": self.get_material_count(),
|
699 |
+
"object_count": self.get_object_count(),
|
700 |
+
"lamp_count": self.get_lamp_count(),
|
701 |
+
"mesh_count": self.get_mesh_count(),
|
702 |
+
"animation_count": self.get_animation_count(),
|
703 |
+
"linked_files": self.get_linked_files(),
|
704 |
+
"scene_size": self.get_scene_size(),
|
705 |
+
"shape_key_count": self.get_shape_key_count(),
|
706 |
+
"armature_count": self.get_armature_count(),
|
707 |
+
}
|
708 |
+
|
709 |
+
def pan_camera(time, axis="Z", camera_dist=2.0, elevation=-0.1, camera_offset=0.0):
|
710 |
+
angle = time * math.pi * 2 - math.pi / 2 # start from -90 degree
|
711 |
+
direction = [-math.cos(angle), -math.sin(angle), -elevation]
|
712 |
+
assert axis in ["X", "Y", "Z"]
|
713 |
+
if axis == "X":
|
714 |
+
direction = [direction[2], *direction[:2]]
|
715 |
+
elif axis == "Y":
|
716 |
+
direction = [direction[0], -elevation, direction[1]]
|
717 |
+
direction = Vector(direction).normalized()
|
718 |
+
camera = set_camera(direction, camera_dist=camera_dist, camera_offset=camera_offset)
|
719 |
+
return camera
|
720 |
+
|
721 |
+
|
722 |
+
def pan_camera_along(time, pose="alone-x-rotate", camera_dist=2.0, rotate=0.0):
|
723 |
+
angle = time * math.pi * 2
|
724 |
+
# direction_plane = [-math.cos(angle), -math.sin(angle), 0]
|
725 |
+
x_new = math.cos(angle)
|
726 |
+
y_new = math.cos(rotate) * math.sin(angle)
|
727 |
+
z_new = math.sin(rotate) * math.sin(angle)
|
728 |
+
direction = [-x_new, -y_new, -z_new]
|
729 |
+
assert pose in ["alone-x-rotate"]
|
730 |
+
direction = Vector(direction).normalized()
|
731 |
+
camera = set_camera(direction, camera_dist=camera_dist)
|
732 |
+
return camera
|
733 |
+
|
734 |
+
def pan_camera_by_angle(angle, axis="Z", camera_dist=2.0, elevation=-0.1 ):
|
735 |
+
direction = [-math.cos(angle), -math.sin(angle), -elevation]
|
736 |
+
assert axis in ["X", "Y", "Z"]
|
737 |
+
if axis == "X":
|
738 |
+
direction = [direction[2], *direction[:2]]
|
739 |
+
elif axis == "Y":
|
740 |
+
direction = [direction[0], -elevation, direction[1]]
|
741 |
+
direction = Vector(direction).normalized()
|
742 |
+
camera = set_camera(direction, camera_dist=camera_dist)
|
743 |
+
return camera
|
744 |
+
|
745 |
+
def z_circular_custom_track(time,
|
746 |
+
camera_dist,
|
747 |
+
azimuth_shift = [-9, 9],
|
748 |
+
init_elevation = 0.0,
|
749 |
+
elevation_shift = [-5, 5]):
|
750 |
+
|
751 |
+
adjusted_azimuth = (-math.degrees(math.pi / 2) +
|
752 |
+
time * 360 +
|
753 |
+
np.random.uniform(low=azimuth_shift[0], high=azimuth_shift[1]))
|
754 |
+
|
755 |
+
# Add random noise to the elevation
|
756 |
+
adjusted_elevation = init_elevation + np.random.uniform(low=elevation_shift[0], high=elevation_shift[1])
|
757 |
+
return math.radians(adjusted_azimuth), math.radians(adjusted_elevation), camera_dist
|
758 |
+
|
759 |
+
|
760 |
+
def place_camera(time, camera_pose_mode="random", camera_dist=2.0, rotate=0.0, elevation=0.0, camera_offset=0.0, idx=0):
|
761 |
+
if camera_pose_mode == "z-circular-elevated":
|
762 |
+
cam = pan_camera(time, axis="Z", camera_dist=camera_dist, elevation=elevation, camera_offset=camera_offset)
|
763 |
+
elif camera_pose_mode == 'alone-x-rotate':
|
764 |
+
cam = pan_camera_along(time, pose=camera_pose_mode, camera_dist=camera_dist, rotate=rotate)
|
765 |
+
elif camera_pose_mode == 'z-circular-elevated-noise':
|
766 |
+
angle, elevation, camera_dist = z_circular_custom_track(time, camera_dist=camera_dist, init_elevation=elevation)
|
767 |
+
cam = pan_camera_by_angle(angle, axis="Z", camera_dist=camera_dist, elevation=elevation)
|
768 |
+
elif camera_pose_mode == 'random':
|
769 |
+
cam = randomize_camera_with_cache(radius_min=camera_dist, radius_max=camera_dist, maxz=114514., minz=-114514., idx=idx)
|
770 |
+
else:
|
771 |
+
raise ValueError(f"Unknown camera pose mode: {camera_pose_mode}")
|
772 |
+
return cam
|
773 |
+
|
774 |
+
|
775 |
+
def setup_nodes(output_path, capturing_material_alpha: bool = False):
|
776 |
+
tree = bpy.context.scene.node_tree
|
777 |
+
links = tree.links
|
778 |
+
|
779 |
+
for node in tree.nodes:
|
780 |
+
tree.nodes.remove(node)
|
781 |
+
|
782 |
+
# Helpers to perform math on links and constants.
|
783 |
+
def node_op(op: str, *args, clamp=False):
|
784 |
+
node = tree.nodes.new(type="CompositorNodeMath")
|
785 |
+
node.operation = op
|
786 |
+
if clamp:
|
787 |
+
node.use_clamp = True
|
788 |
+
for i, arg in enumerate(args):
|
789 |
+
if isinstance(arg, (int, float)):
|
790 |
+
node.inputs[i].default_value = arg
|
791 |
+
else:
|
792 |
+
links.new(arg, node.inputs[i])
|
793 |
+
return node.outputs[0]
|
794 |
+
|
795 |
+
def node_clamp(x, maximum=1.0):
|
796 |
+
return node_op("MINIMUM", x, maximum)
|
797 |
+
|
798 |
+
def node_mul(x, y, **kwargs):
|
799 |
+
return node_op("MULTIPLY", x, y, **kwargs)
|
800 |
+
|
801 |
+
input_node = tree.nodes.new(type="CompositorNodeRLayers")
|
802 |
+
input_node.scene = bpy.context.scene
|
803 |
+
|
804 |
+
input_sockets = {}
|
805 |
+
for output in input_node.outputs:
|
806 |
+
input_sockets[output.name] = output
|
807 |
+
|
808 |
+
if capturing_material_alpha:
|
809 |
+
color_socket = input_sockets["Image"]
|
810 |
+
else:
|
811 |
+
raw_color_socket = input_sockets["Image"]
|
812 |
+
|
813 |
+
# We apply sRGB here so that our fixed-point depth map and material
|
814 |
+
# alpha values are not sRGB, and so that we perform ambient+diffuse
|
815 |
+
# lighting in linear RGB space.
|
816 |
+
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
|
817 |
+
color_node.from_color_space = "Linear"
|
818 |
+
color_node.to_color_space = "sRGB"
|
819 |
+
tree.links.new(raw_color_socket, color_node.inputs[0])
|
820 |
+
color_socket = color_node.outputs[0]
|
821 |
+
split_node = tree.nodes.new(type="CompositorNodeSepRGBA")
|
822 |
+
tree.links.new(color_socket, split_node.inputs[0])
|
823 |
+
# Create separate file output nodes for every channel we care about.
|
824 |
+
# The process calling this script must decide how to recombine these
|
825 |
+
# channels, possibly into a single image.
|
826 |
+
for i, channel in enumerate("rgba") if not capturing_material_alpha else [(0, "MatAlpha")]:
|
827 |
+
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
|
828 |
+
output_node.base_path = f"{output_path}_{channel}"
|
829 |
+
links.new(split_node.outputs[i], output_node.inputs[0])
|
830 |
+
if capturing_material_alpha:
|
831 |
+
# No need to re-write depth here.
|
832 |
+
return
|
833 |
+
|
834 |
+
depth_out = node_clamp(node_mul(input_sockets["Depth"], 1 / MAX_DEPTH))
|
835 |
+
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
|
836 |
+
output_node.format.file_format = 'OPEN_EXR'
|
837 |
+
output_node.base_path = f"{output_path}_depth"
|
838 |
+
links.new(depth_out, output_node.inputs[0])
|
839 |
+
|
840 |
+
# Add normal map output
|
841 |
+
normal_out = input_sockets["Normal"]
|
842 |
+
|
843 |
+
# Scale normal by 0.5
|
844 |
+
scale_normal = tree.nodes.new(type="CompositorNodeMixRGB")
|
845 |
+
scale_normal.blend_type = 'MULTIPLY'
|
846 |
+
scale_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 1)
|
847 |
+
links.new(normal_out, scale_normal.inputs[1])
|
848 |
+
|
849 |
+
# Bias normal by 0.5
|
850 |
+
bias_normal = tree.nodes.new(type="CompositorNodeMixRGB")
|
851 |
+
bias_normal.blend_type = 'ADD'
|
852 |
+
bias_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 0)
|
853 |
+
links.new(scale_normal.outputs[0], bias_normal.inputs[1])
|
854 |
+
|
855 |
+
# Output the transformed normal map
|
856 |
+
normal_file_output = tree.nodes.new(type="CompositorNodeOutputFile")
|
857 |
+
normal_file_output.base_path = f"{output_path}_normal"
|
858 |
+
normal_file_output.format.file_format = 'OPEN_EXR'
|
859 |
+
links.new(bias_normal.outputs[0], normal_file_output.inputs[0])
|
860 |
+
|
861 |
+
|
862 |
+
def setup_nodes_semantic(output_path, capturing_material_alpha: bool = False):
|
863 |
+
tree = bpy.context.scene.node_tree
|
864 |
+
links = tree.links
|
865 |
+
|
866 |
+
for node in tree.nodes:
|
867 |
+
tree.nodes.remove(node)
|
868 |
+
|
869 |
+
# Helpers to perform math on links and constants.
|
870 |
+
def node_op(op: str, *args, clamp=False):
|
871 |
+
node = tree.nodes.new(type="CompositorNodeMath")
|
872 |
+
node.operation = op
|
873 |
+
if clamp:
|
874 |
+
node.use_clamp = True
|
875 |
+
for i, arg in enumerate(args):
|
876 |
+
if isinstance(arg, (int, float)):
|
877 |
+
node.inputs[i].default_value = arg
|
878 |
+
else:
|
879 |
+
links.new(arg, node.inputs[i])
|
880 |
+
return node.outputs[0]
|
881 |
+
|
882 |
+
def node_clamp(x, maximum=1.0):
|
883 |
+
return node_op("MINIMUM", x, maximum)
|
884 |
+
|
885 |
+
def node_mul(x, y, **kwargs):
|
886 |
+
return node_op("MULTIPLY", x, y, **kwargs)
|
887 |
+
|
888 |
+
input_node = tree.nodes.new(type="CompositorNodeRLayers")
|
889 |
+
input_node.scene = bpy.context.scene
|
890 |
+
|
891 |
+
input_sockets = {}
|
892 |
+
for output in input_node.outputs:
|
893 |
+
input_sockets[output.name] = output
|
894 |
+
|
895 |
+
if capturing_material_alpha:
|
896 |
+
color_socket = input_sockets["Image"]
|
897 |
+
else:
|
898 |
+
raw_color_socket = input_sockets["Image"]
|
899 |
+
# We apply sRGB here so that our fixed-point depth map and material
|
900 |
+
# alpha values are not sRGB, and so that we perform ambient+diffuse
|
901 |
+
# lighting in linear RGB space.
|
902 |
+
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
|
903 |
+
color_node.from_color_space = "Linear"
|
904 |
+
color_node.to_color_space = "sRGB"
|
905 |
+
tree.links.new(raw_color_socket, color_node.inputs[0])
|
906 |
+
color_socket = color_node.outputs[0]
|
907 |
+
|
908 |
+
|
909 |
+
def render_object(
|
910 |
+
object_file: str,
|
911 |
+
num_renders: int,
|
912 |
+
only_northern_hemisphere: bool,
|
913 |
+
output_dir: str,
|
914 |
+
) -> None:
|
915 |
+
"""Saves rendered images with its camera matrix and metadata of the object.
|
916 |
+
|
917 |
+
Args:
|
918 |
+
object_file (str): Path to the object file.
|
919 |
+
num_renders (int): Number of renders to save of the object.
|
920 |
+
only_northern_hemisphere (bool): Whether to only render sides of the object that
|
921 |
+
are in the northern hemisphere. This is useful for rendering objects that
|
922 |
+
are photogrammetrically scanned, as the bottom of the object often has
|
923 |
+
holes.
|
924 |
+
output_dir (str): Path to the directory where the rendered images and metadata
|
925 |
+
will be saved.
|
926 |
+
|
927 |
+
Returns:
|
928 |
+
None
|
929 |
+
"""
|
930 |
+
os.makedirs(output_dir, exist_ok=True)
|
931 |
+
|
932 |
+
# load the object
|
933 |
+
if object_file.endswith(".blend"):
|
934 |
+
bpy.ops.object.mode_set(mode="OBJECT")
|
935 |
+
reset_cameras()
|
936 |
+
delete_invisible_objects()
|
937 |
+
else:
|
938 |
+
reset_scene()
|
939 |
+
load_object(object_file)
|
940 |
+
|
941 |
+
# Set up cameras
|
942 |
+
cam = scene.objects["Camera"]
|
943 |
+
cam.data.lens = 35
|
944 |
+
cam.data.sensor_width = 32
|
945 |
+
|
946 |
+
# Set up camera constraints
|
947 |
+
cam_constraint = cam.constraints.new(type="TRACK_TO")
|
948 |
+
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
|
949 |
+
cam_constraint.up_axis = "UP_Y"
|
950 |
+
|
951 |
+
# Extract the metadata. This must be done before normalizing the scene to get
|
952 |
+
# accurate bounding box information.
|
953 |
+
metadata_extractor = MetadataExtractor(
|
954 |
+
object_path=object_file, scene=scene, bdata=bpy.data
|
955 |
+
)
|
956 |
+
metadata = metadata_extractor.get_metadata()
|
957 |
+
|
958 |
+
# delete all objects that are not meshes
|
959 |
+
if object_file.lower().endswith(".usdz") or object_file.lower().endswith(".vrm"):
|
960 |
+
# don't delete missing textures on usdz files, lots of them are embedded
|
961 |
+
missing_textures = None
|
962 |
+
else:
|
963 |
+
missing_textures = delete_missing_textures()
|
964 |
+
metadata["missing_textures"] = missing_textures
|
965 |
+
metadata["random_color"] = None
|
966 |
+
|
967 |
+
# save metadata
|
968 |
+
metadata_path = os.path.join(output_dir, "metadata.json")
|
969 |
+
os.makedirs(os.path.dirname(metadata_path), exist_ok=True)
|
970 |
+
with open(metadata_path, "w", encoding="utf-8") as f:
|
971 |
+
json.dump(metadata, f, sort_keys=True, indent=2)
|
972 |
+
|
973 |
+
# normalize the scene
|
974 |
+
normalize_scene()
|
975 |
+
|
976 |
+
# cancel edge rim lighting in vrm files
|
977 |
+
if object_file.endswith(".vrm"):
|
978 |
+
for i in bpy.data.materials:
|
979 |
+
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.rim_lighting_mix_factor = 0.0
|
980 |
+
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.matcap_texture.index.source = None
|
981 |
+
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.outline_width_factor = 0.0
|
982 |
+
|
983 |
+
# rotate two arms to A-pose
|
984 |
+
if object_file.endswith(".vrm"):
|
985 |
+
armature = [ i for i in bpy.data.objects if 'Armature' in i.name ][0]
|
986 |
+
bpy.context.view_layer.objects.active = armature
|
987 |
+
bpy.ops.object.mode_set(mode='POSE')
|
988 |
+
pbone1 = armature.pose.bones['J_Bip_L_UpperArm']
|
989 |
+
pbone2 = armature.pose.bones['J_Bip_R_UpperArm']
|
990 |
+
pbone1.rotation_mode = 'XYZ'
|
991 |
+
pbone2.rotation_mode = 'XYZ'
|
992 |
+
pbone1.rotation_euler.rotate_axis('X', math.radians(-45))
|
993 |
+
pbone2.rotation_euler.rotate_axis('X', math.radians(-45))
|
994 |
+
bpy.ops.object.mode_set(mode='OBJECT')
|
995 |
+
|
996 |
+
def printInfo():
|
997 |
+
print("====== Objects ======")
|
998 |
+
for i in bpy.data.objects:
|
999 |
+
print(i.name)
|
1000 |
+
print("====== Materials ======")
|
1001 |
+
for i in bpy.data.materials:
|
1002 |
+
print(i.name)
|
1003 |
+
|
1004 |
+
def parse_material():
|
1005 |
+
hair_mats = []
|
1006 |
+
cloth_mats = []
|
1007 |
+
face_mats = []
|
1008 |
+
body_mats = []
|
1009 |
+
|
1010 |
+
# main hair material
|
1011 |
+
if 'Hair' in bpy.data.objects:
|
1012 |
+
hair_mats = [i.name for i in bpy.data.objects['Hair'].data.materials if 'MToon Outline' not in i.name]
|
1013 |
+
else:
|
1014 |
+
flag = False
|
1015 |
+
for i in bpy.data.objects:
|
1016 |
+
if i.name[:4] == 'Hair' and bpy.data.objects[i.name].data:
|
1017 |
+
hair_mats += [i.name for i in bpy.data.objects[i.name].data.materials if 'MToon Outline' not in i.name]
|
1018 |
+
flag = True
|
1019 |
+
if not flag:
|
1020 |
+
if 'Hairs' in bpy.data.objects and bpy.data.objects['Hairs'].data:
|
1021 |
+
hair_mats = [i.name for i in bpy.data.objects['Hairs'].data.materials if 'MToon Outline' not in i.name]
|
1022 |
+
else:
|
1023 |
+
for i in bpy.data.materials:
|
1024 |
+
if 'HAIR' in i.name and 'MToon Outline' not in i.name:
|
1025 |
+
hair_mats.append(i.name)
|
1026 |
+
if len(hair_mats) == 0:
|
1027 |
+
printInfo()
|
1028 |
+
with open('error.txt', 'a+') as f:
|
1029 |
+
f.write(object_file + '\t' + 'Cannot find main hair material\t' + str([iii.name for iii in bpy.data.objects]) + '\n')
|
1030 |
+
raise ValueError("Cannot find main hair material")
|
1031 |
+
|
1032 |
+
# face material
|
1033 |
+
if 'Face' in bpy.data.objects:
|
1034 |
+
face_mats = [i.name for i in bpy.data.objects['Face'].data.materials if 'MToon Outline' not in i.name]
|
1035 |
+
else:
|
1036 |
+
for i in bpy.data.materials:
|
1037 |
+
if 'FACE' in i.name and 'MToon Outline' not in i.name:
|
1038 |
+
face_mats.append(i.name)
|
1039 |
+
elif 'Face' in i.name and 'SKIN' in i.name and 'MToon Outline' not in i.name:
|
1040 |
+
face_mats.append(i.name)
|
1041 |
+
if len(face_mats) == 0:
|
1042 |
+
printInfo()
|
1043 |
+
with open('error.txt', 'a+') as f:
|
1044 |
+
f.write(object_file + '\t' + 'Cannot find face material\t' + str([iii.name for iii in bpy.data.objects]) + '\n')
|
1045 |
+
raise ValueError("Cannot find face material")
|
1046 |
+
|
1047 |
+
# loop
|
1048 |
+
for i in bpy.data.materials:
|
1049 |
+
if 'MToon Outline' in i.name:
|
1050 |
+
continue
|
1051 |
+
elif 'CLOTH' in i.name:
|
1052 |
+
if 'Shoes' in i.name:
|
1053 |
+
body_mats.append(i.name)
|
1054 |
+
elif 'Accessory' in i.name:
|
1055 |
+
if 'CatEar' in i.name:
|
1056 |
+
hair_mats.append(i.name)
|
1057 |
+
else:
|
1058 |
+
cloth_mats.append(i.name)
|
1059 |
+
elif any( name in i.name for name in ['Tops', 'Bottoms', 'Onepice'] ):
|
1060 |
+
cloth_mats.append(i.name)
|
1061 |
+
else:
|
1062 |
+
raise ValueError(f"Unknown cloth material: {i.name}")
|
1063 |
+
elif 'Body' in i.name and 'SKIN' in i.name:
|
1064 |
+
body_mats.append(i.name)
|
1065 |
+
elif i.name in hair_mats or i.name in face_mats:
|
1066 |
+
continue
|
1067 |
+
elif 'HairBack' in i.name and 'HAIR' in i.name:
|
1068 |
+
hair_mats.append(i.name)
|
1069 |
+
elif 'EYE' in i.name:
|
1070 |
+
face_mats.append(i.name)
|
1071 |
+
elif 'Face' in i.name and 'SKIN' in i.name:
|
1072 |
+
face_mats.append(i.name)
|
1073 |
+
else:
|
1074 |
+
print("hair_mats", hair_mats)
|
1075 |
+
print("cloth_mats", cloth_mats)
|
1076 |
+
print("face_mats", face_mats)
|
1077 |
+
print("body_mats", body_mats)
|
1078 |
+
with open('error.txt', 'a+') as f:
|
1079 |
+
f.write(object_file + '\t' + 'Cannot find material\t' + i.name + '\n')
|
1080 |
+
raise ValueError(f"Unknown material: {i.name}")
|
1081 |
+
|
1082 |
+
return hair_mats, cloth_mats, face_mats, body_mats
|
1083 |
+
|
1084 |
+
hair_mats, cloth_mats, face_mats, body_mats = parse_material()
|
1085 |
+
|
1086 |
+
# get bounding box of face
|
1087 |
+
def get_face_bbox():
|
1088 |
+
if 'Face' in bpy.data.objects:
|
1089 |
+
face = bpy.data.objects['Face']
|
1090 |
+
bbox_min, bbox_max = scene_bbox(face)
|
1091 |
+
return bbox_min, bbox_max
|
1092 |
+
else:
|
1093 |
+
bbox_min, bbox_max = scene_bbox()
|
1094 |
+
for i in bpy.data.objects:
|
1095 |
+
if i.data.materials and i.data.materials[0].name in face_mats:
|
1096 |
+
face = i
|
1097 |
+
cur_bbox_min, cur_bbox_max = scene_bbox(face)
|
1098 |
+
bbox_min = np.minimum(bbox_min, cur_bbox_min)
|
1099 |
+
bbox_max = np.maximum(bbox_max, cur_bbox_max)
|
1100 |
+
return bbox_min, bbox_max
|
1101 |
+
|
1102 |
+
def assign_color(material_name, color):
|
1103 |
+
material = bpy.data.materials.get(material_name)
|
1104 |
+
if material:
|
1105 |
+
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
|
1106 |
+
image = material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_texture.index.source
|
1107 |
+
if image:
|
1108 |
+
pixels = np.array(image.pixels[:])
|
1109 |
+
width, height = image.size
|
1110 |
+
num_channels = 4
|
1111 |
+
pixels = pixels.reshape((height, width, num_channels))
|
1112 |
+
srgb_pixels = np.clip(np.power(pixels, 1/2.2), 0.0, 1.0)
|
1113 |
+
print("Image converted to NumPy array")
|
1114 |
+
|
1115 |
+
# Step 2: Edit the NumPy array
|
1116 |
+
srgb_pixels[..., 0] = color[0]
|
1117 |
+
srgb_pixels[..., 1] = color[1]
|
1118 |
+
srgb_pixels[..., 2] = color[2]
|
1119 |
+
edited_image_rgba = srgb_pixels
|
1120 |
+
|
1121 |
+
# Step 3: Convert the edited NumPy array back to a Blender image
|
1122 |
+
edited_image_flat = edited_image_rgba.astype(np.float32)
|
1123 |
+
edited_image_flat = edited_image_flat.flatten()
|
1124 |
+
edited_image_name = "Edited_Texture"
|
1125 |
+
edited_blender_image = bpy.data.images.new(edited_image_name, width, height, alpha=True)
|
1126 |
+
edited_blender_image.pixels = edited_image_flat
|
1127 |
+
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_texture.index.source = edited_blender_image
|
1128 |
+
print(f"Edited image assigned to {material_name}")
|
1129 |
+
|
1130 |
+
material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_color_factor = (1, 1, 1)
|
1131 |
+
image = material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_multiply_texture.index.source
|
1132 |
+
if image:
|
1133 |
+
pixels = np.array(image.pixels[:])
|
1134 |
+
width, height = image.size
|
1135 |
+
num_channels = 4
|
1136 |
+
pixels = pixels.reshape((height, width, num_channels))
|
1137 |
+
srgb_pixels = np.clip(np.power(pixels, 1/2.2), 0.0, 1.0)
|
1138 |
+
print("Image converted to NumPy array")
|
1139 |
+
|
1140 |
+
# Step 2: Edit the NumPy array
|
1141 |
+
srgb_pixels[..., 0] = color[0]
|
1142 |
+
srgb_pixels[..., 1] = color[1]
|
1143 |
+
srgb_pixels[..., 2] = color[2]
|
1144 |
+
edited_image_rgba = srgb_pixels
|
1145 |
+
|
1146 |
+
# Step 3: Convert the edited NumPy array back to a Blender image
|
1147 |
+
edited_image_flat = edited_image_rgba.astype(np.float32)
|
1148 |
+
edited_image_flat = edited_image_flat.flatten()
|
1149 |
+
edited_image_name = "Edited_Texture"
|
1150 |
+
edited_blender_image = bpy.data.images.new(edited_image_name, width, height, alpha=True)
|
1151 |
+
edited_blender_image.pixels = edited_image_flat
|
1152 |
+
material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_multiply_texture.index.source = edited_blender_image
|
1153 |
+
print(f"Edited image assigned to {material_name}")
|
1154 |
+
material.vrm_addon_extension.mtoon1.extensions.khr_materials_emissive_strength.emissive_strength = 0.0
|
1155 |
+
|
1156 |
+
def assign_transparency(material_name, alpha):
|
1157 |
+
material = bpy.data.materials.get(material_name)
|
1158 |
+
if material:
|
1159 |
+
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, alpha)
|
1160 |
+
|
1161 |
+
# render the images
|
1162 |
+
use_workbench = bpy.context.scene.render.engine == "BLENDER_WORKBENCH"
|
1163 |
+
|
1164 |
+
face_bbox_min, face_bbox_max = get_face_bbox()
|
1165 |
+
face_bbox_center = (face_bbox_min + face_bbox_max) / 2
|
1166 |
+
face_bbox_size = face_bbox_max - face_bbox_min
|
1167 |
+
print("face_bbox_center", face_bbox_center)
|
1168 |
+
print("face_bbox_size", face_bbox_size)
|
1169 |
+
|
1170 |
+
config_names = ["custom2", "custom_top", "custom_bottom", "custom_face", "random"]
|
1171 |
+
|
1172 |
+
# normal rendering
|
1173 |
+
for l in range(3): # 3 levels: all; no hair; no hair and no cloth
|
1174 |
+
if l == 0:
|
1175 |
+
pass
|
1176 |
+
elif l == 1:
|
1177 |
+
for i in hair_mats:
|
1178 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
|
1179 |
+
elif l == 2:
|
1180 |
+
for i in cloth_mats:
|
1181 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
|
1182 |
+
|
1183 |
+
for j in range(5): # 5 track
|
1184 |
+
config = configs[config_names[j]]
|
1185 |
+
if "render_num" in config:
|
1186 |
+
new_num_renders = config["render_num"]
|
1187 |
+
else:
|
1188 |
+
new_num_renders = num_renders
|
1189 |
+
|
1190 |
+
for i in range(new_num_renders):
|
1191 |
+
camera_dist = 1.4
|
1192 |
+
if config_names[j] == "custom_face":
|
1193 |
+
camera_dist = 0.6
|
1194 |
+
if i not in [0, 1, 2, 6, 7]:
|
1195 |
+
continue
|
1196 |
+
t = i / num_renders
|
1197 |
+
elevation_range = config["elevation_range"]
|
1198 |
+
init_elevation = elevation_range[0]
|
1199 |
+
# set camera
|
1200 |
+
camera = place_camera(
|
1201 |
+
t,
|
1202 |
+
camera_pose_mode=config["camera_pose"],
|
1203 |
+
camera_dist=camera_dist,
|
1204 |
+
rotate=config["rotate"],
|
1205 |
+
elevation=init_elevation,
|
1206 |
+
camera_offset=face_bbox_center if config_names[j] == "custom_face" else 0.0,
|
1207 |
+
idx=i
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
# set camera to ortho
|
1211 |
+
bpy.data.objects["Camera"].data.type = 'ORTHO'
|
1212 |
+
bpy.data.objects["Camera"].data.ortho_scale = 1.2 if config_names[j] != "custom_face" else np.max(face_bbox_size) * 1.2
|
1213 |
+
|
1214 |
+
# render the image
|
1215 |
+
render_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}.png")
|
1216 |
+
scene.render.filepath = render_path
|
1217 |
+
setup_nodes(render_path)
|
1218 |
+
bpy.ops.render.render(write_still=True)
|
1219 |
+
|
1220 |
+
# save camera RT matrix
|
1221 |
+
rt_matrix = get_3x4_RT_matrix_from_blender(camera)
|
1222 |
+
rt_matrix_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}.npy")
|
1223 |
+
np.save(rt_matrix_path, rt_matrix)
|
1224 |
+
|
1225 |
+
for channel_name in ["r", "g", "b", "a", "depth", "normal"]:
|
1226 |
+
sub_dir = f"{render_path}_{channel_name}"
|
1227 |
+
if channel_name in ['r', 'g', 'b']:
|
1228 |
+
# remove path
|
1229 |
+
shutil.rmtree(sub_dir)
|
1230 |
+
continue
|
1231 |
+
|
1232 |
+
image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
|
1233 |
+
name, ext = os.path.splitext(render_path)
|
1234 |
+
if channel_name == "a":
|
1235 |
+
os.rename(image_path, f"{name}_{channel_name}.png")
|
1236 |
+
elif channel_name == 'depth':
|
1237 |
+
os.rename(image_path, f"{name}_{channel_name}.exr")
|
1238 |
+
elif channel_name == "normal":
|
1239 |
+
os.rename(image_path, f"{name}_{channel_name}.exr")
|
1240 |
+
else:
|
1241 |
+
os.remove(image_path)
|
1242 |
+
|
1243 |
+
os.removedirs(sub_dir)
|
1244 |
+
|
1245 |
+
# reset
|
1246 |
+
for i in hair_mats:
|
1247 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
|
1248 |
+
for i in cloth_mats:
|
1249 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
|
1250 |
+
|
1251 |
+
# switch to semantic rendering
|
1252 |
+
for i in hair_mats:
|
1253 |
+
assign_color(i, [1.0, 0.0, 0.0])
|
1254 |
+
for i in cloth_mats:
|
1255 |
+
assign_color(i, [0.0, 0.0, 1.0])
|
1256 |
+
for i in face_mats:
|
1257 |
+
assign_color(i, [0.0, 1.0, 1.0])
|
1258 |
+
if any( ii in i for ii in ['Eyeline', 'Eyelash', 'Brow', 'Highlight'] ):
|
1259 |
+
assign_transparency(i, 0.0)
|
1260 |
+
for i in body_mats:
|
1261 |
+
assign_color(i, [0.0, 1.0, 0.0])
|
1262 |
+
|
1263 |
+
for l in range(3): # 3 levels: all; no hair; no hair and no cloth
|
1264 |
+
if l == 0:
|
1265 |
+
pass
|
1266 |
+
elif l == 1:
|
1267 |
+
for i in hair_mats:
|
1268 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
|
1269 |
+
elif l == 2:
|
1270 |
+
for i in cloth_mats:
|
1271 |
+
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
|
1272 |
+
for j in range(5): # 5 track
|
1273 |
+
config = configs[config_names[j]]
|
1274 |
+
if "render_num" in config:
|
1275 |
+
new_num_renders = config["render_num"]
|
1276 |
+
else:
|
1277 |
+
new_num_renders = num_renders
|
1278 |
+
|
1279 |
+
for i in range(new_num_renders):
|
1280 |
+
camera_dist = 1.4
|
1281 |
+
if config_names[j] == "custom_face":
|
1282 |
+
camera_dist = 0.6
|
1283 |
+
if i not in [0, 1, 2, 6, 7]:
|
1284 |
+
continue
|
1285 |
+
t = i / num_renders
|
1286 |
+
elevation_range = config["elevation_range"]
|
1287 |
+
init_elevation = elevation_range[0]
|
1288 |
+
# set camera
|
1289 |
+
camera = place_camera(
|
1290 |
+
t,
|
1291 |
+
camera_pose_mode=config["camera_pose"],
|
1292 |
+
camera_dist=camera_dist,
|
1293 |
+
rotate=config["rotate"],
|
1294 |
+
elevation=init_elevation,
|
1295 |
+
camera_offset=face_bbox_center if config_names[j] == "custom_face" else 0.0,
|
1296 |
+
idx=i
|
1297 |
+
)
|
1298 |
+
|
1299 |
+
# set camera to ortho
|
1300 |
+
bpy.data.objects["Camera"].data.type = 'ORTHO'
|
1301 |
+
bpy.data.objects["Camera"].data.ortho_scale = 1.2 if config_names[j] != "custom_face" else np.max(face_bbox_size) * 1.2
|
1302 |
+
|
1303 |
+
# render the image
|
1304 |
+
render_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}_semantic.png")
|
1305 |
+
scene.render.filepath = render_path
|
1306 |
+
setup_nodes_semantic(render_path)
|
1307 |
+
bpy.ops.render.render(write_still=True)
|
1308 |
+
|
1309 |
+
|
1310 |
+
if __name__ == "__main__":
|
1311 |
+
parser = argparse.ArgumentParser()
|
1312 |
+
parser.add_argument(
|
1313 |
+
"--object_path",
|
1314 |
+
type=str,
|
1315 |
+
required=True,
|
1316 |
+
help="Path to the object file",
|
1317 |
+
)
|
1318 |
+
parser.add_argument(
|
1319 |
+
"--output_dir",
|
1320 |
+
type=str,
|
1321 |
+
required=True,
|
1322 |
+
help="Path to the directory where the rendered images and metadata will be saved.",
|
1323 |
+
)
|
1324 |
+
parser.add_argument(
|
1325 |
+
"--engine",
|
1326 |
+
type=str,
|
1327 |
+
default="BLENDER_EEVEE",
|
1328 |
+
choices=["CYCLES", "BLENDER_EEVEE"],
|
1329 |
+
)
|
1330 |
+
parser.add_argument(
|
1331 |
+
"--only_northern_hemisphere",
|
1332 |
+
action="store_true",
|
1333 |
+
help="Only render the northern hemisphere of the object.",
|
1334 |
+
default=False,
|
1335 |
+
)
|
1336 |
+
parser.add_argument(
|
1337 |
+
"--num_renders",
|
1338 |
+
type=int,
|
1339 |
+
default=8,
|
1340 |
+
help="Number of renders to save of the object.",
|
1341 |
+
)
|
1342 |
+
argv = sys.argv[sys.argv.index("--") + 1 :]
|
1343 |
+
args = parser.parse_args(argv)
|
1344 |
+
|
1345 |
+
context = bpy.context
|
1346 |
+
scene = context.scene
|
1347 |
+
render = scene.render
|
1348 |
+
|
1349 |
+
# Set render settings
|
1350 |
+
render.engine = args.engine
|
1351 |
+
render.image_settings.file_format = "PNG"
|
1352 |
+
render.image_settings.color_mode = "RGB"
|
1353 |
+
render.resolution_x = 1024
|
1354 |
+
render.resolution_y = 1024
|
1355 |
+
render.resolution_percentage = 100
|
1356 |
+
|
1357 |
+
# Set EEVEE settings
|
1358 |
+
scene.eevee.taa_render_samples = 64
|
1359 |
+
scene.eevee.use_taa_reprojection = True
|
1360 |
+
|
1361 |
+
# Set cycles settings
|
1362 |
+
scene.cycles.device = "GPU"
|
1363 |
+
scene.cycles.samples = 128
|
1364 |
+
scene.cycles.diffuse_bounces = 9
|
1365 |
+
scene.cycles.glossy_bounces = 9
|
1366 |
+
scene.cycles.transparent_max_bounces = 9
|
1367 |
+
scene.cycles.transmission_bounces = 9
|
1368 |
+
scene.cycles.filter_width = 0.01
|
1369 |
+
scene.cycles.use_denoising = True
|
1370 |
+
scene.render.film_transparent = True
|
1371 |
+
bpy.context.preferences.addons["cycles"].preferences.get_devices()
|
1372 |
+
bpy.context.preferences.addons[
|
1373 |
+
"cycles"
|
1374 |
+
].preferences.compute_device_type = "CUDA" # or "OPENCL"
|
1375 |
+
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
|
1376 |
+
|
1377 |
+
bpy.context.view_layer.use_pass_normal = True
|
1378 |
+
render.image_settings.color_depth = "16"
|
1379 |
+
bpy.context.scene.use_nodes = True
|
1380 |
+
|
1381 |
+
# Render the images
|
1382 |
+
render_object(
|
1383 |
+
object_file=args.object_path,
|
1384 |
+
num_renders=args.num_renders,
|
1385 |
+
only_northern_hemisphere=args.only_northern_hemisphere,
|
1386 |
+
output_dir=args.output_dir,
|
1387 |
+
)
|
blender/distributed_uniform_lrm.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import multiprocessing
|
3 |
+
import subprocess
|
4 |
+
import time
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import os
|
7 |
+
import tyro
|
8 |
+
import concurrent.futures
|
9 |
+
@dataclass
|
10 |
+
class Args:
|
11 |
+
workers_per_gpu: int
|
12 |
+
"""number of workers per gpu"""
|
13 |
+
num_gpus: int = 8
|
14 |
+
"""number of gpus to use. -1 means all available gpus"""
|
15 |
+
input_dir: str
|
16 |
+
save_dir: str
|
17 |
+
engine: str = "BLENDER_EEVEE"
|
18 |
+
|
19 |
+
|
20 |
+
def check_already_rendered(save_path):
|
21 |
+
if not os.path.exists(os.path.join(save_path, '02419_semantic.png')):
|
22 |
+
return False
|
23 |
+
return True
|
24 |
+
|
25 |
+
def process_file(file):
|
26 |
+
if not check_already_rendered(file[1]):
|
27 |
+
return file
|
28 |
+
return None
|
29 |
+
|
30 |
+
def worker(queue, count, gpu):
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
item = queue.get()
|
34 |
+
if item is None:
|
35 |
+
queue.task_done()
|
36 |
+
break
|
37 |
+
data_path, save_path, engine, log_name = item
|
38 |
+
print(f"Processing: {data_path} on GPU {gpu}")
|
39 |
+
start = time.time()
|
40 |
+
if check_already_rendered(save_path):
|
41 |
+
queue.task_done()
|
42 |
+
print('========', item, 'rendered', '========')
|
43 |
+
continue
|
44 |
+
else:
|
45 |
+
os.makedirs(save_path, exist_ok=True)
|
46 |
+
command = (f"export DISPLAY=:0.{gpu} &&"
|
47 |
+
f" CUDA_VISIBLE_DEVICES={gpu} "
|
48 |
+
f" blender -b -P blender_lrm_script.py --"
|
49 |
+
f" --object_path {data_path} --output_dir {save_path} --engine {engine}")
|
50 |
+
|
51 |
+
try:
|
52 |
+
subprocess.run(command, shell=True, timeout=3600, check=True)
|
53 |
+
count.value += 1
|
54 |
+
end = time.time()
|
55 |
+
with open(log_name, 'a') as f:
|
56 |
+
f.write(f'{end - start}\n')
|
57 |
+
except subprocess.CalledProcessError as e:
|
58 |
+
print(f"Subprocess error processing {item}: {e}")
|
59 |
+
except subprocess.TimeoutExpired as e:
|
60 |
+
print(f"Timeout expired processing {item}: {e}")
|
61 |
+
except Exception as e:
|
62 |
+
print(f"Error processing {item}: {e}")
|
63 |
+
finally:
|
64 |
+
queue.task_done()
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error processing {item}: {e}")
|
68 |
+
queue.task_done()
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
args = tyro.cli(Args)
|
73 |
+
queue = multiprocessing.JoinableQueue()
|
74 |
+
count = multiprocessing.Value("i", 0)
|
75 |
+
log_name = f'time_log_{args.workers_per_gpu}_{args.num_gpus}_{args.engine}.txt'
|
76 |
+
|
77 |
+
if args.num_gpus == -1:
|
78 |
+
result = subprocess.run(['nvidia-smi', '--list-gpus'], stdout=subprocess.PIPE)
|
79 |
+
output = result.stdout.decode('utf-8')
|
80 |
+
args.num_gpus = output.count('GPU')
|
81 |
+
|
82 |
+
files = []
|
83 |
+
|
84 |
+
for group in [ str(i) for i in range(10) ]:
|
85 |
+
for folder in os.listdir(f'{args.input_dir}/{group}'):
|
86 |
+
filename = f'{args.input_dir}/{group}/{folder}/{folder}.vrm'
|
87 |
+
outputdir = f'{args.save_dir}/{group}/{folder}'
|
88 |
+
files.append([filename, outputdir])
|
89 |
+
|
90 |
+
# sorted the files
|
91 |
+
files = sorted(files, key=lambda x: x[0])
|
92 |
+
|
93 |
+
# Use ThreadPoolExecutor for parallel processing
|
94 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
95 |
+
# Map the process_file function to the files
|
96 |
+
results = list(executor.map(process_file, files))
|
97 |
+
|
98 |
+
# Filter out None values from the results
|
99 |
+
unprocess_files = [file for file in results if file is not None]
|
100 |
+
|
101 |
+
# Print the number of unprocessed files and the split ID
|
102 |
+
print(f'Unprocessed files: {len(unprocess_files)}')
|
103 |
+
|
104 |
+
# Start worker processes on each of the GPUs
|
105 |
+
for gpu_i in range(args.num_gpus):
|
106 |
+
for worker_i in range(args.workers_per_gpu):
|
107 |
+
worker_i = gpu_i * args.workers_per_gpu + worker_i
|
108 |
+
process = multiprocessing.Process(
|
109 |
+
target=worker, args=(queue, count, gpu_i)
|
110 |
+
)
|
111 |
+
process.daemon = True
|
112 |
+
process.start()
|
113 |
+
|
114 |
+
for file in unprocess_files:
|
115 |
+
queue.put((file[0], file[1], args.engine, log_name))
|
116 |
+
|
117 |
+
# Add sentinels to the queue to stop the worker processes
|
118 |
+
for i in range(args.num_gpus * args.workers_per_gpu * 10):
|
119 |
+
queue.put(None)
|
120 |
+
# Wait for all tasks to be completed
|
121 |
+
queue.join()
|
122 |
+
end = time.time()
|
blender/install_addon.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bpy
|
2 |
+
import sys
|
3 |
+
|
4 |
+
def install_addon(addon_path):
|
5 |
+
bpy.ops.preferences.addon_install(filepath=addon_path)
|
6 |
+
bpy.ops.preferences.addon_enable(module=addon_path.split('/')[-1].replace('.py', '').replace('.zip', ''))
|
7 |
+
bpy.ops.wm.save_userpref()
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
if len(sys.argv) < 2:
|
11 |
+
print("Usage: blender --background --python install_addon.py -- <path_to_addon>")
|
12 |
+
sys.exit(1)
|
13 |
+
|
14 |
+
addon_path = sys.argv[-1]
|
15 |
+
install_addon(addon_path)
|
canonicalize/__init__.py
ADDED
File without changes
|
canonicalize/models/attention.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers import ModelMixin
|
12 |
+
from diffusers.utils import BaseOutput
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
15 |
+
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer3DModelOutput(BaseOutput):
|
21 |
+
sample: torch.FloatTensor
|
22 |
+
|
23 |
+
|
24 |
+
if is_xformers_available():
|
25 |
+
import xformers
|
26 |
+
import xformers.ops
|
27 |
+
else:
|
28 |
+
xformers = None
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
32 |
+
@register_to_config
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
num_attention_heads: int = 16,
|
36 |
+
attention_head_dim: int = 88,
|
37 |
+
in_channels: Optional[int] = None,
|
38 |
+
num_layers: int = 1,
|
39 |
+
dropout: float = 0.0,
|
40 |
+
norm_num_groups: int = 32,
|
41 |
+
cross_attention_dim: Optional[int] = None,
|
42 |
+
attention_bias: bool = False,
|
43 |
+
activation_fn: str = "geglu",
|
44 |
+
num_embeds_ada_norm: Optional[int] = None,
|
45 |
+
use_linear_projection: bool = False,
|
46 |
+
only_cross_attention: bool = False,
|
47 |
+
upcast_attention: bool = False,
|
48 |
+
use_attn_temp: bool = False,
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.use_linear_projection = use_linear_projection
|
52 |
+
self.num_attention_heads = num_attention_heads
|
53 |
+
self.attention_head_dim = attention_head_dim
|
54 |
+
inner_dim = num_attention_heads * attention_head_dim
|
55 |
+
|
56 |
+
# Define input layers
|
57 |
+
self.in_channels = in_channels
|
58 |
+
|
59 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
60 |
+
if use_linear_projection:
|
61 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
62 |
+
else:
|
63 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
64 |
+
|
65 |
+
# Define transformers blocks
|
66 |
+
self.transformer_blocks = nn.ModuleList(
|
67 |
+
[
|
68 |
+
BasicTransformerBlock(
|
69 |
+
inner_dim,
|
70 |
+
num_attention_heads,
|
71 |
+
attention_head_dim,
|
72 |
+
dropout=dropout,
|
73 |
+
cross_attention_dim=cross_attention_dim,
|
74 |
+
activation_fn=activation_fn,
|
75 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
76 |
+
attention_bias=attention_bias,
|
77 |
+
only_cross_attention=only_cross_attention,
|
78 |
+
upcast_attention=upcast_attention,
|
79 |
+
use_attn_temp = use_attn_temp,
|
80 |
+
)
|
81 |
+
for d in range(num_layers)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
# 4. Define output layers
|
86 |
+
if use_linear_projection:
|
87 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
88 |
+
else:
|
89 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
90 |
+
|
91 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
92 |
+
# Input
|
93 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
94 |
+
video_length = hidden_states.shape[2]
|
95 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
96 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
97 |
+
|
98 |
+
batch, channel, height, weight = hidden_states.shape
|
99 |
+
residual = hidden_states
|
100 |
+
|
101 |
+
hidden_states = self.norm(hidden_states)
|
102 |
+
if not self.use_linear_projection:
|
103 |
+
hidden_states = self.proj_in(hidden_states)
|
104 |
+
inner_dim = hidden_states.shape[1]
|
105 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
106 |
+
else:
|
107 |
+
inner_dim = hidden_states.shape[1]
|
108 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
109 |
+
hidden_states = self.proj_in(hidden_states)
|
110 |
+
|
111 |
+
# Blocks
|
112 |
+
for block in self.transformer_blocks:
|
113 |
+
hidden_states = block(
|
114 |
+
hidden_states,
|
115 |
+
encoder_hidden_states=encoder_hidden_states,
|
116 |
+
timestep=timestep,
|
117 |
+
video_length=video_length
|
118 |
+
)
|
119 |
+
|
120 |
+
# Output
|
121 |
+
if not self.use_linear_projection:
|
122 |
+
hidden_states = (
|
123 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
124 |
+
)
|
125 |
+
hidden_states = self.proj_out(hidden_states)
|
126 |
+
else:
|
127 |
+
hidden_states = self.proj_out(hidden_states)
|
128 |
+
hidden_states = (
|
129 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
130 |
+
)
|
131 |
+
|
132 |
+
output = hidden_states + residual
|
133 |
+
|
134 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
135 |
+
if not return_dict:
|
136 |
+
return (output,)
|
137 |
+
|
138 |
+
return Transformer3DModelOutput(sample=output)
|
139 |
+
|
140 |
+
|
141 |
+
class BasicTransformerBlock(nn.Module):
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
dim: int,
|
145 |
+
num_attention_heads: int,
|
146 |
+
attention_head_dim: int,
|
147 |
+
dropout=0.0,
|
148 |
+
cross_attention_dim: Optional[int] = None,
|
149 |
+
activation_fn: str = "geglu",
|
150 |
+
num_embeds_ada_norm: Optional[int] = None,
|
151 |
+
attention_bias: bool = False,
|
152 |
+
only_cross_attention: bool = False,
|
153 |
+
upcast_attention: bool = False,
|
154 |
+
use_attn_temp: bool = False
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
self.only_cross_attention = only_cross_attention
|
158 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
159 |
+
self.use_attn_temp = use_attn_temp
|
160 |
+
# SC-Attn
|
161 |
+
self.attn1 = SparseCausalAttention(
|
162 |
+
query_dim=dim,
|
163 |
+
heads=num_attention_heads,
|
164 |
+
dim_head=attention_head_dim,
|
165 |
+
dropout=dropout,
|
166 |
+
bias=attention_bias,
|
167 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
168 |
+
upcast_attention=upcast_attention,
|
169 |
+
)
|
170 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
171 |
+
|
172 |
+
# Cross-Attn
|
173 |
+
if cross_attention_dim is not None:
|
174 |
+
self.attn2 = CrossAttention(
|
175 |
+
query_dim=dim,
|
176 |
+
cross_attention_dim=cross_attention_dim,
|
177 |
+
heads=num_attention_heads,
|
178 |
+
dim_head=attention_head_dim,
|
179 |
+
dropout=dropout,
|
180 |
+
bias=attention_bias,
|
181 |
+
upcast_attention=upcast_attention,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
self.attn2 = None
|
185 |
+
|
186 |
+
if cross_attention_dim is not None:
|
187 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
188 |
+
else:
|
189 |
+
self.norm2 = None
|
190 |
+
|
191 |
+
# Feed-forward
|
192 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
193 |
+
self.norm3 = nn.LayerNorm(dim)
|
194 |
+
|
195 |
+
# Temp-Attn
|
196 |
+
if self.use_attn_temp:
|
197 |
+
self.attn_temp = CrossAttention(
|
198 |
+
query_dim=dim,
|
199 |
+
heads=num_attention_heads,
|
200 |
+
dim_head=attention_head_dim,
|
201 |
+
dropout=dropout,
|
202 |
+
bias=attention_bias,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
)
|
205 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
206 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
207 |
+
|
208 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
209 |
+
if not is_xformers_available():
|
210 |
+
print("Here is how to install it")
|
211 |
+
raise ModuleNotFoundError(
|
212 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
213 |
+
" xformers",
|
214 |
+
name="xformers",
|
215 |
+
)
|
216 |
+
elif not torch.cuda.is_available():
|
217 |
+
raise ValueError(
|
218 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
219 |
+
" available for GPU "
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
try:
|
223 |
+
# Make sure we can run the memory efficient attention
|
224 |
+
_ = xformers.ops.memory_efficient_attention(
|
225 |
+
torch.randn((1, 2, 40), device="cuda"),
|
226 |
+
torch.randn((1, 2, 40), device="cuda"),
|
227 |
+
torch.randn((1, 2, 40), device="cuda"),
|
228 |
+
)
|
229 |
+
except Exception as e:
|
230 |
+
raise e
|
231 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
232 |
+
if self.attn2 is not None:
|
233 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
234 |
+
#self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
235 |
+
|
236 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
237 |
+
# SparseCausal-Attention
|
238 |
+
norm_hidden_states = (
|
239 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
240 |
+
)
|
241 |
+
|
242 |
+
if self.only_cross_attention:
|
243 |
+
hidden_states = (
|
244 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
248 |
+
|
249 |
+
if self.attn2 is not None:
|
250 |
+
# Cross-Attention
|
251 |
+
norm_hidden_states = (
|
252 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
253 |
+
)
|
254 |
+
hidden_states = (
|
255 |
+
self.attn2(
|
256 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
257 |
+
)
|
258 |
+
+ hidden_states
|
259 |
+
)
|
260 |
+
|
261 |
+
# Feed-forward
|
262 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
263 |
+
|
264 |
+
# Temporal-Attention
|
265 |
+
if self.use_attn_temp:
|
266 |
+
d = hidden_states.shape[1]
|
267 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
268 |
+
norm_hidden_states = (
|
269 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
270 |
+
)
|
271 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
272 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
273 |
+
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
class SparseCausalAttention(CrossAttention):
|
278 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, use_full_attn=True):
|
279 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
280 |
+
|
281 |
+
encoder_hidden_states = encoder_hidden_states
|
282 |
+
|
283 |
+
if self.group_norm is not None:
|
284 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
285 |
+
|
286 |
+
query = self.to_q(hidden_states)
|
287 |
+
# query = rearrange(query, "(b f) d c -> b (f d) c", f=video_length)
|
288 |
+
dim = query.shape[-1]
|
289 |
+
query = self.reshape_heads_to_batch_dim(query)
|
290 |
+
|
291 |
+
if self.added_kv_proj_dim is not None:
|
292 |
+
raise NotImplementedError
|
293 |
+
|
294 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
295 |
+
key = self.to_k(encoder_hidden_states)
|
296 |
+
value = self.to_v(encoder_hidden_states)
|
297 |
+
|
298 |
+
former_frame_index = torch.arange(video_length) - 1
|
299 |
+
former_frame_index[0] = 0
|
300 |
+
|
301 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
302 |
+
if not use_full_attn:
|
303 |
+
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
304 |
+
else:
|
305 |
+
# key = torch.cat([key[:, [0] * video_length], key[:, [1] * video_length], key[:, [2] * video_length], key[:, [3] * video_length]], dim=2)
|
306 |
+
key_video_length = [key[:, [i] * video_length] for i in range(video_length)]
|
307 |
+
key = torch.cat(key_video_length, dim=2)
|
308 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
309 |
+
|
310 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
311 |
+
if not use_full_attn:
|
312 |
+
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
313 |
+
else:
|
314 |
+
# value = torch.cat([value[:, [0] * video_length], value[:, [1] * video_length], value[:, [2] * video_length], value[:, [3] * video_length]], dim=2)
|
315 |
+
value_video_length = [value[:, [i] * video_length] for i in range(video_length)]
|
316 |
+
value = torch.cat(value_video_length, dim=2)
|
317 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
318 |
+
|
319 |
+
key = self.reshape_heads_to_batch_dim(key)
|
320 |
+
value = self.reshape_heads_to_batch_dim(value)
|
321 |
+
|
322 |
+
if attention_mask is not None:
|
323 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
324 |
+
target_length = query.shape[1]
|
325 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
326 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
327 |
+
|
328 |
+
# attention, what we cannot get enough of
|
329 |
+
if self._use_memory_efficient_attention_xformers:
|
330 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
331 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
332 |
+
hidden_states = hidden_states.to(query.dtype)
|
333 |
+
else:
|
334 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
335 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
336 |
+
else:
|
337 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
338 |
+
|
339 |
+
# linear proj
|
340 |
+
hidden_states = self.to_out[0](hidden_states)
|
341 |
+
|
342 |
+
# dropout
|
343 |
+
hidden_states = self.to_out[1](hidden_states)
|
344 |
+
return hidden_states
|
canonicalize/models/imageproj.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
# FFN
|
8 |
+
def FeedForward(dim, mult=4):
|
9 |
+
inner_dim = int(dim * mult)
|
10 |
+
return nn.Sequential(
|
11 |
+
nn.LayerNorm(dim),
|
12 |
+
nn.Linear(dim, inner_dim, bias=False),
|
13 |
+
nn.GELU(),
|
14 |
+
nn.Linear(inner_dim, dim, bias=False),
|
15 |
+
)
|
16 |
+
|
17 |
+
def reshape_tensor(x, heads):
|
18 |
+
bs, length, width = x.shape
|
19 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
20 |
+
x = x.view(bs, length, heads, -1)
|
21 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
22 |
+
x = x.transpose(1, 2)
|
23 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
24 |
+
x = x.reshape(bs, heads, length, -1)
|
25 |
+
return x
|
26 |
+
|
27 |
+
|
28 |
+
class PerceiverAttention(nn.Module):
|
29 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
30 |
+
super().__init__()
|
31 |
+
self.scale = dim_head**-0.5
|
32 |
+
self.dim_head = dim_head
|
33 |
+
self.heads = heads
|
34 |
+
inner_dim = dim_head * heads
|
35 |
+
|
36 |
+
self.norm1 = nn.LayerNorm(dim)
|
37 |
+
self.norm2 = nn.LayerNorm(dim)
|
38 |
+
|
39 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
40 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
41 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
42 |
+
|
43 |
+
|
44 |
+
def forward(self, x, latents):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x (torch.Tensor): image features
|
48 |
+
shape (b, n1, D)
|
49 |
+
latent (torch.Tensor): latent features
|
50 |
+
shape (b, n2, D)
|
51 |
+
"""
|
52 |
+
x = self.norm1(x)
|
53 |
+
latents = self.norm2(latents)
|
54 |
+
|
55 |
+
b, l, _ = latents.shape
|
56 |
+
|
57 |
+
q = self.to_q(latents)
|
58 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
59 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
60 |
+
|
61 |
+
q = reshape_tensor(q, self.heads)
|
62 |
+
k = reshape_tensor(k, self.heads)
|
63 |
+
v = reshape_tensor(v, self.heads)
|
64 |
+
|
65 |
+
# attention
|
66 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
67 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
68 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
69 |
+
out = weight @ v
|
70 |
+
|
71 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
72 |
+
|
73 |
+
return self.to_out(out)
|
74 |
+
|
75 |
+
class Resampler(nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
dim=1024,
|
79 |
+
depth=8,
|
80 |
+
dim_head=64,
|
81 |
+
heads=16,
|
82 |
+
num_queries=8,
|
83 |
+
embedding_dim=768,
|
84 |
+
output_dim=1024,
|
85 |
+
ff_mult=4,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
90 |
+
|
91 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
92 |
+
|
93 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
94 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
95 |
+
|
96 |
+
self.layers = nn.ModuleList([])
|
97 |
+
for _ in range(depth):
|
98 |
+
self.layers.append(
|
99 |
+
nn.ModuleList(
|
100 |
+
[
|
101 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
102 |
+
FeedForward(dim=dim, mult=ff_mult),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
|
109 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
110 |
+
|
111 |
+
x = self.proj_in(x)
|
112 |
+
|
113 |
+
for attn, ff in self.layers:
|
114 |
+
latents = attn(x, latents) + latents
|
115 |
+
latents = ff(latents) + latents
|
116 |
+
|
117 |
+
latents = self.proj_out(latents)
|
118 |
+
return self.norm_out(latents)
|
canonicalize/models/refunet.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
from diffusers.utils.import_utils import is_xformers_available
|
5 |
+
from canonicalize.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
6 |
+
|
7 |
+
|
8 |
+
class ReferenceOnlyAttnProc(torch.nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
chained_proc,
|
12 |
+
enabled=False,
|
13 |
+
name=None
|
14 |
+
) -> None:
|
15 |
+
super().__init__()
|
16 |
+
self.enabled = enabled
|
17 |
+
self.chained_proc = chained_proc
|
18 |
+
self.name = name
|
19 |
+
|
20 |
+
def __call__(
|
21 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
22 |
+
mode="w", ref_dict: dict = None, is_cfg_guidance = False,num_views=4,
|
23 |
+
multiview_attention=True,
|
24 |
+
cross_domain_attention=False,
|
25 |
+
) -> Any:
|
26 |
+
if encoder_hidden_states is None:
|
27 |
+
encoder_hidden_states = hidden_states
|
28 |
+
|
29 |
+
if self.enabled:
|
30 |
+
if mode == 'w':
|
31 |
+
ref_dict[self.name] = encoder_hidden_states
|
32 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=1,
|
33 |
+
multiview_attention=False,
|
34 |
+
cross_domain_attention=False,)
|
35 |
+
elif mode == 'r':
|
36 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, '(b t) d c-> b (t d) c', t=num_views)
|
37 |
+
if self.name in ref_dict:
|
38 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
39 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=num_views,
|
40 |
+
multiview_attention=False,
|
41 |
+
cross_domain_attention=False,)
|
42 |
+
elif mode == 'm':
|
43 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
|
44 |
+
elif mode == 'n':
|
45 |
+
encoder_hidden_states = rearrange(encoder_hidden_states, '(b t) d c-> b (t d) c', t=num_views)
|
46 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states], dim=1).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
47 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, num_views=num_views,
|
48 |
+
multiview_attention=False,
|
49 |
+
cross_domain_attention=False,)
|
50 |
+
else:
|
51 |
+
assert False, mode
|
52 |
+
else:
|
53 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
54 |
+
return res
|
55 |
+
|
56 |
+
class RefOnlyNoisedUNet(torch.nn.Module):
|
57 |
+
def __init__(self, unet, train_sched, val_sched) -> None:
|
58 |
+
super().__init__()
|
59 |
+
self.unet = unet
|
60 |
+
self.train_sched = train_sched
|
61 |
+
self.val_sched = val_sched
|
62 |
+
|
63 |
+
unet_lora_attn_procs = dict()
|
64 |
+
for name, _ in unet.attn_processors.items():
|
65 |
+
if is_xformers_available():
|
66 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
67 |
+
else:
|
68 |
+
default_attn_proc = MVAttnProcessor()
|
69 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
70 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name)
|
71 |
+
|
72 |
+
self.unet.set_attn_processor(unet_lora_attn_procs)
|
73 |
+
|
74 |
+
def __getattr__(self, name: str):
|
75 |
+
try:
|
76 |
+
return super().__getattr__(name)
|
77 |
+
except AttributeError:
|
78 |
+
return getattr(self.unet, name)
|
79 |
+
|
80 |
+
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
|
81 |
+
if is_cfg_guidance:
|
82 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
83 |
+
class_labels = class_labels[1:]
|
84 |
+
self.unet(
|
85 |
+
noisy_cond_lat, timestep,
|
86 |
+
encoder_hidden_states=encoder_hidden_states,
|
87 |
+
class_labels=class_labels,
|
88 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
89 |
+
**kwargs
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
94 |
+
*args, cross_attention_kwargs,
|
95 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
96 |
+
**kwargs
|
97 |
+
):
|
98 |
+
cond_lat = cross_attention_kwargs['cond_lat']
|
99 |
+
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
|
100 |
+
noise = torch.randn_like(cond_lat)
|
101 |
+
if self.training:
|
102 |
+
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
103 |
+
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
104 |
+
else:
|
105 |
+
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
106 |
+
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
107 |
+
ref_dict = {}
|
108 |
+
self.forward_cond(
|
109 |
+
noisy_cond_lat, timestep,
|
110 |
+
encoder_hidden_states, class_labels,
|
111 |
+
ref_dict, is_cfg_guidance, **kwargs
|
112 |
+
)
|
113 |
+
weight_dtype = self.unet.dtype
|
114 |
+
return self.unet(
|
115 |
+
sample, timestep,
|
116 |
+
encoder_hidden_states, *args,
|
117 |
+
class_labels=class_labels,
|
118 |
+
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
|
119 |
+
down_block_additional_residuals=[
|
120 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
121 |
+
] if down_block_res_samples is not None else None,
|
122 |
+
mid_block_additional_residual=(
|
123 |
+
mid_block_res_sample.to(dtype=weight_dtype)
|
124 |
+
if mid_block_res_sample is not None else None
|
125 |
+
),
|
126 |
+
**kwargs
|
127 |
+
)
|
canonicalize/models/resnet.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
class Upsample3D(nn.Module):
|
22 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.out_channels = out_channels or channels
|
26 |
+
self.use_conv = use_conv
|
27 |
+
self.use_conv_transpose = use_conv_transpose
|
28 |
+
self.name = name
|
29 |
+
|
30 |
+
conv = None
|
31 |
+
if use_conv_transpose:
|
32 |
+
raise NotImplementedError
|
33 |
+
elif use_conv:
|
34 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
35 |
+
|
36 |
+
if name == "conv":
|
37 |
+
self.conv = conv
|
38 |
+
else:
|
39 |
+
self.Conv2d_0 = conv
|
40 |
+
|
41 |
+
def forward(self, hidden_states, output_size=None):
|
42 |
+
assert hidden_states.shape[1] == self.channels
|
43 |
+
|
44 |
+
if self.use_conv_transpose:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
48 |
+
dtype = hidden_states.dtype
|
49 |
+
if dtype == torch.bfloat16:
|
50 |
+
hidden_states = hidden_states.to(torch.float32)
|
51 |
+
|
52 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
53 |
+
if hidden_states.shape[0] >= 64:
|
54 |
+
hidden_states = hidden_states.contiguous()
|
55 |
+
|
56 |
+
# if `output_size` is passed we force the interpolation output
|
57 |
+
# size and do not make use of `scale_factor=2`
|
58 |
+
if output_size is None:
|
59 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
60 |
+
else:
|
61 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
62 |
+
|
63 |
+
# If the input is bfloat16, we cast back to bfloat16
|
64 |
+
if dtype == torch.bfloat16:
|
65 |
+
hidden_states = hidden_states.to(dtype)
|
66 |
+
|
67 |
+
if self.use_conv:
|
68 |
+
if self.name == "conv":
|
69 |
+
hidden_states = self.conv(hidden_states)
|
70 |
+
else:
|
71 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
72 |
+
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample3D(nn.Module):
|
77 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.out_channels = out_channels or channels
|
81 |
+
self.use_conv = use_conv
|
82 |
+
self.padding = padding
|
83 |
+
stride = 2
|
84 |
+
self.name = name
|
85 |
+
|
86 |
+
if use_conv:
|
87 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
88 |
+
else:
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
if name == "conv":
|
92 |
+
self.Conv2d_0 = conv
|
93 |
+
self.conv = conv
|
94 |
+
elif name == "Conv2d_0":
|
95 |
+
self.conv = conv
|
96 |
+
else:
|
97 |
+
self.conv = conv
|
98 |
+
|
99 |
+
def forward(self, hidden_states):
|
100 |
+
assert hidden_states.shape[1] == self.channels
|
101 |
+
if self.use_conv and self.padding == 0:
|
102 |
+
raise NotImplementedError
|
103 |
+
|
104 |
+
assert hidden_states.shape[1] == self.channels
|
105 |
+
hidden_states = self.conv(hidden_states)
|
106 |
+
|
107 |
+
return hidden_states
|
108 |
+
|
109 |
+
|
110 |
+
class ResnetBlock3D(nn.Module):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
*,
|
114 |
+
in_channels,
|
115 |
+
out_channels=None,
|
116 |
+
conv_shortcut=False,
|
117 |
+
dropout=0.0,
|
118 |
+
temb_channels=512,
|
119 |
+
groups=32,
|
120 |
+
groups_out=None,
|
121 |
+
pre_norm=True,
|
122 |
+
eps=1e-6,
|
123 |
+
non_linearity="swish",
|
124 |
+
time_embedding_norm="default",
|
125 |
+
output_scale_factor=1.0,
|
126 |
+
use_in_shortcut=None,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pre_norm = pre_norm
|
130 |
+
self.pre_norm = True
|
131 |
+
self.in_channels = in_channels
|
132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.out_channels = out_channels
|
134 |
+
self.use_conv_shortcut = conv_shortcut
|
135 |
+
self.time_embedding_norm = time_embedding_norm
|
136 |
+
self.output_scale_factor = output_scale_factor
|
137 |
+
|
138 |
+
if groups_out is None:
|
139 |
+
groups_out = groups
|
140 |
+
|
141 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
142 |
+
|
143 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
144 |
+
|
145 |
+
if temb_channels is not None:
|
146 |
+
if self.time_embedding_norm == "default":
|
147 |
+
time_emb_proj_out_channels = out_channels
|
148 |
+
elif self.time_embedding_norm == "scale_shift":
|
149 |
+
time_emb_proj_out_channels = out_channels * 2
|
150 |
+
else:
|
151 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
152 |
+
|
153 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
154 |
+
else:
|
155 |
+
self.time_emb_proj = None
|
156 |
+
|
157 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
158 |
+
self.dropout = torch.nn.Dropout(dropout)
|
159 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
160 |
+
|
161 |
+
if non_linearity == "swish":
|
162 |
+
self.nonlinearity = lambda x: F.silu(x)
|
163 |
+
elif non_linearity == "mish":
|
164 |
+
self.nonlinearity = Mish()
|
165 |
+
elif non_linearity == "silu":
|
166 |
+
self.nonlinearity = nn.SiLU()
|
167 |
+
|
168 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
169 |
+
|
170 |
+
self.conv_shortcut = None
|
171 |
+
if self.use_in_shortcut:
|
172 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
173 |
+
|
174 |
+
def forward(self, input_tensor, temb):
|
175 |
+
hidden_states = input_tensor
|
176 |
+
|
177 |
+
hidden_states = self.norm1(hidden_states)
|
178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
179 |
+
|
180 |
+
hidden_states = self.conv1(hidden_states)
|
181 |
+
|
182 |
+
if temb is not None:
|
183 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, :, None, None].permute(0,2,1,3,4)
|
184 |
+
|
185 |
+
if temb is not None and self.time_embedding_norm == "default":
|
186 |
+
hidden_states = hidden_states + temb
|
187 |
+
|
188 |
+
hidden_states = self.norm2(hidden_states)
|
189 |
+
|
190 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
191 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
192 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
193 |
+
|
194 |
+
hidden_states = self.nonlinearity(hidden_states)
|
195 |
+
|
196 |
+
hidden_states = self.dropout(hidden_states)
|
197 |
+
hidden_states = self.conv2(hidden_states)
|
198 |
+
|
199 |
+
if self.conv_shortcut is not None:
|
200 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
201 |
+
|
202 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
203 |
+
|
204 |
+
return output_tensor
|
205 |
+
|
206 |
+
|
207 |
+
class Mish(torch.nn.Module):
|
208 |
+
def forward(self, hidden_states):
|
209 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
canonicalize/models/transformer_mv2d.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
try:
|
25 |
+
from diffusers.utils import maybe_allow_in_graph
|
26 |
+
except:
|
27 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
28 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
29 |
+
from diffusers.models.embeddings import PatchEmbed
|
30 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
+
from diffusers.models.modeling_utils import ModelMixin
|
32 |
+
from diffusers.utils.import_utils import is_xformers_available
|
33 |
+
|
34 |
+
from einops import rearrange
|
35 |
+
import pdb
|
36 |
+
import random
|
37 |
+
|
38 |
+
|
39 |
+
if is_xformers_available():
|
40 |
+
import xformers
|
41 |
+
import xformers.ops
|
42 |
+
else:
|
43 |
+
xformers = None
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
48 |
+
"""
|
49 |
+
The output of [`Transformer2DModel`].
|
50 |
+
|
51 |
+
Args:
|
52 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
53 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
54 |
+
distributions for the unnoised latent pixels.
|
55 |
+
"""
|
56 |
+
|
57 |
+
sample: torch.FloatTensor
|
58 |
+
|
59 |
+
|
60 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
61 |
+
"""
|
62 |
+
A 2D Transformer model for image-like data.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
66 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
67 |
+
in_channels (`int`, *optional*):
|
68 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
69 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
70 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
71 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
72 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
73 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
74 |
+
num_vector_embeds (`int`, *optional*):
|
75 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
76 |
+
Includes the class for the masked latent pixel.
|
77 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
78 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
79 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
80 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
81 |
+
added to the hidden states.
|
82 |
+
|
83 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
84 |
+
attention_bias (`bool`, *optional*):
|
85 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
86 |
+
"""
|
87 |
+
|
88 |
+
@register_to_config
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
num_attention_heads: int = 16,
|
92 |
+
attention_head_dim: int = 88,
|
93 |
+
in_channels: Optional[int] = None,
|
94 |
+
out_channels: Optional[int] = None,
|
95 |
+
num_layers: int = 1,
|
96 |
+
dropout: float = 0.0,
|
97 |
+
norm_num_groups: int = 32,
|
98 |
+
cross_attention_dim: Optional[int] = None,
|
99 |
+
attention_bias: bool = False,
|
100 |
+
sample_size: Optional[int] = None,
|
101 |
+
num_vector_embeds: Optional[int] = None,
|
102 |
+
patch_size: Optional[int] = None,
|
103 |
+
activation_fn: str = "geglu",
|
104 |
+
num_embeds_ada_norm: Optional[int] = None,
|
105 |
+
use_linear_projection: bool = False,
|
106 |
+
only_cross_attention: bool = False,
|
107 |
+
upcast_attention: bool = False,
|
108 |
+
norm_type: str = "layer_norm",
|
109 |
+
norm_elementwise_affine: bool = True,
|
110 |
+
num_views: int = 1,
|
111 |
+
joint_attention: bool=False,
|
112 |
+
joint_attention_twice: bool=False,
|
113 |
+
multiview_attention: bool=True,
|
114 |
+
cross_domain_attention: bool=False
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.use_linear_projection = use_linear_projection
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.attention_head_dim = attention_head_dim
|
120 |
+
inner_dim = num_attention_heads * attention_head_dim
|
121 |
+
|
122 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
123 |
+
# Define whether input is continuous or discrete depending on configuration
|
124 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
125 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
126 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
127 |
+
|
128 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
129 |
+
deprecation_message = (
|
130 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
131 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
132 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
133 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
134 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
135 |
+
)
|
136 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
137 |
+
norm_type = "ada_norm"
|
138 |
+
|
139 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
140 |
+
raise ValueError(
|
141 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
142 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
143 |
+
)
|
144 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
145 |
+
raise ValueError(
|
146 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
147 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
148 |
+
)
|
149 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
150 |
+
raise ValueError(
|
151 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
152 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
153 |
+
)
|
154 |
+
|
155 |
+
# 2. Define input layers
|
156 |
+
if self.is_input_continuous:
|
157 |
+
self.in_channels = in_channels
|
158 |
+
|
159 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
160 |
+
if use_linear_projection:
|
161 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
162 |
+
else:
|
163 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
164 |
+
elif self.is_input_vectorized:
|
165 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
166 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
self.num_vector_embeds = num_vector_embeds
|
171 |
+
self.num_latent_pixels = self.height * self.width
|
172 |
+
|
173 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
174 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
175 |
+
)
|
176 |
+
elif self.is_input_patches:
|
177 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
178 |
+
|
179 |
+
self.height = sample_size
|
180 |
+
self.width = sample_size
|
181 |
+
|
182 |
+
self.patch_size = patch_size
|
183 |
+
self.pos_embed = PatchEmbed(
|
184 |
+
height=sample_size,
|
185 |
+
width=sample_size,
|
186 |
+
patch_size=patch_size,
|
187 |
+
in_channels=in_channels,
|
188 |
+
embed_dim=inner_dim,
|
189 |
+
)
|
190 |
+
|
191 |
+
# 3. Define transformers blocks
|
192 |
+
self.transformer_blocks = nn.ModuleList(
|
193 |
+
[
|
194 |
+
BasicMVTransformerBlock(
|
195 |
+
inner_dim,
|
196 |
+
num_attention_heads,
|
197 |
+
attention_head_dim,
|
198 |
+
dropout=dropout,
|
199 |
+
cross_attention_dim=cross_attention_dim,
|
200 |
+
activation_fn=activation_fn,
|
201 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
202 |
+
attention_bias=attention_bias,
|
203 |
+
only_cross_attention=only_cross_attention,
|
204 |
+
upcast_attention=upcast_attention,
|
205 |
+
norm_type=norm_type,
|
206 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
207 |
+
num_views=num_views,
|
208 |
+
joint_attention=joint_attention,
|
209 |
+
joint_attention_twice=joint_attention_twice,
|
210 |
+
multiview_attention=multiview_attention,
|
211 |
+
cross_domain_attention=cross_domain_attention
|
212 |
+
)
|
213 |
+
for d in range(num_layers)
|
214 |
+
]
|
215 |
+
)
|
216 |
+
|
217 |
+
# 4. Define output layers
|
218 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
219 |
+
if self.is_input_continuous:
|
220 |
+
# TODO: should use out_channels for continuous projections
|
221 |
+
if use_linear_projection:
|
222 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
223 |
+
else:
|
224 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
225 |
+
elif self.is_input_vectorized:
|
226 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
227 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
228 |
+
elif self.is_input_patches:
|
229 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
230 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
231 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states: torch.Tensor,
|
236 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
237 |
+
timestep: Optional[torch.LongTensor] = None,
|
238 |
+
class_labels: Optional[torch.LongTensor] = None,
|
239 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
240 |
+
attention_mask: Optional[torch.Tensor] = None,
|
241 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
242 |
+
return_dict: bool = True,
|
243 |
+
):
|
244 |
+
"""
|
245 |
+
The [`Transformer2DModel`] forward method.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
249 |
+
Input `hidden_states`.
|
250 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
251 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
252 |
+
self-attention.
|
253 |
+
timestep ( `torch.LongTensor`, *optional*):
|
254 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
255 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
256 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
257 |
+
`AdaLayerZeroNorm`.
|
258 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
259 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
260 |
+
|
261 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
262 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
263 |
+
|
264 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
265 |
+
above. This bias will be added to the cross-attention scores.
|
266 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
267 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
268 |
+
tuple.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
272 |
+
`tuple` where the first element is the sample tensor.
|
273 |
+
"""
|
274 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
275 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
276 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
277 |
+
# expects mask of shape:
|
278 |
+
# [batch, key_tokens]
|
279 |
+
# adds singleton query_tokens dimension:
|
280 |
+
# [batch, 1, key_tokens]
|
281 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
282 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
283 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
284 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
285 |
+
# assume that mask is expressed as:
|
286 |
+
# (1 = keep, 0 = discard)
|
287 |
+
# convert mask into a bias that can be added to attention scores:
|
288 |
+
# (keep = +0, discard = -10000.0)
|
289 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
290 |
+
attention_mask = attention_mask.unsqueeze(1)
|
291 |
+
|
292 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
293 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
294 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
295 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
296 |
+
|
297 |
+
# 1. Input
|
298 |
+
if self.is_input_continuous:
|
299 |
+
batch, _, height, width = hidden_states.shape
|
300 |
+
residual = hidden_states
|
301 |
+
|
302 |
+
hidden_states = self.norm(hidden_states)
|
303 |
+
if not self.use_linear_projection:
|
304 |
+
hidden_states = self.proj_in(hidden_states)
|
305 |
+
inner_dim = hidden_states.shape[1]
|
306 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
307 |
+
else:
|
308 |
+
inner_dim = hidden_states.shape[1]
|
309 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
310 |
+
hidden_states = self.proj_in(hidden_states)
|
311 |
+
elif self.is_input_vectorized:
|
312 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
313 |
+
elif self.is_input_patches:
|
314 |
+
hidden_states = self.pos_embed(hidden_states)
|
315 |
+
|
316 |
+
# 2. Blocks
|
317 |
+
for block in self.transformer_blocks:
|
318 |
+
hidden_states = block(
|
319 |
+
hidden_states,
|
320 |
+
attention_mask=attention_mask,
|
321 |
+
encoder_hidden_states=encoder_hidden_states,
|
322 |
+
encoder_attention_mask=encoder_attention_mask,
|
323 |
+
timestep=timestep,
|
324 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
325 |
+
class_labels=class_labels,
|
326 |
+
)
|
327 |
+
|
328 |
+
# 3. Output
|
329 |
+
if self.is_input_continuous:
|
330 |
+
if not self.use_linear_projection:
|
331 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
332 |
+
hidden_states = self.proj_out(hidden_states)
|
333 |
+
else:
|
334 |
+
hidden_states = self.proj_out(hidden_states)
|
335 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
336 |
+
|
337 |
+
output = hidden_states + residual
|
338 |
+
elif self.is_input_vectorized:
|
339 |
+
hidden_states = self.norm_out(hidden_states)
|
340 |
+
logits = self.out(hidden_states)
|
341 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
342 |
+
logits = logits.permute(0, 2, 1)
|
343 |
+
|
344 |
+
# log(p(x_0))
|
345 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
346 |
+
elif self.is_input_patches:
|
347 |
+
# TODO: cleanup!
|
348 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
349 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
350 |
+
)
|
351 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
352 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
353 |
+
hidden_states = self.proj_out_2(hidden_states)
|
354 |
+
|
355 |
+
# unpatchify
|
356 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
357 |
+
hidden_states = hidden_states.reshape(
|
358 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
359 |
+
)
|
360 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
361 |
+
output = hidden_states.reshape(
|
362 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
363 |
+
)
|
364 |
+
|
365 |
+
if not return_dict:
|
366 |
+
return (output,)
|
367 |
+
|
368 |
+
return TransformerMV2DModelOutput(sample=output)
|
369 |
+
|
370 |
+
|
371 |
+
@maybe_allow_in_graph
|
372 |
+
class BasicMVTransformerBlock(nn.Module):
|
373 |
+
r"""
|
374 |
+
A basic Transformer block.
|
375 |
+
|
376 |
+
Parameters:
|
377 |
+
dim (`int`): The number of channels in the input and output.
|
378 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
379 |
+
attention_head_dim (`int`): The number of channels in each head.
|
380 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
381 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
382 |
+
only_cross_attention (`bool`, *optional*):
|
383 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
384 |
+
double_self_attention (`bool`, *optional*):
|
385 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
386 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
387 |
+
num_embeds_ada_norm (:
|
388 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
389 |
+
attention_bias (:
|
390 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
dim: int,
|
396 |
+
num_attention_heads: int,
|
397 |
+
attention_head_dim: int,
|
398 |
+
dropout=0.0,
|
399 |
+
cross_attention_dim: Optional[int] = None,
|
400 |
+
activation_fn: str = "geglu",
|
401 |
+
num_embeds_ada_norm: Optional[int] = None,
|
402 |
+
attention_bias: bool = False,
|
403 |
+
only_cross_attention: bool = False,
|
404 |
+
double_self_attention: bool = False,
|
405 |
+
upcast_attention: bool = False,
|
406 |
+
norm_elementwise_affine: bool = True,
|
407 |
+
norm_type: str = "layer_norm",
|
408 |
+
final_dropout: bool = False,
|
409 |
+
num_views: int = 1,
|
410 |
+
joint_attention: bool = False,
|
411 |
+
joint_attention_twice: bool = False,
|
412 |
+
multiview_attention: bool = True,
|
413 |
+
cross_domain_attention: bool = False
|
414 |
+
):
|
415 |
+
super().__init__()
|
416 |
+
self.only_cross_attention = only_cross_attention
|
417 |
+
|
418 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
419 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
420 |
+
|
421 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
422 |
+
raise ValueError(
|
423 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
424 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
425 |
+
)
|
426 |
+
|
427 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
428 |
+
# 1. Self-Attn
|
429 |
+
if self.use_ada_layer_norm:
|
430 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
431 |
+
elif self.use_ada_layer_norm_zero:
|
432 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
435 |
+
|
436 |
+
self.multiview_attention = multiview_attention
|
437 |
+
self.cross_domain_attention = cross_domain_attention
|
438 |
+
self.attn1 = CustomAttention(
|
439 |
+
query_dim=dim,
|
440 |
+
heads=num_attention_heads,
|
441 |
+
dim_head=attention_head_dim,
|
442 |
+
dropout=dropout,
|
443 |
+
bias=attention_bias,
|
444 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
445 |
+
upcast_attention=upcast_attention,
|
446 |
+
processor=MVAttnProcessor()
|
447 |
+
)
|
448 |
+
|
449 |
+
# 2. Cross-Attn
|
450 |
+
if cross_attention_dim is not None or double_self_attention:
|
451 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
452 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
453 |
+
# the second cross attention block.
|
454 |
+
self.norm2 = (
|
455 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
456 |
+
if self.use_ada_layer_norm
|
457 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
458 |
+
)
|
459 |
+
self.attn2 = Attention(
|
460 |
+
query_dim=dim,
|
461 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
462 |
+
heads=num_attention_heads,
|
463 |
+
dim_head=attention_head_dim,
|
464 |
+
dropout=dropout,
|
465 |
+
bias=attention_bias,
|
466 |
+
upcast_attention=upcast_attention,
|
467 |
+
) # is self-attn if encoder_hidden_states is none
|
468 |
+
else:
|
469 |
+
self.norm2 = None
|
470 |
+
self.attn2 = None
|
471 |
+
|
472 |
+
# 3. Feed-forward
|
473 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
474 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
475 |
+
|
476 |
+
# let chunk size default to None
|
477 |
+
self._chunk_size = None
|
478 |
+
self._chunk_dim = 0
|
479 |
+
|
480 |
+
self.num_views = num_views
|
481 |
+
|
482 |
+
self.joint_attention = joint_attention
|
483 |
+
|
484 |
+
if self.joint_attention:
|
485 |
+
# Joint task -Attn
|
486 |
+
self.attn_joint = CustomJointAttention(
|
487 |
+
query_dim=dim,
|
488 |
+
heads=num_attention_heads,
|
489 |
+
dim_head=attention_head_dim,
|
490 |
+
dropout=dropout,
|
491 |
+
bias=attention_bias,
|
492 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
493 |
+
upcast_attention=upcast_attention,
|
494 |
+
processor=JointAttnProcessor()
|
495 |
+
)
|
496 |
+
nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
497 |
+
self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
498 |
+
|
499 |
+
|
500 |
+
self.joint_attention_twice = joint_attention_twice
|
501 |
+
|
502 |
+
if self.joint_attention_twice:
|
503 |
+
print("joint twice")
|
504 |
+
# Joint task -Attn
|
505 |
+
self.attn_joint_twice = CustomJointAttention(
|
506 |
+
query_dim=dim,
|
507 |
+
heads=num_attention_heads,
|
508 |
+
dim_head=attention_head_dim,
|
509 |
+
dropout=dropout,
|
510 |
+
bias=attention_bias,
|
511 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
512 |
+
upcast_attention=upcast_attention,
|
513 |
+
processor=JointAttnProcessor()
|
514 |
+
)
|
515 |
+
nn.init.zeros_(self.attn_joint_twice.to_out[0].weight.data)
|
516 |
+
self.norm_joint_twice = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
517 |
+
|
518 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
519 |
+
# Sets chunk feed-forward
|
520 |
+
self._chunk_size = chunk_size
|
521 |
+
self._chunk_dim = dim
|
522 |
+
|
523 |
+
def forward(
|
524 |
+
self,
|
525 |
+
hidden_states: torch.FloatTensor,
|
526 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
527 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
528 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
529 |
+
timestep: Optional[torch.LongTensor] = None,
|
530 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
531 |
+
class_labels: Optional[torch.LongTensor] = None,
|
532 |
+
):
|
533 |
+
assert attention_mask is None # not supported yet
|
534 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
535 |
+
# 1. Self-Attention
|
536 |
+
if self.use_ada_layer_norm:
|
537 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
538 |
+
elif self.use_ada_layer_norm_zero:
|
539 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
540 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
541 |
+
)
|
542 |
+
else:
|
543 |
+
norm_hidden_states = self.norm1(hidden_states)
|
544 |
+
|
545 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
546 |
+
attn_output = self.attn1(
|
547 |
+
norm_hidden_states,
|
548 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
549 |
+
attention_mask=attention_mask,
|
550 |
+
num_views=self.num_views,
|
551 |
+
multiview_attention=self.multiview_attention,
|
552 |
+
cross_domain_attention=self.cross_domain_attention,
|
553 |
+
**cross_attention_kwargs,
|
554 |
+
)
|
555 |
+
|
556 |
+
|
557 |
+
if self.use_ada_layer_norm_zero:
|
558 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
559 |
+
hidden_states = attn_output + hidden_states
|
560 |
+
|
561 |
+
# joint attention twice
|
562 |
+
if self.joint_attention_twice:
|
563 |
+
norm_hidden_states = (
|
564 |
+
self.norm_joint_twice(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_twice(hidden_states)
|
565 |
+
)
|
566 |
+
hidden_states = self.attn_joint_twice(norm_hidden_states) + hidden_states
|
567 |
+
|
568 |
+
# 2. Cross-Attention
|
569 |
+
if self.attn2 is not None:
|
570 |
+
norm_hidden_states = (
|
571 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
572 |
+
)
|
573 |
+
attn_output = self.attn2(
|
574 |
+
norm_hidden_states,
|
575 |
+
encoder_hidden_states=encoder_hidden_states,
|
576 |
+
attention_mask=encoder_attention_mask,
|
577 |
+
**cross_attention_kwargs,
|
578 |
+
)
|
579 |
+
hidden_states = attn_output + hidden_states
|
580 |
+
|
581 |
+
# 3. Feed-forward
|
582 |
+
norm_hidden_states = self.norm3(hidden_states)
|
583 |
+
|
584 |
+
if self.use_ada_layer_norm_zero:
|
585 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
586 |
+
|
587 |
+
if self._chunk_size is not None:
|
588 |
+
# "feed_forward_chunk_size" can be used to save memory
|
589 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
590 |
+
raise ValueError(
|
591 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
592 |
+
)
|
593 |
+
|
594 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
595 |
+
ff_output = torch.cat(
|
596 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
597 |
+
dim=self._chunk_dim,
|
598 |
+
)
|
599 |
+
else:
|
600 |
+
ff_output = self.ff(norm_hidden_states)
|
601 |
+
|
602 |
+
if self.use_ada_layer_norm_zero:
|
603 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
604 |
+
|
605 |
+
hidden_states = ff_output + hidden_states
|
606 |
+
|
607 |
+
if self.joint_attention:
|
608 |
+
norm_hidden_states = (
|
609 |
+
self.norm_joint(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint(hidden_states)
|
610 |
+
)
|
611 |
+
hidden_states = self.attn_joint(norm_hidden_states) + hidden_states
|
612 |
+
|
613 |
+
return hidden_states
|
614 |
+
|
615 |
+
|
616 |
+
class CustomAttention(Attention):
|
617 |
+
def set_use_memory_efficient_attention_xformers(
|
618 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
619 |
+
):
|
620 |
+
processor = XFormersMVAttnProcessor()
|
621 |
+
self.set_processor(processor)
|
622 |
+
# print("using xformers attention processor")
|
623 |
+
|
624 |
+
|
625 |
+
class CustomJointAttention(Attention):
|
626 |
+
def set_use_memory_efficient_attention_xformers(
|
627 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
628 |
+
):
|
629 |
+
processor = XFormersJointAttnProcessor()
|
630 |
+
self.set_processor(processor)
|
631 |
+
# print("using xformers attention processor")
|
632 |
+
|
633 |
+
class MVAttnProcessor:
|
634 |
+
r"""
|
635 |
+
Default processor for performing attention-related computations.
|
636 |
+
"""
|
637 |
+
|
638 |
+
def __call__(
|
639 |
+
self,
|
640 |
+
attn: Attention,
|
641 |
+
hidden_states,
|
642 |
+
encoder_hidden_states=None,
|
643 |
+
attention_mask=None,
|
644 |
+
temb=None,
|
645 |
+
num_views=1,
|
646 |
+
multiview_attention=True
|
647 |
+
):
|
648 |
+
residual = hidden_states
|
649 |
+
|
650 |
+
if attn.spatial_norm is not None:
|
651 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
652 |
+
|
653 |
+
input_ndim = hidden_states.ndim
|
654 |
+
|
655 |
+
if input_ndim == 4:
|
656 |
+
batch_size, channel, height, width = hidden_states.shape
|
657 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
658 |
+
|
659 |
+
batch_size, sequence_length, _ = (
|
660 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
661 |
+
)
|
662 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
663 |
+
|
664 |
+
if attn.group_norm is not None:
|
665 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
666 |
+
|
667 |
+
query = attn.to_q(hidden_states)
|
668 |
+
|
669 |
+
if encoder_hidden_states is None:
|
670 |
+
encoder_hidden_states = hidden_states
|
671 |
+
elif attn.norm_cross:
|
672 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
673 |
+
|
674 |
+
key = attn.to_k(encoder_hidden_states)
|
675 |
+
value = attn.to_v(encoder_hidden_states)
|
676 |
+
|
677 |
+
# multi-view self-attention
|
678 |
+
if multiview_attention:
|
679 |
+
if num_views <= 6:
|
680 |
+
# after use xformer; possible to train with 6 views
|
681 |
+
# key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
682 |
+
# value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
683 |
+
key = rearrange(key, '(b t) d c-> b (t d) c', t=num_views).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
684 |
+
value = rearrange(value, '(b t) d c-> b (t d) c', t=num_views).unsqueeze(1).repeat(1,num_views,1,1).flatten(0,1)
|
685 |
+
|
686 |
+
else:# apply sparse attention
|
687 |
+
raise NotImplementedError("Sparse attention is not implemented yet.")
|
688 |
+
|
689 |
+
|
690 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
691 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
692 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
693 |
+
|
694 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
695 |
+
hidden_states = torch.bmm(attention_probs, value)
|
696 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
697 |
+
|
698 |
+
# linear proj
|
699 |
+
hidden_states = attn.to_out[0](hidden_states)
|
700 |
+
# dropout
|
701 |
+
hidden_states = attn.to_out[1](hidden_states)
|
702 |
+
|
703 |
+
if input_ndim == 4:
|
704 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
705 |
+
|
706 |
+
if attn.residual_connection:
|
707 |
+
hidden_states = hidden_states + residual
|
708 |
+
|
709 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
710 |
+
|
711 |
+
return hidden_states
|
712 |
+
|
713 |
+
|
714 |
+
class XFormersMVAttnProcessor:
|
715 |
+
r"""
|
716 |
+
Default processor for performing attention-related computations.
|
717 |
+
"""
|
718 |
+
|
719 |
+
def __call__(
|
720 |
+
self,
|
721 |
+
attn: Attention,
|
722 |
+
hidden_states,
|
723 |
+
encoder_hidden_states=None,
|
724 |
+
attention_mask=None,
|
725 |
+
temb=None,
|
726 |
+
num_views=1.,
|
727 |
+
multiview_attention=True,
|
728 |
+
cross_domain_attention=False,
|
729 |
+
):
|
730 |
+
residual = hidden_states
|
731 |
+
|
732 |
+
if attn.spatial_norm is not None:
|
733 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
734 |
+
|
735 |
+
input_ndim = hidden_states.ndim
|
736 |
+
|
737 |
+
if input_ndim == 4:
|
738 |
+
batch_size, channel, height, width = hidden_states.shape
|
739 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
740 |
+
|
741 |
+
batch_size, sequence_length, _ = (
|
742 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
743 |
+
)
|
744 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
745 |
+
|
746 |
+
# from yuancheng; here attention_mask is None
|
747 |
+
if attention_mask is not None:
|
748 |
+
# expand our mask's singleton query_tokens dimension:
|
749 |
+
# [batch*heads, 1, key_tokens] ->
|
750 |
+
# [batch*heads, query_tokens, key_tokens]
|
751 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
752 |
+
# [batch*heads, query_tokens, key_tokens]
|
753 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
754 |
+
_, query_tokens, _ = hidden_states.shape
|
755 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
756 |
+
|
757 |
+
if attn.group_norm is not None:
|
758 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
759 |
+
|
760 |
+
query = attn.to_q(hidden_states)
|
761 |
+
|
762 |
+
if encoder_hidden_states is None:
|
763 |
+
encoder_hidden_states = hidden_states
|
764 |
+
elif attn.norm_cross:
|
765 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
766 |
+
|
767 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
768 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
769 |
+
|
770 |
+
# multi-view self-attention
|
771 |
+
if multiview_attention:
|
772 |
+
key = rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
773 |
+
value = rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
774 |
+
|
775 |
+
if cross_domain_attention:
|
776 |
+
# memory efficient, cross domain attention
|
777 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
778 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
779 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
780 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
781 |
+
key = torch.cat([key, key_cross], dim=1)
|
782 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
783 |
+
else:
|
784 |
+
# print("don't use multiview attention.")
|
785 |
+
key = key_raw
|
786 |
+
value = value_raw
|
787 |
+
|
788 |
+
query = attn.head_to_batch_dim(query)
|
789 |
+
key = attn.head_to_batch_dim(key)
|
790 |
+
value = attn.head_to_batch_dim(value)
|
791 |
+
|
792 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
793 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
794 |
+
|
795 |
+
# linear proj
|
796 |
+
hidden_states = attn.to_out[0](hidden_states)
|
797 |
+
# dropout
|
798 |
+
hidden_states = attn.to_out[1](hidden_states)
|
799 |
+
|
800 |
+
if input_ndim == 4:
|
801 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
802 |
+
|
803 |
+
if attn.residual_connection:
|
804 |
+
hidden_states = hidden_states + residual
|
805 |
+
|
806 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
807 |
+
|
808 |
+
return hidden_states
|
809 |
+
|
810 |
+
|
811 |
+
|
812 |
+
class XFormersJointAttnProcessor:
|
813 |
+
r"""
|
814 |
+
Default processor for performing attention-related computations.
|
815 |
+
"""
|
816 |
+
|
817 |
+
def __call__(
|
818 |
+
self,
|
819 |
+
attn: Attention,
|
820 |
+
hidden_states,
|
821 |
+
encoder_hidden_states=None,
|
822 |
+
attention_mask=None,
|
823 |
+
temb=None,
|
824 |
+
num_tasks=2
|
825 |
+
):
|
826 |
+
|
827 |
+
residual = hidden_states
|
828 |
+
|
829 |
+
if attn.spatial_norm is not None:
|
830 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
831 |
+
|
832 |
+
input_ndim = hidden_states.ndim
|
833 |
+
|
834 |
+
if input_ndim == 4:
|
835 |
+
batch_size, channel, height, width = hidden_states.shape
|
836 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
837 |
+
|
838 |
+
batch_size, sequence_length, _ = (
|
839 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
840 |
+
)
|
841 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
842 |
+
|
843 |
+
# from yuancheng; here attention_mask is None
|
844 |
+
if attention_mask is not None:
|
845 |
+
# expand our mask's singleton query_tokens dimension:
|
846 |
+
# [batch*heads, 1, key_tokens] ->
|
847 |
+
# [batch*heads, query_tokens, key_tokens]
|
848 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
849 |
+
# [batch*heads, query_tokens, key_tokens]
|
850 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
851 |
+
_, query_tokens, _ = hidden_states.shape
|
852 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
853 |
+
|
854 |
+
if attn.group_norm is not None:
|
855 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
856 |
+
|
857 |
+
query = attn.to_q(hidden_states)
|
858 |
+
|
859 |
+
if encoder_hidden_states is None:
|
860 |
+
encoder_hidden_states = hidden_states
|
861 |
+
elif attn.norm_cross:
|
862 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
863 |
+
|
864 |
+
key = attn.to_k(encoder_hidden_states)
|
865 |
+
value = attn.to_v(encoder_hidden_states)
|
866 |
+
|
867 |
+
assert num_tasks == 2 # only support two tasks now
|
868 |
+
|
869 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
870 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
871 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
872 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
873 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
874 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
875 |
+
|
876 |
+
|
877 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
878 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
879 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
880 |
+
|
881 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
882 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
883 |
+
|
884 |
+
# linear proj
|
885 |
+
hidden_states = attn.to_out[0](hidden_states)
|
886 |
+
# dropout
|
887 |
+
hidden_states = attn.to_out[1](hidden_states)
|
888 |
+
|
889 |
+
if input_ndim == 4:
|
890 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
891 |
+
|
892 |
+
if attn.residual_connection:
|
893 |
+
hidden_states = hidden_states + residual
|
894 |
+
|
895 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
896 |
+
|
897 |
+
return hidden_states
|
898 |
+
|
899 |
+
|
900 |
+
class JointAttnProcessor:
|
901 |
+
r"""
|
902 |
+
Default processor for performing attention-related computations.
|
903 |
+
"""
|
904 |
+
|
905 |
+
def __call__(
|
906 |
+
self,
|
907 |
+
attn: Attention,
|
908 |
+
hidden_states,
|
909 |
+
encoder_hidden_states=None,
|
910 |
+
attention_mask=None,
|
911 |
+
temb=None,
|
912 |
+
num_tasks=2
|
913 |
+
):
|
914 |
+
|
915 |
+
residual = hidden_states
|
916 |
+
|
917 |
+
if attn.spatial_norm is not None:
|
918 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
919 |
+
|
920 |
+
input_ndim = hidden_states.ndim
|
921 |
+
|
922 |
+
if input_ndim == 4:
|
923 |
+
batch_size, channel, height, width = hidden_states.shape
|
924 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
925 |
+
|
926 |
+
batch_size, sequence_length, _ = (
|
927 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
928 |
+
)
|
929 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
930 |
+
|
931 |
+
|
932 |
+
if attn.group_norm is not None:
|
933 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
934 |
+
|
935 |
+
query = attn.to_q(hidden_states)
|
936 |
+
|
937 |
+
if encoder_hidden_states is None:
|
938 |
+
encoder_hidden_states = hidden_states
|
939 |
+
elif attn.norm_cross:
|
940 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
941 |
+
|
942 |
+
key = attn.to_k(encoder_hidden_states)
|
943 |
+
value = attn.to_v(encoder_hidden_states)
|
944 |
+
|
945 |
+
assert num_tasks == 2 # only support two tasks now
|
946 |
+
|
947 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
948 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
949 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
950 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
951 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
952 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
953 |
+
|
954 |
+
|
955 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
956 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
957 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
958 |
+
|
959 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
960 |
+
hidden_states = torch.bmm(attention_probs, value)
|
961 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
962 |
+
|
963 |
+
# linear proj
|
964 |
+
hidden_states = attn.to_out[0](hidden_states)
|
965 |
+
# dropout
|
966 |
+
hidden_states = attn.to_out[1](hidden_states)
|
967 |
+
|
968 |
+
if input_ndim == 4:
|
969 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
970 |
+
|
971 |
+
if attn.residual_connection:
|
972 |
+
hidden_states = hidden_states + residual
|
973 |
+
|
974 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
975 |
+
|
976 |
+
return hidden_states
|
canonicalize/models/unet.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput, logging
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from .unet_blocks import (
|
18 |
+
CrossAttnDownBlock3D,
|
19 |
+
CrossAttnUpBlock3D,
|
20 |
+
DownBlock3D,
|
21 |
+
UNetMidBlock3DCrossAttn,
|
22 |
+
UpBlock3D,
|
23 |
+
get_down_block,
|
24 |
+
get_up_block,
|
25 |
+
)
|
26 |
+
from .resnet import InflatedConv3d
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class UNet3DConditionOutput(BaseOutput):
|
34 |
+
sample: torch.FloatTensor
|
35 |
+
|
36 |
+
|
37 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
38 |
+
_supports_gradient_checkpointing = True
|
39 |
+
|
40 |
+
@register_to_config
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
sample_size: Optional[int] = None,
|
44 |
+
in_channels: int = 4,
|
45 |
+
out_channels: int = 4,
|
46 |
+
center_input_sample: bool = False,
|
47 |
+
flip_sin_to_cos: bool = True,
|
48 |
+
freq_shift: int = 0,
|
49 |
+
down_block_types: Tuple[str] = (
|
50 |
+
"CrossAttnDownBlock3D",
|
51 |
+
"CrossAttnDownBlock3D",
|
52 |
+
"CrossAttnDownBlock3D",
|
53 |
+
"DownBlock3D",
|
54 |
+
),
|
55 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
56 |
+
up_block_types: Tuple[str] = (
|
57 |
+
"UpBlock3D",
|
58 |
+
"CrossAttnUpBlock3D",
|
59 |
+
"CrossAttnUpBlock3D",
|
60 |
+
"CrossAttnUpBlock3D"
|
61 |
+
),
|
62 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
63 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
64 |
+
layers_per_block: int = 2,
|
65 |
+
downsample_padding: int = 1,
|
66 |
+
mid_block_scale_factor: float = 1,
|
67 |
+
act_fn: str = "silu",
|
68 |
+
norm_num_groups: int = 32,
|
69 |
+
norm_eps: float = 1e-5,
|
70 |
+
cross_attention_dim: int = 1280,
|
71 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
72 |
+
dual_cross_attention: bool = False,
|
73 |
+
use_linear_projection: bool = False,
|
74 |
+
class_embed_type: Optional[str] = None,
|
75 |
+
num_class_embeds: Optional[int] = None,
|
76 |
+
upcast_attention: bool = False,
|
77 |
+
resnet_time_scale_shift: str = "default",
|
78 |
+
use_attn_temp: bool = False,
|
79 |
+
camera_input_dim: int = 12,
|
80 |
+
camera_hidden_dim: int = 320,
|
81 |
+
camera_output_dim: int = 1280,
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.sample_size = sample_size
|
86 |
+
time_embed_dim = block_out_channels[0] * 4
|
87 |
+
|
88 |
+
# input
|
89 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
90 |
+
|
91 |
+
# time
|
92 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
93 |
+
timestep_input_dim = block_out_channels[0]
|
94 |
+
|
95 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
96 |
+
|
97 |
+
# class embedding
|
98 |
+
if class_embed_type is None and num_class_embeds is not None:
|
99 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
100 |
+
elif class_embed_type == "timestep":
|
101 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
102 |
+
elif class_embed_type == "identity":
|
103 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
104 |
+
else:
|
105 |
+
self.class_embedding = None
|
106 |
+
|
107 |
+
self.camera_embedding = nn.Sequential(
|
108 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
109 |
+
nn.SiLU(),
|
110 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
111 |
+
)
|
112 |
+
|
113 |
+
self.down_blocks = nn.ModuleList([])
|
114 |
+
self.mid_block = None
|
115 |
+
self.up_blocks = nn.ModuleList([])
|
116 |
+
|
117 |
+
if isinstance(only_cross_attention, bool):
|
118 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
119 |
+
|
120 |
+
if isinstance(attention_head_dim, int):
|
121 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
122 |
+
|
123 |
+
# down
|
124 |
+
output_channel = block_out_channels[0]
|
125 |
+
for i, down_block_type in enumerate(down_block_types):
|
126 |
+
input_channel = output_channel
|
127 |
+
output_channel = block_out_channels[i]
|
128 |
+
is_final_block = i == len(block_out_channels) - 1
|
129 |
+
|
130 |
+
down_block = get_down_block(
|
131 |
+
down_block_type,
|
132 |
+
num_layers=layers_per_block,
|
133 |
+
in_channels=input_channel,
|
134 |
+
out_channels=output_channel,
|
135 |
+
temb_channels=time_embed_dim,
|
136 |
+
add_downsample=not is_final_block,
|
137 |
+
resnet_eps=norm_eps,
|
138 |
+
resnet_act_fn=act_fn,
|
139 |
+
resnet_groups=norm_num_groups,
|
140 |
+
cross_attention_dim=cross_attention_dim,
|
141 |
+
attn_num_head_channels=attention_head_dim[i],
|
142 |
+
downsample_padding=downsample_padding,
|
143 |
+
dual_cross_attention=dual_cross_attention,
|
144 |
+
use_linear_projection=use_linear_projection,
|
145 |
+
only_cross_attention=only_cross_attention[i],
|
146 |
+
upcast_attention=upcast_attention,
|
147 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
148 |
+
use_attn_temp=use_attn_temp
|
149 |
+
)
|
150 |
+
self.down_blocks.append(down_block)
|
151 |
+
|
152 |
+
# mid
|
153 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
154 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
155 |
+
in_channels=block_out_channels[-1],
|
156 |
+
temb_channels=time_embed_dim,
|
157 |
+
resnet_eps=norm_eps,
|
158 |
+
resnet_act_fn=act_fn,
|
159 |
+
output_scale_factor=mid_block_scale_factor,
|
160 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
161 |
+
cross_attention_dim=cross_attention_dim,
|
162 |
+
attn_num_head_channels=attention_head_dim[-1],
|
163 |
+
resnet_groups=norm_num_groups,
|
164 |
+
dual_cross_attention=dual_cross_attention,
|
165 |
+
use_linear_projection=use_linear_projection,
|
166 |
+
upcast_attention=upcast_attention,
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
170 |
+
|
171 |
+
# count how many layers upsample the videos
|
172 |
+
self.num_upsamplers = 0
|
173 |
+
|
174 |
+
# up
|
175 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
176 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
177 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
178 |
+
output_channel = reversed_block_out_channels[0]
|
179 |
+
for i, up_block_type in enumerate(up_block_types):
|
180 |
+
is_final_block = i == len(block_out_channels) - 1
|
181 |
+
|
182 |
+
prev_output_channel = output_channel
|
183 |
+
output_channel = reversed_block_out_channels[i]
|
184 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
185 |
+
|
186 |
+
# add upsample block for all BUT final layer
|
187 |
+
if not is_final_block:
|
188 |
+
add_upsample = True
|
189 |
+
self.num_upsamplers += 1
|
190 |
+
else:
|
191 |
+
add_upsample = False
|
192 |
+
|
193 |
+
up_block = get_up_block(
|
194 |
+
up_block_type,
|
195 |
+
num_layers=layers_per_block + 1,
|
196 |
+
in_channels=input_channel,
|
197 |
+
out_channels=output_channel,
|
198 |
+
prev_output_channel=prev_output_channel,
|
199 |
+
temb_channels=time_embed_dim,
|
200 |
+
add_upsample=add_upsample,
|
201 |
+
resnet_eps=norm_eps,
|
202 |
+
resnet_act_fn=act_fn,
|
203 |
+
resnet_groups=norm_num_groups,
|
204 |
+
cross_attention_dim=cross_attention_dim,
|
205 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
206 |
+
dual_cross_attention=dual_cross_attention,
|
207 |
+
use_linear_projection=use_linear_projection,
|
208 |
+
only_cross_attention=only_cross_attention[i],
|
209 |
+
upcast_attention=upcast_attention,
|
210 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
211 |
+
use_attn_temp=use_attn_temp,
|
212 |
+
)
|
213 |
+
self.up_blocks.append(up_block)
|
214 |
+
prev_output_channel = output_channel
|
215 |
+
|
216 |
+
# out
|
217 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
218 |
+
self.conv_act = nn.SiLU()
|
219 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
220 |
+
|
221 |
+
def set_attention_slice(self, slice_size):
|
222 |
+
r"""
|
223 |
+
Enable sliced attention computation.
|
224 |
+
|
225 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
226 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
230 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
231 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
232 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
233 |
+
must be a multiple of `slice_size`.
|
234 |
+
"""
|
235 |
+
sliceable_head_dims = []
|
236 |
+
|
237 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
238 |
+
if hasattr(module, "set_attention_slice"):
|
239 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
240 |
+
|
241 |
+
for child in module.children():
|
242 |
+
fn_recursive_retrieve_slicable_dims(child)
|
243 |
+
|
244 |
+
# retrieve number of attention layers
|
245 |
+
for module in self.children():
|
246 |
+
fn_recursive_retrieve_slicable_dims(module)
|
247 |
+
|
248 |
+
num_slicable_layers = len(sliceable_head_dims)
|
249 |
+
|
250 |
+
if slice_size == "auto":
|
251 |
+
# half the attention head size is usually a good trade-off between
|
252 |
+
# speed and memory
|
253 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
254 |
+
elif slice_size == "max":
|
255 |
+
# make smallest slice possible
|
256 |
+
slice_size = num_slicable_layers * [1]
|
257 |
+
|
258 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
259 |
+
|
260 |
+
if len(slice_size) != len(sliceable_head_dims):
|
261 |
+
raise ValueError(
|
262 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
263 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
264 |
+
)
|
265 |
+
|
266 |
+
for i in range(len(slice_size)):
|
267 |
+
size = slice_size[i]
|
268 |
+
dim = sliceable_head_dims[i]
|
269 |
+
if size is not None and size > dim:
|
270 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
271 |
+
|
272 |
+
# Recursively walk through all the children.
|
273 |
+
# Any children which exposes the set_attention_slice method
|
274 |
+
# gets the message
|
275 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
276 |
+
if hasattr(module, "set_attention_slice"):
|
277 |
+
module.set_attention_slice(slice_size.pop())
|
278 |
+
|
279 |
+
for child in module.children():
|
280 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
281 |
+
|
282 |
+
reversed_slice_size = list(reversed(slice_size))
|
283 |
+
for module in self.children():
|
284 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
285 |
+
|
286 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
287 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
288 |
+
module.gradient_checkpointing = value
|
289 |
+
|
290 |
+
def forward(
|
291 |
+
self,
|
292 |
+
sample: torch.FloatTensor,
|
293 |
+
timestep: Union[torch.Tensor, float, int],
|
294 |
+
encoder_hidden_states: torch.Tensor,
|
295 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
296 |
+
class_labels: Optional[torch.Tensor] = None,
|
297 |
+
attention_mask: Optional[torch.Tensor] = None,
|
298 |
+
return_dict: bool = True,
|
299 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
300 |
+
r"""
|
301 |
+
Args:
|
302 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
303 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
304 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
305 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
306 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
307 |
+
|
308 |
+
Returns:
|
309 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
310 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
311 |
+
returning a tuple, the first element is the sample tensor.
|
312 |
+
"""
|
313 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
314 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
315 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
316 |
+
# on the fly if necessary.
|
317 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
318 |
+
|
319 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
320 |
+
forward_upsample_size = False
|
321 |
+
upsample_size = None
|
322 |
+
|
323 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
324 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
325 |
+
forward_upsample_size = True
|
326 |
+
|
327 |
+
# prepare attention_mask
|
328 |
+
if attention_mask is not None:
|
329 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
330 |
+
attention_mask = attention_mask.unsqueeze(1)
|
331 |
+
|
332 |
+
# center input if necessary
|
333 |
+
if self.config.center_input_sample:
|
334 |
+
sample = 2 * sample - 1.0
|
335 |
+
# time
|
336 |
+
timesteps = timestep
|
337 |
+
if not torch.is_tensor(timesteps):
|
338 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
339 |
+
is_mps = sample.device.type == "mps"
|
340 |
+
if isinstance(timestep, float):
|
341 |
+
dtype = torch.float32 if is_mps else torch.float64
|
342 |
+
else:
|
343 |
+
dtype = torch.int32 if is_mps else torch.int64
|
344 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
345 |
+
elif len(timesteps.shape) == 0:
|
346 |
+
timesteps = timesteps[None].to(sample.device)
|
347 |
+
|
348 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
349 |
+
timesteps = timesteps.expand(sample.shape[0])
|
350 |
+
|
351 |
+
t_emb = self.time_proj(timesteps)
|
352 |
+
|
353 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
354 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
355 |
+
# there might be better ways to encapsulate this.
|
356 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
357 |
+
emb = self.time_embedding(t_emb) #torch.Size([32, 1280])
|
358 |
+
emb = torch.unsqueeze(emb, 1)
|
359 |
+
if camera_matrixs is not None:
|
360 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
361 |
+
emb = emb.repeat(1,cam_emb.shape[1],1)
|
362 |
+
emb = emb + cam_emb
|
363 |
+
|
364 |
+
if self.class_embedding is not None:
|
365 |
+
if class_labels is not None:
|
366 |
+
if self.config.class_embed_type == "timestep":
|
367 |
+
class_labels = self.time_proj(class_labels)
|
368 |
+
class_emb = self.class_embedding(class_labels)
|
369 |
+
emb = emb + class_emb
|
370 |
+
|
371 |
+
# pre-process
|
372 |
+
sample = self.conv_in(sample)
|
373 |
+
|
374 |
+
# down
|
375 |
+
down_block_res_samples = (sample,)
|
376 |
+
for downsample_block in self.down_blocks:
|
377 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
378 |
+
sample, res_samples = downsample_block(
|
379 |
+
hidden_states=sample,
|
380 |
+
temb=emb,
|
381 |
+
encoder_hidden_states=encoder_hidden_states,
|
382 |
+
attention_mask=attention_mask,
|
383 |
+
)
|
384 |
+
else:
|
385 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
386 |
+
|
387 |
+
down_block_res_samples += res_samples
|
388 |
+
|
389 |
+
# mid
|
390 |
+
sample = self.mid_block(
|
391 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
392 |
+
)
|
393 |
+
|
394 |
+
# up
|
395 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
396 |
+
is_final_block = i == len(self.up_blocks) - 1
|
397 |
+
|
398 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
399 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
400 |
+
|
401 |
+
# if we have not reached the final block and need to forward the
|
402 |
+
# upsample size, we do it here
|
403 |
+
if not is_final_block and forward_upsample_size:
|
404 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
405 |
+
|
406 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
407 |
+
sample = upsample_block(
|
408 |
+
hidden_states=sample,
|
409 |
+
temb=emb,
|
410 |
+
res_hidden_states_tuple=res_samples,
|
411 |
+
encoder_hidden_states=encoder_hidden_states,
|
412 |
+
upsample_size=upsample_size,
|
413 |
+
attention_mask=attention_mask,
|
414 |
+
)
|
415 |
+
else:
|
416 |
+
sample = upsample_block(
|
417 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
418 |
+
)
|
419 |
+
# post-process
|
420 |
+
sample = self.conv_norm_out(sample)
|
421 |
+
sample = self.conv_act(sample)
|
422 |
+
sample = self.conv_out(sample)
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
return (sample,)
|
426 |
+
|
427 |
+
return UNet3DConditionOutput(sample=sample)
|
428 |
+
|
429 |
+
@classmethod
|
430 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
|
431 |
+
if subfolder is not None:
|
432 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
433 |
+
|
434 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
435 |
+
if not os.path.isfile(config_file):
|
436 |
+
raise RuntimeError(f"{config_file} does not exist")
|
437 |
+
with open(config_file, "r") as f:
|
438 |
+
config = json.load(f)
|
439 |
+
config["_class_name"] = cls.__name__
|
440 |
+
config["down_block_types"] = [
|
441 |
+
"CrossAttnDownBlock3D",
|
442 |
+
"CrossAttnDownBlock3D",
|
443 |
+
"CrossAttnDownBlock3D",
|
444 |
+
"DownBlock3D"
|
445 |
+
]
|
446 |
+
config["up_block_types"] = [
|
447 |
+
"UpBlock3D",
|
448 |
+
"CrossAttnUpBlock3D",
|
449 |
+
"CrossAttnUpBlock3D",
|
450 |
+
"CrossAttnUpBlock3D"
|
451 |
+
]
|
452 |
+
|
453 |
+
from diffusers.utils import WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME
|
454 |
+
|
455 |
+
import safetensors
|
456 |
+
model = cls.from_config(config)
|
457 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
458 |
+
if not os.path.isfile(model_file):
|
459 |
+
model_file = os.path.join(pretrained_model_path, SAFETENSORS_WEIGHTS_NAME)
|
460 |
+
if not os.path.isfile(model_file):
|
461 |
+
raise RuntimeError(f"{model_file} does not exist")
|
462 |
+
else:
|
463 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
464 |
+
else:
|
465 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
466 |
+
|
467 |
+
for k, v in model.state_dict().items():
|
468 |
+
if '_temp.' in k or 'camera_embedding' in k or 'class_embedding' in k:
|
469 |
+
state_dict.update({k: v})
|
470 |
+
for k in list(state_dict.keys()):
|
471 |
+
if 'camera_embedding_' in k:
|
472 |
+
v = state_dict.pop(k)
|
473 |
+
model.load_state_dict(state_dict)
|
474 |
+
|
475 |
+
return model
|
canonicalize/models/unet_blocks.py
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
# from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
use_attn_temp=False,
|
29 |
+
):
|
30 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
31 |
+
if down_block_type == "DownBlock3D":
|
32 |
+
return DownBlock3D(
|
33 |
+
num_layers=num_layers,
|
34 |
+
in_channels=in_channels,
|
35 |
+
out_channels=out_channels,
|
36 |
+
temb_channels=temb_channels,
|
37 |
+
add_downsample=add_downsample,
|
38 |
+
resnet_eps=resnet_eps,
|
39 |
+
resnet_act_fn=resnet_act_fn,
|
40 |
+
resnet_groups=resnet_groups,
|
41 |
+
downsample_padding=downsample_padding,
|
42 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
43 |
+
)
|
44 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
45 |
+
if cross_attention_dim is None:
|
46 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
47 |
+
return CrossAttnDownBlock3D(
|
48 |
+
num_layers=num_layers,
|
49 |
+
in_channels=in_channels,
|
50 |
+
out_channels=out_channels,
|
51 |
+
temb_channels=temb_channels,
|
52 |
+
add_downsample=add_downsample,
|
53 |
+
resnet_eps=resnet_eps,
|
54 |
+
resnet_act_fn=resnet_act_fn,
|
55 |
+
resnet_groups=resnet_groups,
|
56 |
+
downsample_padding=downsample_padding,
|
57 |
+
cross_attention_dim=cross_attention_dim,
|
58 |
+
attn_num_head_channels=attn_num_head_channels,
|
59 |
+
dual_cross_attention=dual_cross_attention,
|
60 |
+
use_linear_projection=use_linear_projection,
|
61 |
+
only_cross_attention=only_cross_attention,
|
62 |
+
upcast_attention=upcast_attention,
|
63 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
64 |
+
use_attn_temp=use_attn_temp,
|
65 |
+
)
|
66 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
67 |
+
|
68 |
+
|
69 |
+
def get_up_block(
|
70 |
+
up_block_type,
|
71 |
+
num_layers,
|
72 |
+
in_channels,
|
73 |
+
out_channels,
|
74 |
+
prev_output_channel,
|
75 |
+
temb_channels,
|
76 |
+
add_upsample,
|
77 |
+
resnet_eps,
|
78 |
+
resnet_act_fn,
|
79 |
+
attn_num_head_channels,
|
80 |
+
resnet_groups=None,
|
81 |
+
cross_attention_dim=None,
|
82 |
+
dual_cross_attention=False,
|
83 |
+
use_linear_projection=False,
|
84 |
+
only_cross_attention=False,
|
85 |
+
upcast_attention=False,
|
86 |
+
resnet_time_scale_shift="default",
|
87 |
+
use_attn_temp=False,
|
88 |
+
):
|
89 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
90 |
+
if up_block_type == "UpBlock3D":
|
91 |
+
return UpBlock3D(
|
92 |
+
num_layers=num_layers,
|
93 |
+
in_channels=in_channels,
|
94 |
+
out_channels=out_channels,
|
95 |
+
prev_output_channel=prev_output_channel,
|
96 |
+
temb_channels=temb_channels,
|
97 |
+
add_upsample=add_upsample,
|
98 |
+
resnet_eps=resnet_eps,
|
99 |
+
resnet_act_fn=resnet_act_fn,
|
100 |
+
resnet_groups=resnet_groups,
|
101 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
102 |
+
)
|
103 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
104 |
+
if cross_attention_dim is None:
|
105 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
106 |
+
return CrossAttnUpBlock3D(
|
107 |
+
num_layers=num_layers,
|
108 |
+
in_channels=in_channels,
|
109 |
+
out_channels=out_channels,
|
110 |
+
prev_output_channel=prev_output_channel,
|
111 |
+
temb_channels=temb_channels,
|
112 |
+
add_upsample=add_upsample,
|
113 |
+
resnet_eps=resnet_eps,
|
114 |
+
resnet_act_fn=resnet_act_fn,
|
115 |
+
resnet_groups=resnet_groups,
|
116 |
+
cross_attention_dim=cross_attention_dim,
|
117 |
+
attn_num_head_channels=attn_num_head_channels,
|
118 |
+
dual_cross_attention=dual_cross_attention,
|
119 |
+
use_linear_projection=use_linear_projection,
|
120 |
+
only_cross_attention=only_cross_attention,
|
121 |
+
upcast_attention=upcast_attention,
|
122 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
123 |
+
use_attn_temp=use_attn_temp,
|
124 |
+
)
|
125 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
126 |
+
|
127 |
+
|
128 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
in_channels: int,
|
132 |
+
temb_channels: int,
|
133 |
+
dropout: float = 0.0,
|
134 |
+
num_layers: int = 1,
|
135 |
+
resnet_eps: float = 1e-6,
|
136 |
+
resnet_time_scale_shift: str = "default",
|
137 |
+
resnet_act_fn: str = "swish",
|
138 |
+
resnet_groups: int = 32,
|
139 |
+
resnet_pre_norm: bool = True,
|
140 |
+
attn_num_head_channels=1,
|
141 |
+
output_scale_factor=1.0,
|
142 |
+
cross_attention_dim=1280,
|
143 |
+
dual_cross_attention=False,
|
144 |
+
use_linear_projection=False,
|
145 |
+
upcast_attention=False,
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.has_cross_attention = True
|
150 |
+
self.attn_num_head_channels = attn_num_head_channels
|
151 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
152 |
+
|
153 |
+
# there is always at least one resnet
|
154 |
+
resnets = [
|
155 |
+
ResnetBlock3D(
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=in_channels,
|
158 |
+
temb_channels=temb_channels,
|
159 |
+
eps=resnet_eps,
|
160 |
+
groups=resnet_groups,
|
161 |
+
dropout=dropout,
|
162 |
+
time_embedding_norm=resnet_time_scale_shift,
|
163 |
+
non_linearity=resnet_act_fn,
|
164 |
+
output_scale_factor=output_scale_factor,
|
165 |
+
pre_norm=resnet_pre_norm,
|
166 |
+
)
|
167 |
+
]
|
168 |
+
attentions = []
|
169 |
+
|
170 |
+
for _ in range(num_layers):
|
171 |
+
if dual_cross_attention:
|
172 |
+
raise NotImplementedError
|
173 |
+
attentions.append(
|
174 |
+
Transformer3DModel(
|
175 |
+
attn_num_head_channels,
|
176 |
+
in_channels // attn_num_head_channels,
|
177 |
+
in_channels=in_channels,
|
178 |
+
num_layers=1,
|
179 |
+
cross_attention_dim=cross_attention_dim,
|
180 |
+
norm_num_groups=resnet_groups,
|
181 |
+
use_linear_projection=use_linear_projection,
|
182 |
+
upcast_attention=upcast_attention,
|
183 |
+
)
|
184 |
+
)
|
185 |
+
resnets.append(
|
186 |
+
ResnetBlock3D(
|
187 |
+
in_channels=in_channels,
|
188 |
+
out_channels=in_channels,
|
189 |
+
temb_channels=temb_channels,
|
190 |
+
eps=resnet_eps,
|
191 |
+
groups=resnet_groups,
|
192 |
+
dropout=dropout,
|
193 |
+
time_embedding_norm=resnet_time_scale_shift,
|
194 |
+
non_linearity=resnet_act_fn,
|
195 |
+
output_scale_factor=output_scale_factor,
|
196 |
+
pre_norm=resnet_pre_norm,
|
197 |
+
)
|
198 |
+
)
|
199 |
+
|
200 |
+
self.attentions = nn.ModuleList(attentions)
|
201 |
+
self.resnets = nn.ModuleList(resnets)
|
202 |
+
|
203 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
204 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
205 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
206 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
207 |
+
hidden_states = resnet(hidden_states, temb)
|
208 |
+
|
209 |
+
return hidden_states
|
210 |
+
|
211 |
+
|
212 |
+
class CrossAttnDownBlock3D(nn.Module):
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
in_channels: int,
|
216 |
+
out_channels: int,
|
217 |
+
temb_channels: int,
|
218 |
+
dropout: float = 0.0,
|
219 |
+
num_layers: int = 1,
|
220 |
+
resnet_eps: float = 1e-6,
|
221 |
+
resnet_time_scale_shift: str = "default",
|
222 |
+
resnet_act_fn: str = "swish",
|
223 |
+
resnet_groups: int = 32,
|
224 |
+
resnet_pre_norm: bool = True,
|
225 |
+
attn_num_head_channels=1,
|
226 |
+
cross_attention_dim=1280,
|
227 |
+
output_scale_factor=1.0,
|
228 |
+
downsample_padding=1,
|
229 |
+
add_downsample=True,
|
230 |
+
dual_cross_attention=False,
|
231 |
+
use_linear_projection=False,
|
232 |
+
only_cross_attention=False,
|
233 |
+
upcast_attention=False,
|
234 |
+
use_attn_temp=False,
|
235 |
+
):
|
236 |
+
super().__init__()
|
237 |
+
resnets = []
|
238 |
+
attentions = []
|
239 |
+
|
240 |
+
self.has_cross_attention = True
|
241 |
+
self.attn_num_head_channels = attn_num_head_channels
|
242 |
+
|
243 |
+
for i in range(num_layers):
|
244 |
+
in_channels = in_channels if i == 0 else out_channels
|
245 |
+
resnets.append(
|
246 |
+
ResnetBlock3D(
|
247 |
+
in_channels=in_channels,
|
248 |
+
out_channels=out_channels,
|
249 |
+
temb_channels=temb_channels,
|
250 |
+
eps=resnet_eps,
|
251 |
+
groups=resnet_groups,
|
252 |
+
dropout=dropout,
|
253 |
+
time_embedding_norm=resnet_time_scale_shift,
|
254 |
+
non_linearity=resnet_act_fn,
|
255 |
+
output_scale_factor=output_scale_factor,
|
256 |
+
pre_norm=resnet_pre_norm,
|
257 |
+
)
|
258 |
+
)
|
259 |
+
if dual_cross_attention:
|
260 |
+
raise NotImplementedError
|
261 |
+
attentions.append(
|
262 |
+
Transformer3DModel(
|
263 |
+
attn_num_head_channels,
|
264 |
+
out_channels // attn_num_head_channels,
|
265 |
+
in_channels=out_channels,
|
266 |
+
num_layers=1,
|
267 |
+
cross_attention_dim=cross_attention_dim,
|
268 |
+
norm_num_groups=resnet_groups,
|
269 |
+
use_linear_projection=use_linear_projection,
|
270 |
+
only_cross_attention=only_cross_attention,
|
271 |
+
upcast_attention=upcast_attention,
|
272 |
+
use_attn_temp=use_attn_temp,
|
273 |
+
)
|
274 |
+
)
|
275 |
+
self.attentions = nn.ModuleList(attentions)
|
276 |
+
self.resnets = nn.ModuleList(resnets)
|
277 |
+
|
278 |
+
if add_downsample:
|
279 |
+
self.downsamplers = nn.ModuleList(
|
280 |
+
[
|
281 |
+
Downsample3D(
|
282 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
283 |
+
)
|
284 |
+
]
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
self.downsamplers = None
|
288 |
+
|
289 |
+
self.gradient_checkpointing = False
|
290 |
+
|
291 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
292 |
+
output_states = ()
|
293 |
+
|
294 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
295 |
+
if self.training and self.gradient_checkpointing:
|
296 |
+
|
297 |
+
def create_custom_forward(module, return_dict=None):
|
298 |
+
def custom_forward(*inputs):
|
299 |
+
if return_dict is not None:
|
300 |
+
return module(*inputs, return_dict=return_dict)
|
301 |
+
else:
|
302 |
+
return module(*inputs)
|
303 |
+
|
304 |
+
return custom_forward
|
305 |
+
|
306 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
307 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
308 |
+
create_custom_forward(attn, return_dict=False),
|
309 |
+
hidden_states,
|
310 |
+
encoder_hidden_states,
|
311 |
+
)[0]
|
312 |
+
else:
|
313 |
+
hidden_states = resnet(hidden_states, temb)
|
314 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
315 |
+
|
316 |
+
output_states += (hidden_states,)
|
317 |
+
|
318 |
+
if self.downsamplers is not None:
|
319 |
+
for downsampler in self.downsamplers:
|
320 |
+
hidden_states = downsampler(hidden_states)
|
321 |
+
|
322 |
+
output_states += (hidden_states,)
|
323 |
+
|
324 |
+
return hidden_states, output_states
|
325 |
+
|
326 |
+
|
327 |
+
class DownBlock3D(nn.Module):
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
in_channels: int,
|
331 |
+
out_channels: int,
|
332 |
+
temb_channels: int,
|
333 |
+
dropout: float = 0.0,
|
334 |
+
num_layers: int = 1,
|
335 |
+
resnet_eps: float = 1e-6,
|
336 |
+
resnet_time_scale_shift: str = "default",
|
337 |
+
resnet_act_fn: str = "swish",
|
338 |
+
resnet_groups: int = 32,
|
339 |
+
resnet_pre_norm: bool = True,
|
340 |
+
output_scale_factor=1.0,
|
341 |
+
add_downsample=True,
|
342 |
+
downsample_padding=1,
|
343 |
+
):
|
344 |
+
super().__init__()
|
345 |
+
resnets = []
|
346 |
+
|
347 |
+
for i in range(num_layers):
|
348 |
+
in_channels = in_channels if i == 0 else out_channels
|
349 |
+
resnets.append(
|
350 |
+
ResnetBlock3D(
|
351 |
+
in_channels=in_channels,
|
352 |
+
out_channels=out_channels,
|
353 |
+
temb_channels=temb_channels,
|
354 |
+
eps=resnet_eps,
|
355 |
+
groups=resnet_groups,
|
356 |
+
dropout=dropout,
|
357 |
+
time_embedding_norm=resnet_time_scale_shift,
|
358 |
+
non_linearity=resnet_act_fn,
|
359 |
+
output_scale_factor=output_scale_factor,
|
360 |
+
pre_norm=resnet_pre_norm,
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
self.resnets = nn.ModuleList(resnets)
|
365 |
+
|
366 |
+
if add_downsample:
|
367 |
+
self.downsamplers = nn.ModuleList(
|
368 |
+
[
|
369 |
+
Downsample3D(
|
370 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
371 |
+
)
|
372 |
+
]
|
373 |
+
)
|
374 |
+
else:
|
375 |
+
self.downsamplers = None
|
376 |
+
|
377 |
+
self.gradient_checkpointing = False
|
378 |
+
|
379 |
+
def forward(self, hidden_states, temb=None):
|
380 |
+
output_states = ()
|
381 |
+
|
382 |
+
for resnet in self.resnets:
|
383 |
+
if self.training and self.gradient_checkpointing:
|
384 |
+
|
385 |
+
def create_custom_forward(module):
|
386 |
+
def custom_forward(*inputs):
|
387 |
+
return module(*inputs)
|
388 |
+
|
389 |
+
return custom_forward
|
390 |
+
|
391 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
392 |
+
else:
|
393 |
+
hidden_states = resnet(hidden_states, temb)
|
394 |
+
|
395 |
+
output_states += (hidden_states,)
|
396 |
+
|
397 |
+
if self.downsamplers is not None:
|
398 |
+
for downsampler in self.downsamplers:
|
399 |
+
hidden_states = downsampler(hidden_states)
|
400 |
+
|
401 |
+
output_states += (hidden_states,)
|
402 |
+
|
403 |
+
return hidden_states, output_states
|
404 |
+
|
405 |
+
|
406 |
+
class CrossAttnUpBlock3D(nn.Module):
|
407 |
+
def __init__(
|
408 |
+
self,
|
409 |
+
in_channels: int,
|
410 |
+
out_channels: int,
|
411 |
+
prev_output_channel: int,
|
412 |
+
temb_channels: int,
|
413 |
+
dropout: float = 0.0,
|
414 |
+
num_layers: int = 1,
|
415 |
+
resnet_eps: float = 1e-6,
|
416 |
+
resnet_time_scale_shift: str = "default",
|
417 |
+
resnet_act_fn: str = "swish",
|
418 |
+
resnet_groups: int = 32,
|
419 |
+
resnet_pre_norm: bool = True,
|
420 |
+
attn_num_head_channels=1,
|
421 |
+
cross_attention_dim=1280,
|
422 |
+
output_scale_factor=1.0,
|
423 |
+
add_upsample=True,
|
424 |
+
dual_cross_attention=False,
|
425 |
+
use_linear_projection=False,
|
426 |
+
only_cross_attention=False,
|
427 |
+
upcast_attention=False,
|
428 |
+
use_attn_temp=False,
|
429 |
+
):
|
430 |
+
super().__init__()
|
431 |
+
resnets = []
|
432 |
+
attentions = []
|
433 |
+
|
434 |
+
self.has_cross_attention = True
|
435 |
+
self.attn_num_head_channels = attn_num_head_channels
|
436 |
+
|
437 |
+
for i in range(num_layers):
|
438 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
439 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
440 |
+
|
441 |
+
resnets.append(
|
442 |
+
ResnetBlock3D(
|
443 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
444 |
+
out_channels=out_channels,
|
445 |
+
temb_channels=temb_channels,
|
446 |
+
eps=resnet_eps,
|
447 |
+
groups=resnet_groups,
|
448 |
+
dropout=dropout,
|
449 |
+
time_embedding_norm=resnet_time_scale_shift,
|
450 |
+
non_linearity=resnet_act_fn,
|
451 |
+
output_scale_factor=output_scale_factor,
|
452 |
+
pre_norm=resnet_pre_norm,
|
453 |
+
)
|
454 |
+
)
|
455 |
+
if dual_cross_attention:
|
456 |
+
raise NotImplementedError
|
457 |
+
attentions.append(
|
458 |
+
Transformer3DModel(
|
459 |
+
attn_num_head_channels,
|
460 |
+
out_channels // attn_num_head_channels,
|
461 |
+
in_channels=out_channels,
|
462 |
+
num_layers=1,
|
463 |
+
cross_attention_dim=cross_attention_dim,
|
464 |
+
norm_num_groups=resnet_groups,
|
465 |
+
use_linear_projection=use_linear_projection,
|
466 |
+
only_cross_attention=only_cross_attention,
|
467 |
+
upcast_attention=upcast_attention,
|
468 |
+
use_attn_temp=use_attn_temp,
|
469 |
+
)
|
470 |
+
)
|
471 |
+
|
472 |
+
self.attentions = nn.ModuleList(attentions)
|
473 |
+
self.resnets = nn.ModuleList(resnets)
|
474 |
+
|
475 |
+
if add_upsample:
|
476 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
477 |
+
else:
|
478 |
+
self.upsamplers = None
|
479 |
+
|
480 |
+
self.gradient_checkpointing = False
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self,
|
484 |
+
hidden_states,
|
485 |
+
res_hidden_states_tuple,
|
486 |
+
temb=None,
|
487 |
+
encoder_hidden_states=None,
|
488 |
+
upsample_size=None,
|
489 |
+
attention_mask=None,
|
490 |
+
):
|
491 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
492 |
+
# pop res hidden states
|
493 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
494 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
495 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
496 |
+
|
497 |
+
if self.training and self.gradient_checkpointing:
|
498 |
+
|
499 |
+
def create_custom_forward(module, return_dict=None):
|
500 |
+
def custom_forward(*inputs):
|
501 |
+
if return_dict is not None:
|
502 |
+
return module(*inputs, return_dict=return_dict)
|
503 |
+
else:
|
504 |
+
return module(*inputs)
|
505 |
+
|
506 |
+
return custom_forward
|
507 |
+
|
508 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
509 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
510 |
+
create_custom_forward(attn, return_dict=False),
|
511 |
+
hidden_states,
|
512 |
+
encoder_hidden_states,
|
513 |
+
)[0]
|
514 |
+
else:
|
515 |
+
hidden_states = resnet(hidden_states, temb)
|
516 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
517 |
+
|
518 |
+
if self.upsamplers is not None:
|
519 |
+
for upsampler in self.upsamplers:
|
520 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
521 |
+
|
522 |
+
return hidden_states
|
523 |
+
|
524 |
+
|
525 |
+
class UpBlock3D(nn.Module):
|
526 |
+
def __init__(
|
527 |
+
self,
|
528 |
+
in_channels: int,
|
529 |
+
prev_output_channel: int,
|
530 |
+
out_channels: int,
|
531 |
+
temb_channels: int,
|
532 |
+
dropout: float = 0.0,
|
533 |
+
num_layers: int = 1,
|
534 |
+
resnet_eps: float = 1e-6,
|
535 |
+
resnet_time_scale_shift: str = "default",
|
536 |
+
resnet_act_fn: str = "swish",
|
537 |
+
resnet_groups: int = 32,
|
538 |
+
resnet_pre_norm: bool = True,
|
539 |
+
output_scale_factor=1.0,
|
540 |
+
add_upsample=True,
|
541 |
+
):
|
542 |
+
super().__init__()
|
543 |
+
resnets = []
|
544 |
+
|
545 |
+
for i in range(num_layers):
|
546 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
547 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
548 |
+
|
549 |
+
resnets.append(
|
550 |
+
ResnetBlock3D(
|
551 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
552 |
+
out_channels=out_channels,
|
553 |
+
temb_channels=temb_channels,
|
554 |
+
eps=resnet_eps,
|
555 |
+
groups=resnet_groups,
|
556 |
+
dropout=dropout,
|
557 |
+
time_embedding_norm=resnet_time_scale_shift,
|
558 |
+
non_linearity=resnet_act_fn,
|
559 |
+
output_scale_factor=output_scale_factor,
|
560 |
+
pre_norm=resnet_pre_norm,
|
561 |
+
)
|
562 |
+
)
|
563 |
+
|
564 |
+
self.resnets = nn.ModuleList(resnets)
|
565 |
+
|
566 |
+
if add_upsample:
|
567 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
568 |
+
else:
|
569 |
+
self.upsamplers = None
|
570 |
+
|
571 |
+
self.gradient_checkpointing = False
|
572 |
+
|
573 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
574 |
+
for resnet in self.resnets:
|
575 |
+
# pop res hidden states
|
576 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
577 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
578 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
579 |
+
|
580 |
+
if self.training and self.gradient_checkpointing:
|
581 |
+
|
582 |
+
def create_custom_forward(module):
|
583 |
+
def custom_forward(*inputs):
|
584 |
+
return module(*inputs)
|
585 |
+
|
586 |
+
return custom_forward
|
587 |
+
|
588 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
589 |
+
else:
|
590 |
+
hidden_states = resnet(hidden_states, temb)
|
591 |
+
|
592 |
+
if self.upsamplers is not None:
|
593 |
+
for upsampler in self.upsamplers:
|
594 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
595 |
+
|
596 |
+
return hidden_states
|
canonicalize/models/unet_mv2d_blocks.py
ADDED
@@ -0,0 +1,924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import is_torch_version, logging
|
22 |
+
# from diffusers.models.attention import AdaGroupNorm
|
23 |
+
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
24 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
26 |
+
from canonicalize.models.transformer_mv2d import TransformerMV2DModel
|
27 |
+
|
28 |
+
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
29 |
+
from diffusers.models.unets.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
def get_down_block(
|
36 |
+
down_block_type,
|
37 |
+
num_layers,
|
38 |
+
in_channels,
|
39 |
+
out_channels,
|
40 |
+
temb_channels,
|
41 |
+
add_downsample,
|
42 |
+
resnet_eps,
|
43 |
+
resnet_act_fn,
|
44 |
+
transformer_layers_per_block=1,
|
45 |
+
num_attention_heads=None,
|
46 |
+
resnet_groups=None,
|
47 |
+
cross_attention_dim=None,
|
48 |
+
downsample_padding=None,
|
49 |
+
dual_cross_attention=False,
|
50 |
+
use_linear_projection=False,
|
51 |
+
only_cross_attention=False,
|
52 |
+
upcast_attention=False,
|
53 |
+
resnet_time_scale_shift="default",
|
54 |
+
resnet_skip_time_act=False,
|
55 |
+
resnet_out_scale_factor=1.0,
|
56 |
+
cross_attention_norm=None,
|
57 |
+
attention_head_dim=None,
|
58 |
+
downsample_type=None,
|
59 |
+
num_views=1,
|
60 |
+
joint_attention: bool = False,
|
61 |
+
joint_attention_twice: bool = False,
|
62 |
+
multiview_attention: bool = True,
|
63 |
+
cross_domain_attention: bool=False
|
64 |
+
):
|
65 |
+
# If attn head dim is not defined, we default it to the number of heads
|
66 |
+
if attention_head_dim is None:
|
67 |
+
logger.warn(
|
68 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
69 |
+
)
|
70 |
+
attention_head_dim = num_attention_heads
|
71 |
+
|
72 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
73 |
+
if down_block_type == "DownBlock2D":
|
74 |
+
return DownBlock2D(
|
75 |
+
num_layers=num_layers,
|
76 |
+
in_channels=in_channels,
|
77 |
+
out_channels=out_channels,
|
78 |
+
temb_channels=temb_channels,
|
79 |
+
add_downsample=add_downsample,
|
80 |
+
resnet_eps=resnet_eps,
|
81 |
+
resnet_act_fn=resnet_act_fn,
|
82 |
+
resnet_groups=resnet_groups,
|
83 |
+
downsample_padding=downsample_padding,
|
84 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
85 |
+
)
|
86 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
87 |
+
return ResnetDownsampleBlock2D(
|
88 |
+
num_layers=num_layers,
|
89 |
+
in_channels=in_channels,
|
90 |
+
out_channels=out_channels,
|
91 |
+
temb_channels=temb_channels,
|
92 |
+
add_downsample=add_downsample,
|
93 |
+
resnet_eps=resnet_eps,
|
94 |
+
resnet_act_fn=resnet_act_fn,
|
95 |
+
resnet_groups=resnet_groups,
|
96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
97 |
+
skip_time_act=resnet_skip_time_act,
|
98 |
+
output_scale_factor=resnet_out_scale_factor,
|
99 |
+
)
|
100 |
+
elif down_block_type == "AttnDownBlock2D":
|
101 |
+
if add_downsample is False:
|
102 |
+
downsample_type = None
|
103 |
+
else:
|
104 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
105 |
+
return AttnDownBlock2D(
|
106 |
+
num_layers=num_layers,
|
107 |
+
in_channels=in_channels,
|
108 |
+
out_channels=out_channels,
|
109 |
+
temb_channels=temb_channels,
|
110 |
+
resnet_eps=resnet_eps,
|
111 |
+
resnet_act_fn=resnet_act_fn,
|
112 |
+
resnet_groups=resnet_groups,
|
113 |
+
downsample_padding=downsample_padding,
|
114 |
+
attention_head_dim=attention_head_dim,
|
115 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
116 |
+
downsample_type=downsample_type,
|
117 |
+
)
|
118 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
119 |
+
if cross_attention_dim is None:
|
120 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
121 |
+
return CrossAttnDownBlock2D(
|
122 |
+
num_layers=num_layers,
|
123 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
124 |
+
in_channels=in_channels,
|
125 |
+
out_channels=out_channels,
|
126 |
+
temb_channels=temb_channels,
|
127 |
+
add_downsample=add_downsample,
|
128 |
+
resnet_eps=resnet_eps,
|
129 |
+
resnet_act_fn=resnet_act_fn,
|
130 |
+
resnet_groups=resnet_groups,
|
131 |
+
downsample_padding=downsample_padding,
|
132 |
+
cross_attention_dim=cross_attention_dim,
|
133 |
+
num_attention_heads=num_attention_heads,
|
134 |
+
dual_cross_attention=dual_cross_attention,
|
135 |
+
use_linear_projection=use_linear_projection,
|
136 |
+
only_cross_attention=only_cross_attention,
|
137 |
+
upcast_attention=upcast_attention,
|
138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
139 |
+
)
|
140 |
+
# custom MV2D attention block
|
141 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
142 |
+
if cross_attention_dim is None:
|
143 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
144 |
+
return CrossAttnDownBlockMV2D(
|
145 |
+
num_layers=num_layers,
|
146 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
147 |
+
in_channels=in_channels,
|
148 |
+
out_channels=out_channels,
|
149 |
+
temb_channels=temb_channels,
|
150 |
+
add_downsample=add_downsample,
|
151 |
+
resnet_eps=resnet_eps,
|
152 |
+
resnet_act_fn=resnet_act_fn,
|
153 |
+
resnet_groups=resnet_groups,
|
154 |
+
downsample_padding=downsample_padding,
|
155 |
+
cross_attention_dim=cross_attention_dim,
|
156 |
+
num_attention_heads=num_attention_heads,
|
157 |
+
dual_cross_attention=dual_cross_attention,
|
158 |
+
use_linear_projection=use_linear_projection,
|
159 |
+
only_cross_attention=only_cross_attention,
|
160 |
+
upcast_attention=upcast_attention,
|
161 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
162 |
+
num_views=num_views,
|
163 |
+
joint_attention=joint_attention,
|
164 |
+
joint_attention_twice=joint_attention_twice,
|
165 |
+
multiview_attention=multiview_attention,
|
166 |
+
cross_domain_attention=cross_domain_attention
|
167 |
+
)
|
168 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
169 |
+
if cross_attention_dim is None:
|
170 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
171 |
+
return SimpleCrossAttnDownBlock2D(
|
172 |
+
num_layers=num_layers,
|
173 |
+
in_channels=in_channels,
|
174 |
+
out_channels=out_channels,
|
175 |
+
temb_channels=temb_channels,
|
176 |
+
add_downsample=add_downsample,
|
177 |
+
resnet_eps=resnet_eps,
|
178 |
+
resnet_act_fn=resnet_act_fn,
|
179 |
+
resnet_groups=resnet_groups,
|
180 |
+
cross_attention_dim=cross_attention_dim,
|
181 |
+
attention_head_dim=attention_head_dim,
|
182 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
183 |
+
skip_time_act=resnet_skip_time_act,
|
184 |
+
output_scale_factor=resnet_out_scale_factor,
|
185 |
+
only_cross_attention=only_cross_attention,
|
186 |
+
cross_attention_norm=cross_attention_norm,
|
187 |
+
)
|
188 |
+
elif down_block_type == "SkipDownBlock2D":
|
189 |
+
return SkipDownBlock2D(
|
190 |
+
num_layers=num_layers,
|
191 |
+
in_channels=in_channels,
|
192 |
+
out_channels=out_channels,
|
193 |
+
temb_channels=temb_channels,
|
194 |
+
add_downsample=add_downsample,
|
195 |
+
resnet_eps=resnet_eps,
|
196 |
+
resnet_act_fn=resnet_act_fn,
|
197 |
+
downsample_padding=downsample_padding,
|
198 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
199 |
+
)
|
200 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
201 |
+
return AttnSkipDownBlock2D(
|
202 |
+
num_layers=num_layers,
|
203 |
+
in_channels=in_channels,
|
204 |
+
out_channels=out_channels,
|
205 |
+
temb_channels=temb_channels,
|
206 |
+
add_downsample=add_downsample,
|
207 |
+
resnet_eps=resnet_eps,
|
208 |
+
resnet_act_fn=resnet_act_fn,
|
209 |
+
attention_head_dim=attention_head_dim,
|
210 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
211 |
+
)
|
212 |
+
elif down_block_type == "DownEncoderBlock2D":
|
213 |
+
return DownEncoderBlock2D(
|
214 |
+
num_layers=num_layers,
|
215 |
+
in_channels=in_channels,
|
216 |
+
out_channels=out_channels,
|
217 |
+
add_downsample=add_downsample,
|
218 |
+
resnet_eps=resnet_eps,
|
219 |
+
resnet_act_fn=resnet_act_fn,
|
220 |
+
resnet_groups=resnet_groups,
|
221 |
+
downsample_padding=downsample_padding,
|
222 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
223 |
+
)
|
224 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
225 |
+
return AttnDownEncoderBlock2D(
|
226 |
+
num_layers=num_layers,
|
227 |
+
in_channels=in_channels,
|
228 |
+
out_channels=out_channels,
|
229 |
+
add_downsample=add_downsample,
|
230 |
+
resnet_eps=resnet_eps,
|
231 |
+
resnet_act_fn=resnet_act_fn,
|
232 |
+
resnet_groups=resnet_groups,
|
233 |
+
downsample_padding=downsample_padding,
|
234 |
+
attention_head_dim=attention_head_dim,
|
235 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
236 |
+
)
|
237 |
+
elif down_block_type == "KDownBlock2D":
|
238 |
+
return KDownBlock2D(
|
239 |
+
num_layers=num_layers,
|
240 |
+
in_channels=in_channels,
|
241 |
+
out_channels=out_channels,
|
242 |
+
temb_channels=temb_channels,
|
243 |
+
add_downsample=add_downsample,
|
244 |
+
resnet_eps=resnet_eps,
|
245 |
+
resnet_act_fn=resnet_act_fn,
|
246 |
+
)
|
247 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
248 |
+
return KCrossAttnDownBlock2D(
|
249 |
+
num_layers=num_layers,
|
250 |
+
in_channels=in_channels,
|
251 |
+
out_channels=out_channels,
|
252 |
+
temb_channels=temb_channels,
|
253 |
+
add_downsample=add_downsample,
|
254 |
+
resnet_eps=resnet_eps,
|
255 |
+
resnet_act_fn=resnet_act_fn,
|
256 |
+
cross_attention_dim=cross_attention_dim,
|
257 |
+
attention_head_dim=attention_head_dim,
|
258 |
+
add_self_attention=True if not add_downsample else False,
|
259 |
+
)
|
260 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
261 |
+
|
262 |
+
|
263 |
+
def get_up_block(
|
264 |
+
up_block_type,
|
265 |
+
num_layers,
|
266 |
+
in_channels,
|
267 |
+
out_channels,
|
268 |
+
prev_output_channel,
|
269 |
+
temb_channels,
|
270 |
+
add_upsample,
|
271 |
+
resnet_eps,
|
272 |
+
resnet_act_fn,
|
273 |
+
transformer_layers_per_block=1,
|
274 |
+
num_attention_heads=None,
|
275 |
+
resnet_groups=None,
|
276 |
+
cross_attention_dim=None,
|
277 |
+
dual_cross_attention=False,
|
278 |
+
use_linear_projection=False,
|
279 |
+
only_cross_attention=False,
|
280 |
+
upcast_attention=False,
|
281 |
+
resnet_time_scale_shift="default",
|
282 |
+
resnet_skip_time_act=False,
|
283 |
+
resnet_out_scale_factor=1.0,
|
284 |
+
cross_attention_norm=None,
|
285 |
+
attention_head_dim=None,
|
286 |
+
upsample_type=None,
|
287 |
+
num_views=1,
|
288 |
+
joint_attention: bool = False,
|
289 |
+
joint_attention_twice: bool = False,
|
290 |
+
multiview_attention: bool = True,
|
291 |
+
cross_domain_attention: bool=False
|
292 |
+
):
|
293 |
+
# If attn head dim is not defined, we default it to the number of heads
|
294 |
+
if attention_head_dim is None:
|
295 |
+
logger.warn(
|
296 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
297 |
+
)
|
298 |
+
attention_head_dim = num_attention_heads
|
299 |
+
|
300 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
301 |
+
if up_block_type == "UpBlock2D":
|
302 |
+
return UpBlock2D(
|
303 |
+
num_layers=num_layers,
|
304 |
+
in_channels=in_channels,
|
305 |
+
out_channels=out_channels,
|
306 |
+
prev_output_channel=prev_output_channel,
|
307 |
+
temb_channels=temb_channels,
|
308 |
+
add_upsample=add_upsample,
|
309 |
+
resnet_eps=resnet_eps,
|
310 |
+
resnet_act_fn=resnet_act_fn,
|
311 |
+
resnet_groups=resnet_groups,
|
312 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
313 |
+
)
|
314 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
315 |
+
return ResnetUpsampleBlock2D(
|
316 |
+
num_layers=num_layers,
|
317 |
+
in_channels=in_channels,
|
318 |
+
out_channels=out_channels,
|
319 |
+
prev_output_channel=prev_output_channel,
|
320 |
+
temb_channels=temb_channels,
|
321 |
+
add_upsample=add_upsample,
|
322 |
+
resnet_eps=resnet_eps,
|
323 |
+
resnet_act_fn=resnet_act_fn,
|
324 |
+
resnet_groups=resnet_groups,
|
325 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
326 |
+
skip_time_act=resnet_skip_time_act,
|
327 |
+
output_scale_factor=resnet_out_scale_factor,
|
328 |
+
)
|
329 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
330 |
+
if cross_attention_dim is None:
|
331 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
332 |
+
return CrossAttnUpBlock2D(
|
333 |
+
num_layers=num_layers,
|
334 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
335 |
+
in_channels=in_channels,
|
336 |
+
out_channels=out_channels,
|
337 |
+
prev_output_channel=prev_output_channel,
|
338 |
+
temb_channels=temb_channels,
|
339 |
+
add_upsample=add_upsample,
|
340 |
+
resnet_eps=resnet_eps,
|
341 |
+
resnet_act_fn=resnet_act_fn,
|
342 |
+
resnet_groups=resnet_groups,
|
343 |
+
cross_attention_dim=cross_attention_dim,
|
344 |
+
num_attention_heads=num_attention_heads,
|
345 |
+
dual_cross_attention=dual_cross_attention,
|
346 |
+
use_linear_projection=use_linear_projection,
|
347 |
+
only_cross_attention=only_cross_attention,
|
348 |
+
upcast_attention=upcast_attention,
|
349 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
350 |
+
)
|
351 |
+
# custom MV2D attention block
|
352 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
353 |
+
if cross_attention_dim is None:
|
354 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
355 |
+
return CrossAttnUpBlockMV2D(
|
356 |
+
num_layers=num_layers,
|
357 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
358 |
+
in_channels=in_channels,
|
359 |
+
out_channels=out_channels,
|
360 |
+
prev_output_channel=prev_output_channel,
|
361 |
+
temb_channels=temb_channels,
|
362 |
+
add_upsample=add_upsample,
|
363 |
+
resnet_eps=resnet_eps,
|
364 |
+
resnet_act_fn=resnet_act_fn,
|
365 |
+
resnet_groups=resnet_groups,
|
366 |
+
cross_attention_dim=cross_attention_dim,
|
367 |
+
num_attention_heads=num_attention_heads,
|
368 |
+
dual_cross_attention=dual_cross_attention,
|
369 |
+
use_linear_projection=use_linear_projection,
|
370 |
+
only_cross_attention=only_cross_attention,
|
371 |
+
upcast_attention=upcast_attention,
|
372 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
373 |
+
num_views=num_views,
|
374 |
+
joint_attention=joint_attention,
|
375 |
+
joint_attention_twice=joint_attention_twice,
|
376 |
+
multiview_attention=multiview_attention,
|
377 |
+
cross_domain_attention=cross_domain_attention
|
378 |
+
)
|
379 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
380 |
+
if cross_attention_dim is None:
|
381 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
382 |
+
return SimpleCrossAttnUpBlock2D(
|
383 |
+
num_layers=num_layers,
|
384 |
+
in_channels=in_channels,
|
385 |
+
out_channels=out_channels,
|
386 |
+
prev_output_channel=prev_output_channel,
|
387 |
+
temb_channels=temb_channels,
|
388 |
+
add_upsample=add_upsample,
|
389 |
+
resnet_eps=resnet_eps,
|
390 |
+
resnet_act_fn=resnet_act_fn,
|
391 |
+
resnet_groups=resnet_groups,
|
392 |
+
cross_attention_dim=cross_attention_dim,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
395 |
+
skip_time_act=resnet_skip_time_act,
|
396 |
+
output_scale_factor=resnet_out_scale_factor,
|
397 |
+
only_cross_attention=only_cross_attention,
|
398 |
+
cross_attention_norm=cross_attention_norm,
|
399 |
+
)
|
400 |
+
elif up_block_type == "AttnUpBlock2D":
|
401 |
+
if add_upsample is False:
|
402 |
+
upsample_type = None
|
403 |
+
else:
|
404 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
405 |
+
|
406 |
+
return AttnUpBlock2D(
|
407 |
+
num_layers=num_layers,
|
408 |
+
in_channels=in_channels,
|
409 |
+
out_channels=out_channels,
|
410 |
+
prev_output_channel=prev_output_channel,
|
411 |
+
temb_channels=temb_channels,
|
412 |
+
resnet_eps=resnet_eps,
|
413 |
+
resnet_act_fn=resnet_act_fn,
|
414 |
+
resnet_groups=resnet_groups,
|
415 |
+
attention_head_dim=attention_head_dim,
|
416 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
417 |
+
upsample_type=upsample_type,
|
418 |
+
)
|
419 |
+
elif up_block_type == "SkipUpBlock2D":
|
420 |
+
return SkipUpBlock2D(
|
421 |
+
num_layers=num_layers,
|
422 |
+
in_channels=in_channels,
|
423 |
+
out_channels=out_channels,
|
424 |
+
prev_output_channel=prev_output_channel,
|
425 |
+
temb_channels=temb_channels,
|
426 |
+
add_upsample=add_upsample,
|
427 |
+
resnet_eps=resnet_eps,
|
428 |
+
resnet_act_fn=resnet_act_fn,
|
429 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
430 |
+
)
|
431 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
432 |
+
return AttnSkipUpBlock2D(
|
433 |
+
num_layers=num_layers,
|
434 |
+
in_channels=in_channels,
|
435 |
+
out_channels=out_channels,
|
436 |
+
prev_output_channel=prev_output_channel,
|
437 |
+
temb_channels=temb_channels,
|
438 |
+
add_upsample=add_upsample,
|
439 |
+
resnet_eps=resnet_eps,
|
440 |
+
resnet_act_fn=resnet_act_fn,
|
441 |
+
attention_head_dim=attention_head_dim,
|
442 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
443 |
+
)
|
444 |
+
elif up_block_type == "UpDecoderBlock2D":
|
445 |
+
return UpDecoderBlock2D(
|
446 |
+
num_layers=num_layers,
|
447 |
+
in_channels=in_channels,
|
448 |
+
out_channels=out_channels,
|
449 |
+
add_upsample=add_upsample,
|
450 |
+
resnet_eps=resnet_eps,
|
451 |
+
resnet_act_fn=resnet_act_fn,
|
452 |
+
resnet_groups=resnet_groups,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
temb_channels=temb_channels,
|
455 |
+
)
|
456 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
457 |
+
return AttnUpDecoderBlock2D(
|
458 |
+
num_layers=num_layers,
|
459 |
+
in_channels=in_channels,
|
460 |
+
out_channels=out_channels,
|
461 |
+
add_upsample=add_upsample,
|
462 |
+
resnet_eps=resnet_eps,
|
463 |
+
resnet_act_fn=resnet_act_fn,
|
464 |
+
resnet_groups=resnet_groups,
|
465 |
+
attention_head_dim=attention_head_dim,
|
466 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
467 |
+
temb_channels=temb_channels,
|
468 |
+
)
|
469 |
+
elif up_block_type == "KUpBlock2D":
|
470 |
+
return KUpBlock2D(
|
471 |
+
num_layers=num_layers,
|
472 |
+
in_channels=in_channels,
|
473 |
+
out_channels=out_channels,
|
474 |
+
temb_channels=temb_channels,
|
475 |
+
add_upsample=add_upsample,
|
476 |
+
resnet_eps=resnet_eps,
|
477 |
+
resnet_act_fn=resnet_act_fn,
|
478 |
+
)
|
479 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
480 |
+
return KCrossAttnUpBlock2D(
|
481 |
+
num_layers=num_layers,
|
482 |
+
in_channels=in_channels,
|
483 |
+
out_channels=out_channels,
|
484 |
+
temb_channels=temb_channels,
|
485 |
+
add_upsample=add_upsample,
|
486 |
+
resnet_eps=resnet_eps,
|
487 |
+
resnet_act_fn=resnet_act_fn,
|
488 |
+
cross_attention_dim=cross_attention_dim,
|
489 |
+
attention_head_dim=attention_head_dim,
|
490 |
+
)
|
491 |
+
|
492 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
493 |
+
|
494 |
+
|
495 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
in_channels: int,
|
499 |
+
temb_channels: int,
|
500 |
+
dropout: float = 0.0,
|
501 |
+
num_layers: int = 1,
|
502 |
+
transformer_layers_per_block: int = 1,
|
503 |
+
resnet_eps: float = 1e-6,
|
504 |
+
resnet_time_scale_shift: str = "default",
|
505 |
+
resnet_act_fn: str = "swish",
|
506 |
+
resnet_groups: int = 32,
|
507 |
+
resnet_pre_norm: bool = True,
|
508 |
+
num_attention_heads=1,
|
509 |
+
output_scale_factor=1.0,
|
510 |
+
cross_attention_dim=1280,
|
511 |
+
dual_cross_attention=False,
|
512 |
+
use_linear_projection=False,
|
513 |
+
upcast_attention=False,
|
514 |
+
num_views: int = 1,
|
515 |
+
joint_attention: bool = False,
|
516 |
+
joint_attention_twice: bool = False,
|
517 |
+
multiview_attention: bool = True,
|
518 |
+
cross_domain_attention: bool=False
|
519 |
+
):
|
520 |
+
super().__init__()
|
521 |
+
|
522 |
+
self.has_cross_attention = True
|
523 |
+
self.num_attention_heads = num_attention_heads
|
524 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
525 |
+
|
526 |
+
# there is always at least one resnet
|
527 |
+
resnets = [
|
528 |
+
ResnetBlock2D(
|
529 |
+
in_channels=in_channels,
|
530 |
+
out_channels=in_channels,
|
531 |
+
temb_channels=temb_channels,
|
532 |
+
eps=resnet_eps,
|
533 |
+
groups=resnet_groups,
|
534 |
+
dropout=dropout,
|
535 |
+
time_embedding_norm=resnet_time_scale_shift,
|
536 |
+
non_linearity=resnet_act_fn,
|
537 |
+
output_scale_factor=output_scale_factor,
|
538 |
+
pre_norm=resnet_pre_norm,
|
539 |
+
)
|
540 |
+
]
|
541 |
+
attentions = []
|
542 |
+
|
543 |
+
for _ in range(num_layers):
|
544 |
+
if not dual_cross_attention:
|
545 |
+
attentions.append(
|
546 |
+
TransformerMV2DModel(
|
547 |
+
num_attention_heads,
|
548 |
+
in_channels // num_attention_heads,
|
549 |
+
in_channels=in_channels,
|
550 |
+
num_layers=transformer_layers_per_block,
|
551 |
+
cross_attention_dim=cross_attention_dim,
|
552 |
+
norm_num_groups=resnet_groups,
|
553 |
+
use_linear_projection=use_linear_projection,
|
554 |
+
upcast_attention=upcast_attention,
|
555 |
+
num_views=num_views,
|
556 |
+
joint_attention=joint_attention,
|
557 |
+
joint_attention_twice=joint_attention_twice,
|
558 |
+
multiview_attention=multiview_attention,
|
559 |
+
cross_domain_attention=cross_domain_attention
|
560 |
+
)
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
raise NotImplementedError
|
564 |
+
resnets.append(
|
565 |
+
ResnetBlock2D(
|
566 |
+
in_channels=in_channels,
|
567 |
+
out_channels=in_channels,
|
568 |
+
temb_channels=temb_channels,
|
569 |
+
eps=resnet_eps,
|
570 |
+
groups=resnet_groups,
|
571 |
+
dropout=dropout,
|
572 |
+
time_embedding_norm=resnet_time_scale_shift,
|
573 |
+
non_linearity=resnet_act_fn,
|
574 |
+
output_scale_factor=output_scale_factor,
|
575 |
+
pre_norm=resnet_pre_norm,
|
576 |
+
)
|
577 |
+
)
|
578 |
+
|
579 |
+
self.attentions = nn.ModuleList(attentions)
|
580 |
+
self.resnets = nn.ModuleList(resnets)
|
581 |
+
|
582 |
+
def forward(
|
583 |
+
self,
|
584 |
+
hidden_states: torch.FloatTensor,
|
585 |
+
temb: Optional[torch.FloatTensor] = None,
|
586 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
587 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
588 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
589 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
590 |
+
) -> torch.FloatTensor:
|
591 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
592 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
593 |
+
hidden_states = attn(
|
594 |
+
hidden_states,
|
595 |
+
encoder_hidden_states=encoder_hidden_states,
|
596 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
597 |
+
attention_mask=attention_mask,
|
598 |
+
encoder_attention_mask=encoder_attention_mask,
|
599 |
+
return_dict=False,
|
600 |
+
)[0]
|
601 |
+
hidden_states = resnet(hidden_states, temb)
|
602 |
+
|
603 |
+
return hidden_states
|
604 |
+
|
605 |
+
|
606 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
607 |
+
def __init__(
|
608 |
+
self,
|
609 |
+
in_channels: int,
|
610 |
+
out_channels: int,
|
611 |
+
prev_output_channel: int,
|
612 |
+
temb_channels: int,
|
613 |
+
dropout: float = 0.0,
|
614 |
+
num_layers: int = 1,
|
615 |
+
transformer_layers_per_block: int = 1,
|
616 |
+
resnet_eps: float = 1e-6,
|
617 |
+
resnet_time_scale_shift: str = "default",
|
618 |
+
resnet_act_fn: str = "swish",
|
619 |
+
resnet_groups: int = 32,
|
620 |
+
resnet_pre_norm: bool = True,
|
621 |
+
num_attention_heads=1,
|
622 |
+
cross_attention_dim=1280,
|
623 |
+
output_scale_factor=1.0,
|
624 |
+
add_upsample=True,
|
625 |
+
dual_cross_attention=False,
|
626 |
+
use_linear_projection=False,
|
627 |
+
only_cross_attention=False,
|
628 |
+
upcast_attention=False,
|
629 |
+
num_views: int = 1,
|
630 |
+
joint_attention: bool = False,
|
631 |
+
joint_attention_twice: bool = False,
|
632 |
+
multiview_attention: bool = True,
|
633 |
+
cross_domain_attention: bool=False
|
634 |
+
):
|
635 |
+
super().__init__()
|
636 |
+
resnets = []
|
637 |
+
attentions = []
|
638 |
+
|
639 |
+
self.has_cross_attention = True
|
640 |
+
self.num_attention_heads = num_attention_heads
|
641 |
+
|
642 |
+
for i in range(num_layers):
|
643 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
644 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
645 |
+
|
646 |
+
resnets.append(
|
647 |
+
ResnetBlock2D(
|
648 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
649 |
+
out_channels=out_channels,
|
650 |
+
temb_channels=temb_channels,
|
651 |
+
eps=resnet_eps,
|
652 |
+
groups=resnet_groups,
|
653 |
+
dropout=dropout,
|
654 |
+
time_embedding_norm=resnet_time_scale_shift,
|
655 |
+
non_linearity=resnet_act_fn,
|
656 |
+
output_scale_factor=output_scale_factor,
|
657 |
+
pre_norm=resnet_pre_norm,
|
658 |
+
)
|
659 |
+
)
|
660 |
+
if not dual_cross_attention:
|
661 |
+
attentions.append(
|
662 |
+
TransformerMV2DModel(
|
663 |
+
num_attention_heads,
|
664 |
+
out_channels // num_attention_heads,
|
665 |
+
in_channels=out_channels,
|
666 |
+
num_layers=transformer_layers_per_block,
|
667 |
+
cross_attention_dim=cross_attention_dim,
|
668 |
+
norm_num_groups=resnet_groups,
|
669 |
+
use_linear_projection=use_linear_projection,
|
670 |
+
only_cross_attention=only_cross_attention,
|
671 |
+
upcast_attention=upcast_attention,
|
672 |
+
num_views=num_views,
|
673 |
+
joint_attention=joint_attention,
|
674 |
+
joint_attention_twice=joint_attention_twice,
|
675 |
+
multiview_attention=multiview_attention,
|
676 |
+
cross_domain_attention=cross_domain_attention
|
677 |
+
)
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
raise NotImplementedError
|
681 |
+
self.attentions = nn.ModuleList(attentions)
|
682 |
+
self.resnets = nn.ModuleList(resnets)
|
683 |
+
|
684 |
+
if add_upsample:
|
685 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
686 |
+
else:
|
687 |
+
self.upsamplers = None
|
688 |
+
if num_views == 4:
|
689 |
+
self.gradient_checkpointing = False
|
690 |
+
else:
|
691 |
+
self.gradient_checkpointing = False
|
692 |
+
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
hidden_states: torch.FloatTensor,
|
696 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
697 |
+
temb: Optional[torch.FloatTensor] = None,
|
698 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
699 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
700 |
+
upsample_size: Optional[int] = None,
|
701 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
702 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
703 |
+
):
|
704 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
705 |
+
# pop res hidden states
|
706 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
707 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
708 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
709 |
+
|
710 |
+
if self.training and self.gradient_checkpointing:
|
711 |
+
|
712 |
+
def create_custom_forward(module, return_dict=None):
|
713 |
+
def custom_forward(*inputs):
|
714 |
+
if return_dict is not None:
|
715 |
+
return module(*inputs, return_dict=return_dict)
|
716 |
+
else:
|
717 |
+
return module(*inputs)
|
718 |
+
|
719 |
+
return custom_forward
|
720 |
+
|
721 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
722 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
723 |
+
create_custom_forward(resnet),
|
724 |
+
hidden_states,
|
725 |
+
temb,
|
726 |
+
**ckpt_kwargs,
|
727 |
+
)
|
728 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
729 |
+
create_custom_forward(attn, return_dict=False),
|
730 |
+
hidden_states,
|
731 |
+
encoder_hidden_states,
|
732 |
+
None, # timestep
|
733 |
+
None, # class_labels
|
734 |
+
cross_attention_kwargs,
|
735 |
+
attention_mask,
|
736 |
+
encoder_attention_mask,
|
737 |
+
**ckpt_kwargs,
|
738 |
+
)[0]
|
739 |
+
# hidden_states = attn(
|
740 |
+
# hidden_states,
|
741 |
+
# encoder_hidden_states=encoder_hidden_states,
|
742 |
+
# cross_attention_kwargs=cross_attention_kwargs,
|
743 |
+
# attention_mask=attention_mask,
|
744 |
+
# encoder_attention_mask=encoder_attention_mask,
|
745 |
+
# return_dict=False,
|
746 |
+
# )[0]
|
747 |
+
else:
|
748 |
+
hidden_states = resnet(hidden_states, temb)
|
749 |
+
hidden_states = attn(
|
750 |
+
hidden_states,
|
751 |
+
encoder_hidden_states=encoder_hidden_states,
|
752 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
753 |
+
attention_mask=attention_mask,
|
754 |
+
encoder_attention_mask=encoder_attention_mask,
|
755 |
+
return_dict=False,
|
756 |
+
)[0]
|
757 |
+
|
758 |
+
if self.upsamplers is not None:
|
759 |
+
for upsampler in self.upsamplers:
|
760 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
761 |
+
|
762 |
+
return hidden_states
|
763 |
+
|
764 |
+
|
765 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
766 |
+
def __init__(
|
767 |
+
self,
|
768 |
+
in_channels: int,
|
769 |
+
out_channels: int,
|
770 |
+
temb_channels: int,
|
771 |
+
dropout: float = 0.0,
|
772 |
+
num_layers: int = 1,
|
773 |
+
transformer_layers_per_block: int = 1,
|
774 |
+
resnet_eps: float = 1e-6,
|
775 |
+
resnet_time_scale_shift: str = "default",
|
776 |
+
resnet_act_fn: str = "swish",
|
777 |
+
resnet_groups: int = 32,
|
778 |
+
resnet_pre_norm: bool = True,
|
779 |
+
num_attention_heads=1,
|
780 |
+
cross_attention_dim=1280,
|
781 |
+
output_scale_factor=1.0,
|
782 |
+
downsample_padding=1,
|
783 |
+
add_downsample=True,
|
784 |
+
dual_cross_attention=False,
|
785 |
+
use_linear_projection=False,
|
786 |
+
only_cross_attention=False,
|
787 |
+
upcast_attention=False,
|
788 |
+
num_views: int = 1,
|
789 |
+
joint_attention: bool = False,
|
790 |
+
joint_attention_twice: bool = False,
|
791 |
+
multiview_attention: bool = True,
|
792 |
+
cross_domain_attention: bool=False
|
793 |
+
):
|
794 |
+
super().__init__()
|
795 |
+
resnets = []
|
796 |
+
attentions = []
|
797 |
+
|
798 |
+
self.has_cross_attention = True
|
799 |
+
self.num_attention_heads = num_attention_heads
|
800 |
+
|
801 |
+
for i in range(num_layers):
|
802 |
+
in_channels = in_channels if i == 0 else out_channels
|
803 |
+
resnets.append(
|
804 |
+
ResnetBlock2D(
|
805 |
+
in_channels=in_channels,
|
806 |
+
out_channels=out_channels,
|
807 |
+
temb_channels=temb_channels,
|
808 |
+
eps=resnet_eps,
|
809 |
+
groups=resnet_groups,
|
810 |
+
dropout=dropout,
|
811 |
+
time_embedding_norm=resnet_time_scale_shift,
|
812 |
+
non_linearity=resnet_act_fn,
|
813 |
+
output_scale_factor=output_scale_factor,
|
814 |
+
pre_norm=resnet_pre_norm,
|
815 |
+
)
|
816 |
+
)
|
817 |
+
if not dual_cross_attention:
|
818 |
+
attentions.append(
|
819 |
+
TransformerMV2DModel(
|
820 |
+
num_attention_heads,
|
821 |
+
out_channels // num_attention_heads,
|
822 |
+
in_channels=out_channels,
|
823 |
+
num_layers=transformer_layers_per_block,
|
824 |
+
cross_attention_dim=cross_attention_dim,
|
825 |
+
norm_num_groups=resnet_groups,
|
826 |
+
use_linear_projection=use_linear_projection,
|
827 |
+
only_cross_attention=only_cross_attention,
|
828 |
+
upcast_attention=upcast_attention,
|
829 |
+
num_views=num_views,
|
830 |
+
joint_attention=joint_attention,
|
831 |
+
joint_attention_twice=joint_attention_twice,
|
832 |
+
multiview_attention=multiview_attention,
|
833 |
+
cross_domain_attention=cross_domain_attention
|
834 |
+
)
|
835 |
+
)
|
836 |
+
else:
|
837 |
+
raise NotImplementedError
|
838 |
+
self.attentions = nn.ModuleList(attentions)
|
839 |
+
self.resnets = nn.ModuleList(resnets)
|
840 |
+
|
841 |
+
if add_downsample:
|
842 |
+
self.downsamplers = nn.ModuleList(
|
843 |
+
[
|
844 |
+
Downsample2D(
|
845 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
846 |
+
)
|
847 |
+
]
|
848 |
+
)
|
849 |
+
else:
|
850 |
+
self.downsamplers = None
|
851 |
+
if num_views == 4:
|
852 |
+
self.gradient_checkpointing = False
|
853 |
+
else:
|
854 |
+
self.gradient_checkpointing = False
|
855 |
+
|
856 |
+
def forward(
|
857 |
+
self,
|
858 |
+
hidden_states: torch.FloatTensor,
|
859 |
+
temb: Optional[torch.FloatTensor] = None,
|
860 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
861 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
862 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
863 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
864 |
+
additional_residuals=None,
|
865 |
+
):
|
866 |
+
output_states = ()
|
867 |
+
|
868 |
+
blocks = list(zip(self.resnets, self.attentions))
|
869 |
+
|
870 |
+
for i, (resnet, attn) in enumerate(blocks):
|
871 |
+
if self.training and self.gradient_checkpointing:
|
872 |
+
|
873 |
+
def create_custom_forward(module, return_dict=None):
|
874 |
+
def custom_forward(*inputs):
|
875 |
+
if return_dict is not None:
|
876 |
+
return module(*inputs, return_dict=return_dict)
|
877 |
+
else:
|
878 |
+
return module(*inputs)
|
879 |
+
|
880 |
+
return custom_forward
|
881 |
+
|
882 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
883 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
884 |
+
create_custom_forward(resnet),
|
885 |
+
hidden_states,
|
886 |
+
temb,
|
887 |
+
**ckpt_kwargs,
|
888 |
+
)
|
889 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
890 |
+
create_custom_forward(attn, return_dict=False),
|
891 |
+
hidden_states,
|
892 |
+
encoder_hidden_states,
|
893 |
+
None, # timestep
|
894 |
+
None, # class_labels
|
895 |
+
cross_attention_kwargs,
|
896 |
+
attention_mask,
|
897 |
+
encoder_attention_mask,
|
898 |
+
**ckpt_kwargs,
|
899 |
+
)[0]
|
900 |
+
else:
|
901 |
+
hidden_states = resnet(hidden_states, temb)
|
902 |
+
hidden_states = attn(
|
903 |
+
hidden_states,
|
904 |
+
encoder_hidden_states=encoder_hidden_states,
|
905 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
906 |
+
attention_mask=attention_mask,
|
907 |
+
encoder_attention_mask=encoder_attention_mask,
|
908 |
+
return_dict=False,
|
909 |
+
)[0]
|
910 |
+
|
911 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
912 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
913 |
+
hidden_states = hidden_states + additional_residuals
|
914 |
+
|
915 |
+
output_states = output_states + (hidden_states,)
|
916 |
+
|
917 |
+
if self.downsamplers is not None:
|
918 |
+
for downsampler in self.downsamplers:
|
919 |
+
hidden_states = downsampler(hidden_states)
|
920 |
+
|
921 |
+
output_states = output_states + (hidden_states,)
|
922 |
+
|
923 |
+
return hidden_states, output_states
|
924 |
+
|
canonicalize/models/unet_mv2d_condition.py
ADDED
@@ -0,0 +1,1502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.models.activations import get_activation
|
28 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
29 |
+
from diffusers.models.embeddings import (
|
30 |
+
GaussianFourierProjection,
|
31 |
+
ImageHintTimeEmbedding,
|
32 |
+
ImageProjection,
|
33 |
+
ImageTimeEmbedding,
|
34 |
+
TextImageProjection,
|
35 |
+
TextImageTimeEmbedding,
|
36 |
+
TextTimeEmbedding,
|
37 |
+
TimestepEmbedding,
|
38 |
+
Timesteps,
|
39 |
+
)
|
40 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
41 |
+
from diffusers.models.unet_2d_blocks import (
|
42 |
+
CrossAttnDownBlock2D,
|
43 |
+
CrossAttnUpBlock2D,
|
44 |
+
DownBlock2D,
|
45 |
+
UNetMidBlock2DCrossAttn,
|
46 |
+
UNetMidBlock2DSimpleCrossAttn,
|
47 |
+
UpBlock2D,
|
48 |
+
)
|
49 |
+
from diffusers.utils import (
|
50 |
+
CONFIG_NAME,
|
51 |
+
FLAX_WEIGHTS_NAME,
|
52 |
+
SAFETENSORS_WEIGHTS_NAME,
|
53 |
+
WEIGHTS_NAME,
|
54 |
+
_add_variant,
|
55 |
+
_get_model_file,
|
56 |
+
deprecate,
|
57 |
+
is_accelerate_available,
|
58 |
+
is_torch_version,
|
59 |
+
logging,
|
60 |
+
)
|
61 |
+
from diffusers import __version__
|
62 |
+
from canonicalize.models.unet_mv2d_blocks import (
|
63 |
+
CrossAttnDownBlockMV2D,
|
64 |
+
CrossAttnUpBlockMV2D,
|
65 |
+
UNetMidBlockMV2DCrossAttn,
|
66 |
+
get_down_block,
|
67 |
+
get_up_block,
|
68 |
+
)
|
69 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
70 |
+
from diffusers.utils.import_utils import is_xformers_available
|
71 |
+
from canonicalize.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
72 |
+
from canonicalize.models.refunet import ReferenceOnlyAttnProc
|
73 |
+
|
74 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
75 |
+
from diffusers.utils.hub_utils import HF_HUB_OFFLINE
|
76 |
+
|
77 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
78 |
+
|
79 |
+
|
80 |
+
@dataclass
|
81 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
82 |
+
"""
|
83 |
+
The output of [`UNet2DConditionModel`].
|
84 |
+
|
85 |
+
Args:
|
86 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
87 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
88 |
+
"""
|
89 |
+
|
90 |
+
sample: torch.FloatTensor = None
|
91 |
+
|
92 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
93 |
+
r"""
|
94 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
95 |
+
shaped output.
|
96 |
+
|
97 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
98 |
+
for all models (such as downloading or saving).
|
99 |
+
|
100 |
+
Parameters:
|
101 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
102 |
+
Height and width of input/output sample.
|
103 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
104 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
105 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
106 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether to flip the sin to cos in the time embedding.
|
108 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
109 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
110 |
+
The tuple of downsample blocks to use.
|
111 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
112 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
113 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
114 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
115 |
+
The tuple of upsample blocks to use.
|
116 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
117 |
+
Whether to include self-attention in the basic transformer blocks, see
|
118 |
+
[`~models.attention.BasicTransformerBlock`].
|
119 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
120 |
+
The tuple of output channels for each block.
|
121 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
122 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
123 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
124 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
125 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
126 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
127 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
128 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
129 |
+
The dimension of the cross attention features.
|
130 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
131 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
132 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
133 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
134 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
135 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
136 |
+
dimension to `cross_attention_dim`.
|
137 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
138 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
139 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
140 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
141 |
+
num_attention_heads (`int`, *optional*):
|
142 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
143 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
144 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
145 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
146 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
147 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
148 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
149 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
150 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
151 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
152 |
+
Dimension for the timestep embeddings.
|
153 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
154 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
155 |
+
class conditioning with `class_embed_type` equal to `None`.
|
156 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
157 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
158 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
159 |
+
An optional override for the dimension of the projected time embedding.
|
160 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
161 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
162 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
163 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
164 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
165 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
166 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
167 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
168 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
169 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
170 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
171 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
172 |
+
embeddings with the class embeddings.
|
173 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
174 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
175 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
176 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
177 |
+
otherwise.
|
178 |
+
"""
|
179 |
+
|
180 |
+
_supports_gradient_checkpointing = True
|
181 |
+
|
182 |
+
@register_to_config
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
sample_size: Optional[int] = None,
|
186 |
+
in_channels: int = 4,
|
187 |
+
out_channels: int = 4,
|
188 |
+
center_input_sample: bool = False,
|
189 |
+
flip_sin_to_cos: bool = True,
|
190 |
+
freq_shift: int = 0,
|
191 |
+
down_block_types: Tuple[str] = (
|
192 |
+
"CrossAttnDownBlockMV2D",
|
193 |
+
"CrossAttnDownBlockMV2D",
|
194 |
+
"CrossAttnDownBlockMV2D",
|
195 |
+
"DownBlock2D",
|
196 |
+
),
|
197 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
198 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
199 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
200 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
201 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
202 |
+
downsample_padding: int = 1,
|
203 |
+
mid_block_scale_factor: float = 1,
|
204 |
+
act_fn: str = "silu",
|
205 |
+
norm_num_groups: Optional[int] = 32,
|
206 |
+
norm_eps: float = 1e-5,
|
207 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
208 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
209 |
+
encoder_hid_dim: Optional[int] = None,
|
210 |
+
encoder_hid_dim_type: Optional[str] = None,
|
211 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
212 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
213 |
+
dual_cross_attention: bool = False,
|
214 |
+
use_linear_projection: bool = False,
|
215 |
+
class_embed_type: Optional[str] = None,
|
216 |
+
addition_embed_type: Optional[str] = None,
|
217 |
+
addition_time_embed_dim: Optional[int] = None,
|
218 |
+
num_class_embeds: Optional[int] = None,
|
219 |
+
upcast_attention: bool = False,
|
220 |
+
resnet_time_scale_shift: str = "default",
|
221 |
+
resnet_skip_time_act: bool = False,
|
222 |
+
resnet_out_scale_factor: int = 1.0,
|
223 |
+
time_embedding_type: str = "positional",
|
224 |
+
time_embedding_dim: Optional[int] = None,
|
225 |
+
time_embedding_act_fn: Optional[str] = None,
|
226 |
+
timestep_post_act: Optional[str] = None,
|
227 |
+
time_cond_proj_dim: Optional[int] = None,
|
228 |
+
conv_in_kernel: int = 3,
|
229 |
+
conv_out_kernel: int = 3,
|
230 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
231 |
+
class_embeddings_concat: bool = False,
|
232 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
233 |
+
cross_attention_norm: Optional[str] = None,
|
234 |
+
addition_embed_type_num_heads=64,
|
235 |
+
num_views: int = 1,
|
236 |
+
joint_attention: bool = False,
|
237 |
+
joint_attention_twice: bool = False,
|
238 |
+
multiview_attention: bool = True,
|
239 |
+
cross_domain_attention: bool = False,
|
240 |
+
camera_input_dim: int = 12,
|
241 |
+
camera_hidden_dim: int = 320,
|
242 |
+
camera_output_dim: int = 1280,
|
243 |
+
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
|
247 |
+
self.sample_size = sample_size
|
248 |
+
|
249 |
+
if num_attention_heads is not None:
|
250 |
+
raise ValueError(
|
251 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
252 |
+
)
|
253 |
+
|
254 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
255 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
256 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
257 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
258 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
259 |
+
# which is why we correct for the naming here.
|
260 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
261 |
+
|
262 |
+
# Check inputs
|
263 |
+
if len(down_block_types) != len(up_block_types):
|
264 |
+
raise ValueError(
|
265 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
266 |
+
)
|
267 |
+
|
268 |
+
if len(block_out_channels) != len(down_block_types):
|
269 |
+
raise ValueError(
|
270 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
271 |
+
)
|
272 |
+
|
273 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
274 |
+
raise ValueError(
|
275 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
276 |
+
)
|
277 |
+
|
278 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
279 |
+
raise ValueError(
|
280 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
281 |
+
)
|
282 |
+
|
283 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
284 |
+
raise ValueError(
|
285 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
286 |
+
)
|
287 |
+
|
288 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
289 |
+
raise ValueError(
|
290 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
291 |
+
)
|
292 |
+
|
293 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
294 |
+
raise ValueError(
|
295 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
296 |
+
)
|
297 |
+
|
298 |
+
# input
|
299 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
300 |
+
self.conv_in = nn.Conv2d(
|
301 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
302 |
+
)
|
303 |
+
|
304 |
+
# time
|
305 |
+
if time_embedding_type == "fourier":
|
306 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
307 |
+
if time_embed_dim % 2 != 0:
|
308 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
309 |
+
self.time_proj = GaussianFourierProjection(
|
310 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
311 |
+
)
|
312 |
+
timestep_input_dim = time_embed_dim
|
313 |
+
elif time_embedding_type == "positional":
|
314 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
315 |
+
|
316 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
317 |
+
timestep_input_dim = block_out_channels[0]
|
318 |
+
else:
|
319 |
+
raise ValueError(
|
320 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
321 |
+
)
|
322 |
+
|
323 |
+
self.time_embedding = TimestepEmbedding(
|
324 |
+
timestep_input_dim,
|
325 |
+
time_embed_dim,
|
326 |
+
act_fn=act_fn,
|
327 |
+
post_act_fn=timestep_post_act,
|
328 |
+
cond_proj_dim=time_cond_proj_dim,
|
329 |
+
)
|
330 |
+
|
331 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
332 |
+
encoder_hid_dim_type = "text_proj"
|
333 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
334 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
335 |
+
|
336 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
337 |
+
raise ValueError(
|
338 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
339 |
+
)
|
340 |
+
|
341 |
+
if encoder_hid_dim_type == "text_proj":
|
342 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
343 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
344 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
345 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
346 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
347 |
+
self.encoder_hid_proj = TextImageProjection(
|
348 |
+
text_embed_dim=encoder_hid_dim,
|
349 |
+
image_embed_dim=cross_attention_dim,
|
350 |
+
cross_attention_dim=cross_attention_dim,
|
351 |
+
)
|
352 |
+
elif encoder_hid_dim_type == "image_proj":
|
353 |
+
# Kandinsky 2.2
|
354 |
+
self.encoder_hid_proj = ImageProjection(
|
355 |
+
image_embed_dim=encoder_hid_dim,
|
356 |
+
cross_attention_dim=cross_attention_dim,
|
357 |
+
)
|
358 |
+
elif encoder_hid_dim_type is not None:
|
359 |
+
raise ValueError(
|
360 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
self.encoder_hid_proj = None
|
364 |
+
|
365 |
+
# class embedding
|
366 |
+
if class_embed_type is None and num_class_embeds is not None:
|
367 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
368 |
+
elif class_embed_type == "timestep":
|
369 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
370 |
+
elif class_embed_type == "identity":
|
371 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
372 |
+
elif class_embed_type == "projection":
|
373 |
+
if projection_class_embeddings_input_dim is None:
|
374 |
+
raise ValueError(
|
375 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
376 |
+
)
|
377 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
378 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
379 |
+
# 2. it projects from an arbitrary input dimension.
|
380 |
+
#
|
381 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
382 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
383 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
384 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
385 |
+
elif class_embed_type == "simple_projection":
|
386 |
+
if projection_class_embeddings_input_dim is None:
|
387 |
+
raise ValueError(
|
388 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
389 |
+
)
|
390 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
391 |
+
else:
|
392 |
+
self.class_embedding = None
|
393 |
+
|
394 |
+
if addition_embed_type == "text":
|
395 |
+
if encoder_hid_dim is not None:
|
396 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
397 |
+
else:
|
398 |
+
text_time_embedding_from_dim = cross_attention_dim
|
399 |
+
|
400 |
+
self.add_embedding = TextTimeEmbedding(
|
401 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
402 |
+
)
|
403 |
+
elif addition_embed_type == "text_image":
|
404 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
405 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
406 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
407 |
+
self.add_embedding = TextImageTimeEmbedding(
|
408 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
409 |
+
)
|
410 |
+
elif addition_embed_type == "text_time":
|
411 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
412 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
413 |
+
elif addition_embed_type == "image":
|
414 |
+
# Kandinsky 2.2
|
415 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
416 |
+
elif addition_embed_type == "image_hint":
|
417 |
+
# Kandinsky 2.2 ControlNet
|
418 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
419 |
+
elif addition_embed_type is not None:
|
420 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
421 |
+
|
422 |
+
if time_embedding_act_fn is None:
|
423 |
+
self.time_embed_act = None
|
424 |
+
else:
|
425 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
426 |
+
|
427 |
+
self.camera_embedding = nn.Sequential(
|
428 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
429 |
+
nn.SiLU(),
|
430 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
431 |
+
)
|
432 |
+
|
433 |
+
self.down_blocks = nn.ModuleList([])
|
434 |
+
self.up_blocks = nn.ModuleList([])
|
435 |
+
|
436 |
+
if isinstance(only_cross_attention, bool):
|
437 |
+
if mid_block_only_cross_attention is None:
|
438 |
+
mid_block_only_cross_attention = only_cross_attention
|
439 |
+
|
440 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
441 |
+
|
442 |
+
if mid_block_only_cross_attention is None:
|
443 |
+
mid_block_only_cross_attention = False
|
444 |
+
|
445 |
+
if isinstance(num_attention_heads, int):
|
446 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
447 |
+
|
448 |
+
if isinstance(attention_head_dim, int):
|
449 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
450 |
+
|
451 |
+
if isinstance(cross_attention_dim, int):
|
452 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
453 |
+
|
454 |
+
if isinstance(layers_per_block, int):
|
455 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
456 |
+
|
457 |
+
if isinstance(transformer_layers_per_block, int):
|
458 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
459 |
+
|
460 |
+
if class_embeddings_concat:
|
461 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
462 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
463 |
+
# regular time embeddings
|
464 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
465 |
+
else:
|
466 |
+
blocks_time_embed_dim = time_embed_dim
|
467 |
+
|
468 |
+
# down
|
469 |
+
output_channel = block_out_channels[0]
|
470 |
+
for i, down_block_type in enumerate(down_block_types):
|
471 |
+
input_channel = output_channel
|
472 |
+
output_channel = block_out_channels[i]
|
473 |
+
is_final_block = i == len(block_out_channels) - 1
|
474 |
+
|
475 |
+
down_block = get_down_block(
|
476 |
+
down_block_type,
|
477 |
+
num_layers=layers_per_block[i],
|
478 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
479 |
+
in_channels=input_channel,
|
480 |
+
out_channels=output_channel,
|
481 |
+
temb_channels=blocks_time_embed_dim,
|
482 |
+
add_downsample=not is_final_block,
|
483 |
+
resnet_eps=norm_eps,
|
484 |
+
resnet_act_fn=act_fn,
|
485 |
+
resnet_groups=norm_num_groups,
|
486 |
+
cross_attention_dim=cross_attention_dim[i],
|
487 |
+
num_attention_heads=num_attention_heads[i],
|
488 |
+
downsample_padding=downsample_padding,
|
489 |
+
dual_cross_attention=dual_cross_attention,
|
490 |
+
use_linear_projection=use_linear_projection,
|
491 |
+
only_cross_attention=only_cross_attention[i],
|
492 |
+
upcast_attention=upcast_attention,
|
493 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
494 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
495 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
496 |
+
cross_attention_norm=cross_attention_norm,
|
497 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
498 |
+
num_views=num_views,
|
499 |
+
joint_attention=joint_attention,
|
500 |
+
joint_attention_twice=joint_attention_twice,
|
501 |
+
multiview_attention=multiview_attention,
|
502 |
+
cross_domain_attention=cross_domain_attention
|
503 |
+
)
|
504 |
+
self.down_blocks.append(down_block)
|
505 |
+
|
506 |
+
# mid
|
507 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
508 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
509 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
510 |
+
in_channels=block_out_channels[-1],
|
511 |
+
temb_channels=blocks_time_embed_dim,
|
512 |
+
resnet_eps=norm_eps,
|
513 |
+
resnet_act_fn=act_fn,
|
514 |
+
output_scale_factor=mid_block_scale_factor,
|
515 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
516 |
+
cross_attention_dim=cross_attention_dim[-1],
|
517 |
+
num_attention_heads=num_attention_heads[-1],
|
518 |
+
resnet_groups=norm_num_groups,
|
519 |
+
dual_cross_attention=dual_cross_attention,
|
520 |
+
use_linear_projection=use_linear_projection,
|
521 |
+
upcast_attention=upcast_attention,
|
522 |
+
)
|
523 |
+
# custom MV2D attention block
|
524 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
525 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
526 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
527 |
+
in_channels=block_out_channels[-1],
|
528 |
+
temb_channels=blocks_time_embed_dim,
|
529 |
+
resnet_eps=norm_eps,
|
530 |
+
resnet_act_fn=act_fn,
|
531 |
+
output_scale_factor=mid_block_scale_factor,
|
532 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
533 |
+
cross_attention_dim=cross_attention_dim[-1],
|
534 |
+
num_attention_heads=num_attention_heads[-1],
|
535 |
+
resnet_groups=norm_num_groups,
|
536 |
+
dual_cross_attention=dual_cross_attention,
|
537 |
+
use_linear_projection=use_linear_projection,
|
538 |
+
upcast_attention=upcast_attention,
|
539 |
+
num_views=num_views,
|
540 |
+
joint_attention=joint_attention,
|
541 |
+
joint_attention_twice=joint_attention_twice,
|
542 |
+
multiview_attention=multiview_attention,
|
543 |
+
cross_domain_attention=cross_domain_attention
|
544 |
+
)
|
545 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
546 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
547 |
+
in_channels=block_out_channels[-1],
|
548 |
+
temb_channels=blocks_time_embed_dim,
|
549 |
+
resnet_eps=norm_eps,
|
550 |
+
resnet_act_fn=act_fn,
|
551 |
+
output_scale_factor=mid_block_scale_factor,
|
552 |
+
cross_attention_dim=cross_attention_dim[-1],
|
553 |
+
attention_head_dim=attention_head_dim[-1],
|
554 |
+
resnet_groups=norm_num_groups,
|
555 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
556 |
+
skip_time_act=resnet_skip_time_act,
|
557 |
+
only_cross_attention=mid_block_only_cross_attention,
|
558 |
+
cross_attention_norm=cross_attention_norm,
|
559 |
+
)
|
560 |
+
elif mid_block_type is None:
|
561 |
+
self.mid_block = None
|
562 |
+
else:
|
563 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
564 |
+
|
565 |
+
# count how many layers upsample the images
|
566 |
+
self.num_upsamplers = 0
|
567 |
+
|
568 |
+
# up
|
569 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
570 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
571 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
572 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
573 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
574 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
575 |
+
|
576 |
+
output_channel = reversed_block_out_channels[0]
|
577 |
+
for i, up_block_type in enumerate(up_block_types):
|
578 |
+
is_final_block = i == len(block_out_channels) - 1
|
579 |
+
|
580 |
+
prev_output_channel = output_channel
|
581 |
+
output_channel = reversed_block_out_channels[i]
|
582 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
583 |
+
|
584 |
+
# add upsample block for all BUT final layer
|
585 |
+
if not is_final_block:
|
586 |
+
add_upsample = True
|
587 |
+
self.num_upsamplers += 1
|
588 |
+
else:
|
589 |
+
add_upsample = False
|
590 |
+
|
591 |
+
up_block = get_up_block(
|
592 |
+
up_block_type,
|
593 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
594 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
595 |
+
in_channels=input_channel,
|
596 |
+
out_channels=output_channel,
|
597 |
+
prev_output_channel=prev_output_channel,
|
598 |
+
temb_channels=blocks_time_embed_dim,
|
599 |
+
add_upsample=add_upsample,
|
600 |
+
resnet_eps=norm_eps,
|
601 |
+
resnet_act_fn=act_fn,
|
602 |
+
resnet_groups=norm_num_groups,
|
603 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
604 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
605 |
+
dual_cross_attention=dual_cross_attention,
|
606 |
+
use_linear_projection=use_linear_projection,
|
607 |
+
only_cross_attention=only_cross_attention[i],
|
608 |
+
upcast_attention=upcast_attention,
|
609 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
610 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
611 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
612 |
+
cross_attention_norm=cross_attention_norm,
|
613 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
614 |
+
num_views=num_views,
|
615 |
+
joint_attention=joint_attention,
|
616 |
+
joint_attention_twice=joint_attention_twice,
|
617 |
+
multiview_attention=multiview_attention,
|
618 |
+
cross_domain_attention=cross_domain_attention
|
619 |
+
)
|
620 |
+
self.up_blocks.append(up_block)
|
621 |
+
prev_output_channel = output_channel
|
622 |
+
|
623 |
+
# out
|
624 |
+
if norm_num_groups is not None:
|
625 |
+
self.conv_norm_out = nn.GroupNorm(
|
626 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
627 |
+
)
|
628 |
+
|
629 |
+
self.conv_act = get_activation(act_fn)
|
630 |
+
|
631 |
+
else:
|
632 |
+
self.conv_norm_out = None
|
633 |
+
self.conv_act = None
|
634 |
+
|
635 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
636 |
+
self.conv_out = nn.Conv2d(
|
637 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
638 |
+
)
|
639 |
+
|
640 |
+
@property
|
641 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
642 |
+
r"""
|
643 |
+
Returns:
|
644 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
645 |
+
indexed by its weight name.
|
646 |
+
"""
|
647 |
+
# set recursively
|
648 |
+
processors = {}
|
649 |
+
|
650 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
651 |
+
if hasattr(module, "set_processor"):
|
652 |
+
processors[f"{name}.processor"] = module.processor
|
653 |
+
|
654 |
+
for sub_name, child in module.named_children():
|
655 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
656 |
+
|
657 |
+
return processors
|
658 |
+
|
659 |
+
for name, module in self.named_children():
|
660 |
+
fn_recursive_add_processors(name, module, processors)
|
661 |
+
|
662 |
+
return processors
|
663 |
+
|
664 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
665 |
+
r"""
|
666 |
+
Sets the attention processor to use to compute attention.
|
667 |
+
|
668 |
+
Parameters:
|
669 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
670 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
671 |
+
for **all** `Attention` layers.
|
672 |
+
|
673 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
674 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
675 |
+
|
676 |
+
"""
|
677 |
+
count = len(self.attn_processors.keys())
|
678 |
+
|
679 |
+
if isinstance(processor, dict) and len(processor) != count:
|
680 |
+
raise ValueError(
|
681 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
682 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
683 |
+
)
|
684 |
+
|
685 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
686 |
+
if hasattr(module, "set_processor"):
|
687 |
+
if not isinstance(processor, dict):
|
688 |
+
module.set_processor(processor)
|
689 |
+
else:
|
690 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
691 |
+
|
692 |
+
for sub_name, child in module.named_children():
|
693 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
694 |
+
|
695 |
+
for name, module in self.named_children():
|
696 |
+
fn_recursive_attn_processor(name, module, processor)
|
697 |
+
|
698 |
+
def set_default_attn_processor(self):
|
699 |
+
"""
|
700 |
+
Disables custom attention processors and sets the default attention implementation.
|
701 |
+
"""
|
702 |
+
self.set_attn_processor(AttnProcessor())
|
703 |
+
|
704 |
+
def set_attention_slice(self, slice_size):
|
705 |
+
r"""
|
706 |
+
Enable sliced attention computation.
|
707 |
+
|
708 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
709 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
710 |
+
|
711 |
+
Args:
|
712 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
713 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
714 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
715 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
716 |
+
must be a multiple of `slice_size`.
|
717 |
+
"""
|
718 |
+
sliceable_head_dims = []
|
719 |
+
|
720 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
721 |
+
if hasattr(module, "set_attention_slice"):
|
722 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
723 |
+
|
724 |
+
for child in module.children():
|
725 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
726 |
+
|
727 |
+
# retrieve number of attention layers
|
728 |
+
for module in self.children():
|
729 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
730 |
+
|
731 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
732 |
+
|
733 |
+
if slice_size == "auto":
|
734 |
+
# half the attention head size is usually a good trade-off between
|
735 |
+
# speed and memory
|
736 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
737 |
+
elif slice_size == "max":
|
738 |
+
# make smallest slice possible
|
739 |
+
slice_size = num_sliceable_layers * [1]
|
740 |
+
|
741 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
742 |
+
|
743 |
+
if len(slice_size) != len(sliceable_head_dims):
|
744 |
+
raise ValueError(
|
745 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
746 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
747 |
+
)
|
748 |
+
|
749 |
+
for i in range(len(slice_size)):
|
750 |
+
size = slice_size[i]
|
751 |
+
dim = sliceable_head_dims[i]
|
752 |
+
if size is not None and size > dim:
|
753 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
754 |
+
|
755 |
+
# Recursively walk through all the children.
|
756 |
+
# Any children which exposes the set_attention_slice method
|
757 |
+
# gets the message
|
758 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
759 |
+
if hasattr(module, "set_attention_slice"):
|
760 |
+
module.set_attention_slice(slice_size.pop())
|
761 |
+
|
762 |
+
for child in module.children():
|
763 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
764 |
+
|
765 |
+
reversed_slice_size = list(reversed(slice_size))
|
766 |
+
for module in self.children():
|
767 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
768 |
+
|
769 |
+
|
770 |
+
def forward(
|
771 |
+
self,
|
772 |
+
sample: torch.FloatTensor,
|
773 |
+
timestep: Union[torch.Tensor, float, int],
|
774 |
+
encoder_hidden_states: torch.Tensor,
|
775 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
776 |
+
class_labels: Optional[torch.Tensor] = None,
|
777 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
778 |
+
attention_mask: Optional[torch.Tensor] = None,
|
779 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
780 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
781 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
782 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
783 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
784 |
+
return_dict: bool = True,
|
785 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
786 |
+
r"""
|
787 |
+
The [`UNet2DConditionModel`] forward method.
|
788 |
+
|
789 |
+
Args:
|
790 |
+
sample (`torch.FloatTensor`):
|
791 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
792 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
793 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
794 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
795 |
+
encoder_attention_mask (`torch.Tensor`):
|
796 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
797 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
798 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
799 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
800 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
801 |
+
tuple.
|
802 |
+
cross_attention_kwargs (`dict`, *optional*):
|
803 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
804 |
+
added_cond_kwargs: (`dict`, *optional*):
|
805 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
806 |
+
are passed along to the UNet blocks.
|
807 |
+
|
808 |
+
Returns:
|
809 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
810 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
811 |
+
a `tuple` is returned where the first element is the sample tensor.
|
812 |
+
"""
|
813 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
814 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
815 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
816 |
+
# on the fly if necessary.
|
817 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
818 |
+
|
819 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
820 |
+
forward_upsample_size = False
|
821 |
+
upsample_size = None
|
822 |
+
|
823 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
824 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
825 |
+
forward_upsample_size = True
|
826 |
+
|
827 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
828 |
+
# expects mask of shape:
|
829 |
+
# [batch, key_tokens]
|
830 |
+
# adds singleton query_tokens dimension:
|
831 |
+
# [batch, 1, key_tokens]
|
832 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
833 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
834 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
835 |
+
if attention_mask is not None:
|
836 |
+
# assume that mask is expressed as:
|
837 |
+
# (1 = keep, 0 = discard)
|
838 |
+
# convert mask into a bias that can be added to attention scores:
|
839 |
+
# (keep = +0, discard = -10000.0)
|
840 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
841 |
+
attention_mask = attention_mask.unsqueeze(1)
|
842 |
+
|
843 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
844 |
+
if encoder_attention_mask is not None:
|
845 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
846 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
847 |
+
|
848 |
+
# 0. center input if necessary
|
849 |
+
if self.config.center_input_sample:
|
850 |
+
sample = 2 * sample - 1.0
|
851 |
+
|
852 |
+
# 1. time
|
853 |
+
timesteps = timestep
|
854 |
+
if not torch.is_tensor(timesteps):
|
855 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
856 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
857 |
+
is_mps = sample.device.type == "mps"
|
858 |
+
if isinstance(timestep, float):
|
859 |
+
dtype = torch.float32 if is_mps else torch.float64
|
860 |
+
else:
|
861 |
+
dtype = torch.int32 if is_mps else torch.int64
|
862 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
863 |
+
elif len(timesteps.shape) == 0:
|
864 |
+
timesteps = timesteps[None].to(sample.device)
|
865 |
+
|
866 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
867 |
+
timesteps = timesteps.expand(sample.shape[0])
|
868 |
+
|
869 |
+
t_emb = self.time_proj(timesteps)
|
870 |
+
|
871 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
872 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
873 |
+
# there might be better ways to encapsulate this.
|
874 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
875 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
876 |
+
|
877 |
+
if camera_matrixs is not None:
|
878 |
+
emb = torch.unsqueeze(emb, 1)
|
879 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
880 |
+
emb = emb.repeat(1,cam_emb.shape[1],1) #torch.Size([32, 4, 1280])
|
881 |
+
emb = emb + cam_emb
|
882 |
+
emb = rearrange(emb, "b f c -> (b f) c", f=emb.shape[1])
|
883 |
+
|
884 |
+
aug_emb = None
|
885 |
+
|
886 |
+
if self.class_embedding is not None and class_labels is not None:
|
887 |
+
if class_labels is None:
|
888 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
889 |
+
|
890 |
+
if self.config.class_embed_type == "timestep":
|
891 |
+
class_labels = self.time_proj(class_labels)
|
892 |
+
|
893 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
894 |
+
# there might be better ways to encapsulate this.
|
895 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
896 |
+
|
897 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
898 |
+
|
899 |
+
if self.config.class_embeddings_concat:
|
900 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
901 |
+
else:
|
902 |
+
emb = emb + class_emb
|
903 |
+
|
904 |
+
if self.config.addition_embed_type == "text":
|
905 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
906 |
+
elif self.config.addition_embed_type == "text_image":
|
907 |
+
# Kandinsky 2.1 - style
|
908 |
+
if "image_embeds" not in added_cond_kwargs:
|
909 |
+
raise ValueError(
|
910 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
911 |
+
)
|
912 |
+
|
913 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
914 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
915 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
916 |
+
elif self.config.addition_embed_type == "text_time":
|
917 |
+
# SDXL - style
|
918 |
+
if "text_embeds" not in added_cond_kwargs:
|
919 |
+
raise ValueError(
|
920 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
921 |
+
)
|
922 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
923 |
+
if "time_ids" not in added_cond_kwargs:
|
924 |
+
raise ValueError(
|
925 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
926 |
+
)
|
927 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
928 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
929 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
930 |
+
|
931 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
932 |
+
add_embeds = add_embeds.to(emb.dtype)
|
933 |
+
aug_emb = self.add_embedding(add_embeds)
|
934 |
+
elif self.config.addition_embed_type == "image":
|
935 |
+
# Kandinsky 2.2 - style
|
936 |
+
if "image_embeds" not in added_cond_kwargs:
|
937 |
+
raise ValueError(
|
938 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
939 |
+
)
|
940 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
941 |
+
aug_emb = self.add_embedding(image_embs)
|
942 |
+
elif self.config.addition_embed_type == "image_hint":
|
943 |
+
# Kandinsky 2.2 - style
|
944 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
945 |
+
raise ValueError(
|
946 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
947 |
+
)
|
948 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
949 |
+
hint = added_cond_kwargs.get("hint")
|
950 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
951 |
+
sample = torch.cat([sample, hint], dim=1)
|
952 |
+
|
953 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
954 |
+
|
955 |
+
if self.time_embed_act is not None:
|
956 |
+
emb = self.time_embed_act(emb)
|
957 |
+
|
958 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
959 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
960 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
961 |
+
# Kadinsky 2.1 - style
|
962 |
+
if "image_embeds" not in added_cond_kwargs:
|
963 |
+
raise ValueError(
|
964 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
965 |
+
)
|
966 |
+
|
967 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
968 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
969 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
970 |
+
# Kandinsky 2.2 - style
|
971 |
+
if "image_embeds" not in added_cond_kwargs:
|
972 |
+
raise ValueError(
|
973 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
974 |
+
)
|
975 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
976 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
977 |
+
# 2. pre-process
|
978 |
+
sample = rearrange(sample, "b c f h w -> (b f) c h w", f=sample.shape[2])
|
979 |
+
sample = self.conv_in(sample)
|
980 |
+
# 3. down
|
981 |
+
|
982 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
983 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
984 |
+
|
985 |
+
down_block_res_samples = (sample,)
|
986 |
+
for downsample_block in self.down_blocks:
|
987 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
988 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
989 |
+
additional_residuals = {}
|
990 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
991 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
992 |
+
|
993 |
+
sample, res_samples = downsample_block(
|
994 |
+
hidden_states=sample,
|
995 |
+
temb=emb,
|
996 |
+
encoder_hidden_states=encoder_hidden_states,
|
997 |
+
attention_mask=attention_mask,
|
998 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
999 |
+
encoder_attention_mask=encoder_attention_mask,
|
1000 |
+
**additional_residuals,
|
1001 |
+
)
|
1002 |
+
else:
|
1003 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1004 |
+
|
1005 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1006 |
+
sample += down_block_additional_residuals.pop(0)
|
1007 |
+
|
1008 |
+
down_block_res_samples += res_samples
|
1009 |
+
|
1010 |
+
if is_controlnet:
|
1011 |
+
new_down_block_res_samples = ()
|
1012 |
+
|
1013 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1014 |
+
down_block_res_samples, down_block_additional_residuals
|
1015 |
+
):
|
1016 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1017 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1018 |
+
|
1019 |
+
down_block_res_samples = new_down_block_res_samples
|
1020 |
+
|
1021 |
+
# 4. mid
|
1022 |
+
if self.mid_block is not None:
|
1023 |
+
sample = self.mid_block(
|
1024 |
+
sample,
|
1025 |
+
emb,
|
1026 |
+
encoder_hidden_states=encoder_hidden_states,
|
1027 |
+
attention_mask=attention_mask,
|
1028 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1029 |
+
encoder_attention_mask=encoder_attention_mask,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
if is_controlnet:
|
1033 |
+
sample = sample + mid_block_additional_residual
|
1034 |
+
|
1035 |
+
# 5. up
|
1036 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1037 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1038 |
+
|
1039 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1040 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1041 |
+
|
1042 |
+
# if we have not reached the final block and need to forward the
|
1043 |
+
# upsample size, we do it here
|
1044 |
+
if not is_final_block and forward_upsample_size:
|
1045 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1046 |
+
|
1047 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1048 |
+
sample = upsample_block(
|
1049 |
+
hidden_states=sample,
|
1050 |
+
temb=emb,
|
1051 |
+
res_hidden_states_tuple=res_samples,
|
1052 |
+
encoder_hidden_states=encoder_hidden_states,
|
1053 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1054 |
+
upsample_size=upsample_size,
|
1055 |
+
attention_mask=attention_mask,
|
1056 |
+
encoder_attention_mask=encoder_attention_mask,
|
1057 |
+
)
|
1058 |
+
else:
|
1059 |
+
sample = upsample_block(
|
1060 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
# 6. post-process
|
1064 |
+
if self.conv_norm_out:
|
1065 |
+
sample = self.conv_norm_out(sample)
|
1066 |
+
sample = self.conv_act(sample)
|
1067 |
+
sample = self.conv_out(sample)
|
1068 |
+
|
1069 |
+
if not return_dict:
|
1070 |
+
return (sample,)
|
1071 |
+
|
1072 |
+
return UNetMV2DConditionOutput(sample=sample)
|
1073 |
+
|
1074 |
+
@classmethod
|
1075 |
+
def from_pretrained_2d(
|
1076 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1077 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1078 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1079 |
+
projection_class_embeddings_input_dim: int=6, joint_attention: bool = False,
|
1080 |
+
joint_attention_twice: bool = False, multiview_attention: bool = True,
|
1081 |
+
cross_domain_attention: bool = False,
|
1082 |
+
in_channels: int = 8, out_channels: int = 4, local_crossattn=False,
|
1083 |
+
**kwargs
|
1084 |
+
):
|
1085 |
+
r"""
|
1086 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1087 |
+
|
1088 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1089 |
+
train the model, set it back in training mode with `model.train()`.
|
1090 |
+
|
1091 |
+
Parameters:
|
1092 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1093 |
+
Can be either:
|
1094 |
+
|
1095 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1096 |
+
the Hub.
|
1097 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1098 |
+
with [`~ModelMixin.save_pretrained`].
|
1099 |
+
|
1100 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1101 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1102 |
+
is not used.
|
1103 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1104 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1105 |
+
dtype is automatically derived from the model's weights.
|
1106 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1107 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1108 |
+
cached versions if they exist.
|
1109 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1110 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1111 |
+
incompletely downloaded files are deleted.
|
1112 |
+
proxies (`Dict[str, str]`, *optional*):
|
1113 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1114 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1115 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1116 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1117 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1118 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1119 |
+
won't be downloaded from the Hub.
|
1120 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1121 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1122 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1123 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1124 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1125 |
+
allowed by Git.
|
1126 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1127 |
+
Load the model weights from a Flax checkpoint save file.
|
1128 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1129 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1130 |
+
mirror (`str`, *optional*):
|
1131 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1132 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1133 |
+
information.
|
1134 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1135 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1136 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1137 |
+
same device.
|
1138 |
+
|
1139 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1140 |
+
more information about each option see [designing a device
|
1141 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1142 |
+
max_memory (`Dict`, *optional*):
|
1143 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1144 |
+
each GPU and the available CPU RAM if unset.
|
1145 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1146 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1147 |
+
offload_state_dict (`bool`, *optional*):
|
1148 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1149 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1150 |
+
when there is some disk offload.
|
1151 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1152 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1153 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1154 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1155 |
+
argument to `True` will raise an error.
|
1156 |
+
variant (`str`, *optional*):
|
1157 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1158 |
+
loading `from_flax`.
|
1159 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1160 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1161 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1162 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1163 |
+
|
1164 |
+
<Tip>
|
1165 |
+
|
1166 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1167 |
+
`huggingface-cli login`. You can also activate the special
|
1168 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1169 |
+
firewalled environment.
|
1170 |
+
|
1171 |
+
</Tip>
|
1172 |
+
|
1173 |
+
Example:
|
1174 |
+
|
1175 |
+
```py
|
1176 |
+
from diffusers import UNet2DConditionModel
|
1177 |
+
|
1178 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1179 |
+
```
|
1180 |
+
|
1181 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1182 |
+
|
1183 |
+
```bash
|
1184 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1185 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1186 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1187 |
+
```
|
1188 |
+
"""
|
1189 |
+
cache_dir = kwargs.pop("cache_dir", HF_HUB_CACHE)
|
1190 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1191 |
+
force_download = kwargs.pop("force_download", False)
|
1192 |
+
from_flax = kwargs.pop("from_flax", False)
|
1193 |
+
resume_download = kwargs.pop("resume_download", False)
|
1194 |
+
proxies = kwargs.pop("proxies", None)
|
1195 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1196 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1197 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1198 |
+
revision = kwargs.pop("revision", None)
|
1199 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1200 |
+
subfolder = kwargs.pop("subfolder", None)
|
1201 |
+
device_map = kwargs.pop("device_map", None)
|
1202 |
+
max_memory = kwargs.pop("max_memory", None)
|
1203 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1204 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1205 |
+
variant = kwargs.pop("variant", None)
|
1206 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1207 |
+
|
1208 |
+
# if use_safetensors and not is_safetensors_available():
|
1209 |
+
# raise ValueError(
|
1210 |
+
# "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1211 |
+
# )
|
1212 |
+
|
1213 |
+
allow_pickle = False
|
1214 |
+
if use_safetensors is None:
|
1215 |
+
# use_safetensors = is_safetensors_available()
|
1216 |
+
use_safetensors = False
|
1217 |
+
allow_pickle = True
|
1218 |
+
|
1219 |
+
if device_map is not None and not is_accelerate_available():
|
1220 |
+
raise NotImplementedError(
|
1221 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1222 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
# Check if we can handle device_map and dispatching the weights
|
1226 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1227 |
+
raise NotImplementedError(
|
1228 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1229 |
+
" `device_map=None`."
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
# Load config if we don't provide a configuration
|
1233 |
+
config_path = pretrained_model_name_or_path
|
1234 |
+
|
1235 |
+
user_agent = {
|
1236 |
+
"diffusers": __version__,
|
1237 |
+
"file_type": "model",
|
1238 |
+
"framework": "pytorch",
|
1239 |
+
}
|
1240 |
+
|
1241 |
+
# load config
|
1242 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1243 |
+
config_path,
|
1244 |
+
cache_dir=cache_dir,
|
1245 |
+
return_unused_kwargs=True,
|
1246 |
+
return_commit_hash=True,
|
1247 |
+
force_download=force_download,
|
1248 |
+
resume_download=resume_download,
|
1249 |
+
proxies=proxies,
|
1250 |
+
local_files_only=local_files_only,
|
1251 |
+
use_auth_token=use_auth_token,
|
1252 |
+
revision=revision,
|
1253 |
+
subfolder=subfolder,
|
1254 |
+
device_map=device_map,
|
1255 |
+
max_memory=max_memory,
|
1256 |
+
offload_folder=offload_folder,
|
1257 |
+
offload_state_dict=offload_state_dict,
|
1258 |
+
user_agent=user_agent,
|
1259 |
+
**kwargs,
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
# modify config
|
1263 |
+
config["_class_name"] = cls.__name__
|
1264 |
+
config['in_channels'] = in_channels
|
1265 |
+
config['out_channels'] = out_channels
|
1266 |
+
config['sample_size'] = sample_size # training resolution
|
1267 |
+
config['num_views'] = num_views
|
1268 |
+
config['joint_attention'] = joint_attention
|
1269 |
+
config['joint_attention_twice'] = joint_attention_twice
|
1270 |
+
config['multiview_attention'] = multiview_attention
|
1271 |
+
config['cross_domain_attention'] = cross_domain_attention
|
1272 |
+
config["down_block_types"] = [
|
1273 |
+
"CrossAttnDownBlockMV2D",
|
1274 |
+
"CrossAttnDownBlockMV2D",
|
1275 |
+
"CrossAttnDownBlockMV2D",
|
1276 |
+
"DownBlock2D"
|
1277 |
+
]
|
1278 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1279 |
+
config["up_block_types"] = [
|
1280 |
+
"UpBlock2D",
|
1281 |
+
"CrossAttnUpBlockMV2D",
|
1282 |
+
"CrossAttnUpBlockMV2D",
|
1283 |
+
"CrossAttnUpBlockMV2D"
|
1284 |
+
]
|
1285 |
+
config['class_embed_type'] = 'projection'
|
1286 |
+
if camera_embedding_type == 'e_de_da_sincos':
|
1287 |
+
config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
|
1288 |
+
else:
|
1289 |
+
raise NotImplementedError
|
1290 |
+
|
1291 |
+
# load model
|
1292 |
+
model_file = None
|
1293 |
+
if from_flax:
|
1294 |
+
raise NotImplementedError
|
1295 |
+
else:
|
1296 |
+
if use_safetensors:
|
1297 |
+
try:
|
1298 |
+
model_file = _get_model_file(
|
1299 |
+
pretrained_model_name_or_path,
|
1300 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1301 |
+
cache_dir=cache_dir,
|
1302 |
+
force_download=force_download,
|
1303 |
+
resume_download=resume_download,
|
1304 |
+
proxies=proxies,
|
1305 |
+
local_files_only=local_files_only,
|
1306 |
+
use_auth_token=use_auth_token,
|
1307 |
+
revision=revision,
|
1308 |
+
subfolder=subfolder,
|
1309 |
+
user_agent=user_agent,
|
1310 |
+
commit_hash=commit_hash,
|
1311 |
+
)
|
1312 |
+
except IOError as e:
|
1313 |
+
if not allow_pickle:
|
1314 |
+
raise e
|
1315 |
+
pass
|
1316 |
+
if model_file is None:
|
1317 |
+
model_file = _get_model_file(
|
1318 |
+
pretrained_model_name_or_path,
|
1319 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1320 |
+
cache_dir=cache_dir,
|
1321 |
+
force_download=force_download,
|
1322 |
+
resume_download=resume_download,
|
1323 |
+
proxies=proxies,
|
1324 |
+
local_files_only=local_files_only,
|
1325 |
+
use_auth_token=use_auth_token,
|
1326 |
+
revision=revision,
|
1327 |
+
subfolder=subfolder,
|
1328 |
+
user_agent=user_agent,
|
1329 |
+
commit_hash=commit_hash,
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
model = cls.from_config(config, **unused_kwargs)
|
1333 |
+
if local_crossattn:
|
1334 |
+
unet_lora_attn_procs = dict()
|
1335 |
+
for name, _ in model.attn_processors.items():
|
1336 |
+
if not name.endswith("attn1.processor"):
|
1337 |
+
default_attn_proc = AttnProcessor()
|
1338 |
+
elif is_xformers_available():
|
1339 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
1340 |
+
else:
|
1341 |
+
default_attn_proc = MVAttnProcessor()
|
1342 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
1343 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
1344 |
+
)
|
1345 |
+
model.set_attn_processor(unet_lora_attn_procs)
|
1346 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1347 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1348 |
+
|
1349 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1350 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1351 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1352 |
+
model,
|
1353 |
+
state_dict,
|
1354 |
+
model_file,
|
1355 |
+
pretrained_model_name_or_path,
|
1356 |
+
ignore_mismatched_sizes=True,
|
1357 |
+
)
|
1358 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1359 |
+
# initialize from the original SD structure
|
1360 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1361 |
+
|
1362 |
+
# whether to place all zero to new layers?
|
1363 |
+
if zero_init_conv_in:
|
1364 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1365 |
+
|
1366 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1367 |
+
# initialize from the original SD structure
|
1368 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1369 |
+
if out_channels == 8: # copy for the last 4 channels
|
1370 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1371 |
+
|
1372 |
+
if zero_init_camera_projection:
|
1373 |
+
for p in model.class_embedding.parameters():
|
1374 |
+
torch.nn.init.zeros_(p)
|
1375 |
+
|
1376 |
+
loading_info = {
|
1377 |
+
"missing_keys": missing_keys,
|
1378 |
+
"unexpected_keys": unexpected_keys,
|
1379 |
+
"mismatched_keys": mismatched_keys,
|
1380 |
+
"error_msgs": error_msgs,
|
1381 |
+
}
|
1382 |
+
|
1383 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1384 |
+
raise ValueError(
|
1385 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1386 |
+
)
|
1387 |
+
elif torch_dtype is not None:
|
1388 |
+
model = model.to(torch_dtype)
|
1389 |
+
|
1390 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1391 |
+
|
1392 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1393 |
+
model.eval()
|
1394 |
+
if output_loading_info:
|
1395 |
+
return model, loading_info
|
1396 |
+
|
1397 |
+
return model
|
1398 |
+
|
1399 |
+
@classmethod
|
1400 |
+
def _load_pretrained_model_2d(
|
1401 |
+
cls,
|
1402 |
+
model,
|
1403 |
+
state_dict,
|
1404 |
+
resolved_archive_file,
|
1405 |
+
pretrained_model_name_or_path,
|
1406 |
+
ignore_mismatched_sizes=False,
|
1407 |
+
):
|
1408 |
+
# Retrieve missing & unexpected_keys
|
1409 |
+
model_state_dict = model.state_dict()
|
1410 |
+
loaded_keys = list(state_dict.keys())
|
1411 |
+
|
1412 |
+
expected_keys = list(model_state_dict.keys())
|
1413 |
+
|
1414 |
+
original_loaded_keys = loaded_keys
|
1415 |
+
|
1416 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1417 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1418 |
+
|
1419 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1420 |
+
model_to_load = model
|
1421 |
+
|
1422 |
+
def _find_mismatched_keys(
|
1423 |
+
state_dict,
|
1424 |
+
model_state_dict,
|
1425 |
+
loaded_keys,
|
1426 |
+
ignore_mismatched_sizes,
|
1427 |
+
):
|
1428 |
+
mismatched_keys = []
|
1429 |
+
if ignore_mismatched_sizes:
|
1430 |
+
for checkpoint_key in loaded_keys:
|
1431 |
+
model_key = checkpoint_key
|
1432 |
+
|
1433 |
+
if (
|
1434 |
+
model_key in model_state_dict
|
1435 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1436 |
+
):
|
1437 |
+
mismatched_keys.append(
|
1438 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1439 |
+
)
|
1440 |
+
del state_dict[checkpoint_key]
|
1441 |
+
return mismatched_keys
|
1442 |
+
|
1443 |
+
if state_dict is not None:
|
1444 |
+
# Whole checkpoint
|
1445 |
+
mismatched_keys = _find_mismatched_keys(
|
1446 |
+
state_dict,
|
1447 |
+
model_state_dict,
|
1448 |
+
original_loaded_keys,
|
1449 |
+
ignore_mismatched_sizes,
|
1450 |
+
)
|
1451 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1452 |
+
|
1453 |
+
if len(error_msgs) > 0:
|
1454 |
+
error_msg = "\n\t".join(error_msgs)
|
1455 |
+
if "size mismatch" in error_msg:
|
1456 |
+
error_msg += (
|
1457 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1458 |
+
)
|
1459 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1460 |
+
|
1461 |
+
if len(unexpected_keys) > 0:
|
1462 |
+
logger.warning(
|
1463 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1464 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1465 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1466 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1467 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1468 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1469 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1470 |
+
" BertForSequenceClassification model)."
|
1471 |
+
)
|
1472 |
+
else:
|
1473 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1474 |
+
if len(missing_keys) > 0:
|
1475 |
+
logger.warning(
|
1476 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1477 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1478 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1479 |
+
)
|
1480 |
+
elif len(mismatched_keys) == 0:
|
1481 |
+
logger.info(
|
1482 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1483 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1484 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1485 |
+
" without further training."
|
1486 |
+
)
|
1487 |
+
if len(mismatched_keys) > 0:
|
1488 |
+
mismatched_warning = "\n".join(
|
1489 |
+
[
|
1490 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1491 |
+
for key, shape1, shape2 in mismatched_keys
|
1492 |
+
]
|
1493 |
+
)
|
1494 |
+
logger.warning(
|
1495 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1496 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1497 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1498 |
+
" able to use it for predictions and inference."
|
1499 |
+
)
|
1500 |
+
|
1501 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1502 |
+
|
canonicalize/models/unet_mv2d_ref.py
ADDED
@@ -0,0 +1,1543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from einops import rearrange
|
22 |
+
|
23 |
+
|
24 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
25 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
26 |
+
from diffusers.utils import BaseOutput, logging
|
27 |
+
from diffusers.models.activations import get_activation
|
28 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
29 |
+
from diffusers.models.embeddings import (
|
30 |
+
GaussianFourierProjection,
|
31 |
+
ImageHintTimeEmbedding,
|
32 |
+
ImageProjection,
|
33 |
+
ImageTimeEmbedding,
|
34 |
+
TextImageProjection,
|
35 |
+
TextImageTimeEmbedding,
|
36 |
+
TextTimeEmbedding,
|
37 |
+
TimestepEmbedding,
|
38 |
+
Timesteps,
|
39 |
+
)
|
40 |
+
from diffusers.models.lora import LoRALinearLayer
|
41 |
+
|
42 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
43 |
+
from diffusers.models.unet_2d_blocks import (
|
44 |
+
CrossAttnDownBlock2D,
|
45 |
+
CrossAttnUpBlock2D,
|
46 |
+
DownBlock2D,
|
47 |
+
UNetMidBlock2DCrossAttn,
|
48 |
+
UNetMidBlock2DSimpleCrossAttn,
|
49 |
+
UpBlock2D,
|
50 |
+
)
|
51 |
+
from diffusers.utils import (
|
52 |
+
CONFIG_NAME,
|
53 |
+
FLAX_WEIGHTS_NAME,
|
54 |
+
SAFETENSORS_WEIGHTS_NAME,
|
55 |
+
WEIGHTS_NAME,
|
56 |
+
_add_variant,
|
57 |
+
_get_model_file,
|
58 |
+
deprecate,
|
59 |
+
is_accelerate_available,
|
60 |
+
is_torch_version,
|
61 |
+
logging,
|
62 |
+
)
|
63 |
+
from diffusers import __version__
|
64 |
+
from canonicalize.models.unet_mv2d_blocks import (
|
65 |
+
CrossAttnDownBlockMV2D,
|
66 |
+
CrossAttnUpBlockMV2D,
|
67 |
+
UNetMidBlockMV2DCrossAttn,
|
68 |
+
get_down_block,
|
69 |
+
get_up_block,
|
70 |
+
)
|
71 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
72 |
+
from diffusers.utils.import_utils import is_xformers_available
|
73 |
+
from canonicalize.models.transformer_mv2d import XFormersMVAttnProcessor, MVAttnProcessor
|
74 |
+
from canonicalize.models.refunet import ReferenceOnlyAttnProc
|
75 |
+
|
76 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
77 |
+
from diffusers.utils.hub_utils import HF_HUB_OFFLINE
|
78 |
+
|
79 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class UNetMV2DRefOutput(BaseOutput):
|
84 |
+
"""
|
85 |
+
The output of [`UNet2DConditionModel`].
|
86 |
+
|
87 |
+
Args:
|
88 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
89 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
90 |
+
"""
|
91 |
+
|
92 |
+
sample: torch.FloatTensor = None
|
93 |
+
|
94 |
+
class Identity(torch.nn.Module):
|
95 |
+
r"""A placeholder identity operator that is argument-insensitive.
|
96 |
+
|
97 |
+
Args:
|
98 |
+
args: any argument (unused)
|
99 |
+
kwargs: any keyword argument (unused)
|
100 |
+
|
101 |
+
Shape:
|
102 |
+
- Input: :math:`(*)`, where :math:`*` means any number of dimensions.
|
103 |
+
- Output: :math:`(*)`, same shape as the input.
|
104 |
+
|
105 |
+
Examples::
|
106 |
+
|
107 |
+
>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
|
108 |
+
>>> input = torch.randn(128, 20)
|
109 |
+
>>> output = m(input)
|
110 |
+
>>> print(output.size())
|
111 |
+
torch.Size([128, 20])
|
112 |
+
|
113 |
+
"""
|
114 |
+
def __init__(self, scale=None, *args, **kwargs) -> None:
|
115 |
+
super(Identity, self).__init__()
|
116 |
+
|
117 |
+
def forward(self, input, *args, **kwargs):
|
118 |
+
return input
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
class _LoRACompatibleLinear(nn.Module):
|
123 |
+
"""
|
124 |
+
A Linear layer that can be used with LoRA.
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
|
128 |
+
super().__init__(*args, **kwargs)
|
129 |
+
self.lora_layer = lora_layer
|
130 |
+
|
131 |
+
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
132 |
+
self.lora_layer = lora_layer
|
133 |
+
|
134 |
+
def _fuse_lora(self):
|
135 |
+
pass
|
136 |
+
|
137 |
+
def _unfuse_lora(self):
|
138 |
+
pass
|
139 |
+
|
140 |
+
def forward(self, hidden_states, scale=None, lora_scale: int = 1):
|
141 |
+
return hidden_states
|
142 |
+
|
143 |
+
class UNetMV2DRefModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
144 |
+
r"""
|
145 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
146 |
+
shaped output.
|
147 |
+
|
148 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
149 |
+
for all models (such as downloading or saving).
|
150 |
+
|
151 |
+
Parameters:
|
152 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
153 |
+
Height and width of input/output sample.
|
154 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
155 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
156 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
157 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
158 |
+
Whether to flip the sin to cos in the time embedding.
|
159 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
160 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
161 |
+
The tuple of downsample blocks to use.
|
162 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
163 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
164 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
165 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
166 |
+
The tuple of upsample blocks to use.
|
167 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
168 |
+
Whether to include self-attention in the basic transformer blocks, see
|
169 |
+
[`~models.attention.BasicTransformerBlock`].
|
170 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
171 |
+
The tuple of output channels for each block.
|
172 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
173 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
174 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
175 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
176 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
177 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
178 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
179 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
180 |
+
The dimension of the cross attention features.
|
181 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
182 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
183 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
184 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
185 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
186 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
187 |
+
dimension to `cross_attention_dim`.
|
188 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
189 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
190 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
191 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
192 |
+
num_attention_heads (`int`, *optional*):
|
193 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
194 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
195 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
196 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
197 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
198 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
199 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
200 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
201 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
202 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
203 |
+
Dimension for the timestep embeddings.
|
204 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
205 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
206 |
+
class conditioning with `class_embed_type` equal to `None`.
|
207 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
208 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
209 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
210 |
+
An optional override for the dimension of the projected time embedding.
|
211 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
212 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
213 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
214 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
215 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
216 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
217 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
218 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
219 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
220 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
221 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
222 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
223 |
+
embeddings with the class embeddings.
|
224 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
225 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
226 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
227 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
228 |
+
otherwise.
|
229 |
+
"""
|
230 |
+
|
231 |
+
_supports_gradient_checkpointing = True
|
232 |
+
|
233 |
+
@register_to_config
|
234 |
+
def __init__(
|
235 |
+
self,
|
236 |
+
sample_size: Optional[int] = None,
|
237 |
+
in_channels: int = 4,
|
238 |
+
out_channels: int = 4,
|
239 |
+
center_input_sample: bool = False,
|
240 |
+
flip_sin_to_cos: bool = True,
|
241 |
+
freq_shift: int = 0,
|
242 |
+
down_block_types: Tuple[str] = (
|
243 |
+
"CrossAttnDownBlockMV2D",
|
244 |
+
"CrossAttnDownBlockMV2D",
|
245 |
+
"CrossAttnDownBlockMV2D",
|
246 |
+
"DownBlock2D",
|
247 |
+
),
|
248 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
249 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
250 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
251 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
252 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
253 |
+
downsample_padding: int = 1,
|
254 |
+
mid_block_scale_factor: float = 1,
|
255 |
+
act_fn: str = "silu",
|
256 |
+
norm_num_groups: Optional[int] = 32,
|
257 |
+
norm_eps: float = 1e-5,
|
258 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
259 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
260 |
+
encoder_hid_dim: Optional[int] = None,
|
261 |
+
encoder_hid_dim_type: Optional[str] = None,
|
262 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
263 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
264 |
+
dual_cross_attention: bool = False,
|
265 |
+
use_linear_projection: bool = False,
|
266 |
+
class_embed_type: Optional[str] = None,
|
267 |
+
addition_embed_type: Optional[str] = None,
|
268 |
+
addition_time_embed_dim: Optional[int] = None,
|
269 |
+
num_class_embeds: Optional[int] = None,
|
270 |
+
upcast_attention: bool = False,
|
271 |
+
resnet_time_scale_shift: str = "default",
|
272 |
+
resnet_skip_time_act: bool = False,
|
273 |
+
resnet_out_scale_factor: int = 1.0,
|
274 |
+
time_embedding_type: str = "positional",
|
275 |
+
time_embedding_dim: Optional[int] = None,
|
276 |
+
time_embedding_act_fn: Optional[str] = None,
|
277 |
+
timestep_post_act: Optional[str] = None,
|
278 |
+
time_cond_proj_dim: Optional[int] = None,
|
279 |
+
conv_in_kernel: int = 3,
|
280 |
+
conv_out_kernel: int = 3,
|
281 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
282 |
+
class_embeddings_concat: bool = False,
|
283 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
284 |
+
cross_attention_norm: Optional[str] = None,
|
285 |
+
addition_embed_type_num_heads=64,
|
286 |
+
num_views: int = 1,
|
287 |
+
joint_attention: bool = False,
|
288 |
+
joint_attention_twice: bool = False,
|
289 |
+
multiview_attention: bool = True,
|
290 |
+
cross_domain_attention: bool = False,
|
291 |
+
camera_input_dim: int = 12,
|
292 |
+
camera_hidden_dim: int = 320,
|
293 |
+
camera_output_dim: int = 1280,
|
294 |
+
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
self.sample_size = sample_size
|
299 |
+
|
300 |
+
if num_attention_heads is not None:
|
301 |
+
raise ValueError(
|
302 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
303 |
+
)
|
304 |
+
|
305 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
306 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
307 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
308 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
309 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
310 |
+
# which is why we correct for the naming here.
|
311 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
312 |
+
|
313 |
+
# Check inputs
|
314 |
+
if len(down_block_types) != len(up_block_types):
|
315 |
+
raise ValueError(
|
316 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
317 |
+
)
|
318 |
+
|
319 |
+
if len(block_out_channels) != len(down_block_types):
|
320 |
+
raise ValueError(
|
321 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
322 |
+
)
|
323 |
+
|
324 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
325 |
+
raise ValueError(
|
326 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
327 |
+
)
|
328 |
+
|
329 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
330 |
+
raise ValueError(
|
331 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
332 |
+
)
|
333 |
+
|
334 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
335 |
+
raise ValueError(
|
336 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
337 |
+
)
|
338 |
+
|
339 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
340 |
+
raise ValueError(
|
341 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
342 |
+
)
|
343 |
+
|
344 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
345 |
+
raise ValueError(
|
346 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
347 |
+
)
|
348 |
+
|
349 |
+
# input
|
350 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
351 |
+
self.conv_in = nn.Conv2d(
|
352 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
353 |
+
)
|
354 |
+
|
355 |
+
# time
|
356 |
+
if time_embedding_type == "fourier":
|
357 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
358 |
+
if time_embed_dim % 2 != 0:
|
359 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
360 |
+
self.time_proj = GaussianFourierProjection(
|
361 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
362 |
+
)
|
363 |
+
timestep_input_dim = time_embed_dim
|
364 |
+
elif time_embedding_type == "positional":
|
365 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
366 |
+
|
367 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
368 |
+
timestep_input_dim = block_out_channels[0]
|
369 |
+
else:
|
370 |
+
raise ValueError(
|
371 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
372 |
+
)
|
373 |
+
|
374 |
+
self.time_embedding = TimestepEmbedding(
|
375 |
+
timestep_input_dim,
|
376 |
+
time_embed_dim,
|
377 |
+
act_fn=act_fn,
|
378 |
+
post_act_fn=timestep_post_act,
|
379 |
+
cond_proj_dim=time_cond_proj_dim,
|
380 |
+
)
|
381 |
+
|
382 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
383 |
+
encoder_hid_dim_type = "text_proj"
|
384 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
385 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
386 |
+
|
387 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
388 |
+
raise ValueError(
|
389 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
390 |
+
)
|
391 |
+
|
392 |
+
if encoder_hid_dim_type == "text_proj":
|
393 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
394 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
395 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
396 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
397 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
398 |
+
self.encoder_hid_proj = TextImageProjection(
|
399 |
+
text_embed_dim=encoder_hid_dim,
|
400 |
+
image_embed_dim=cross_attention_dim,
|
401 |
+
cross_attention_dim=cross_attention_dim,
|
402 |
+
)
|
403 |
+
elif encoder_hid_dim_type == "image_proj":
|
404 |
+
# Kandinsky 2.2
|
405 |
+
self.encoder_hid_proj = ImageProjection(
|
406 |
+
image_embed_dim=encoder_hid_dim,
|
407 |
+
cross_attention_dim=cross_attention_dim,
|
408 |
+
)
|
409 |
+
elif encoder_hid_dim_type is not None:
|
410 |
+
raise ValueError(
|
411 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
self.encoder_hid_proj = None
|
415 |
+
|
416 |
+
# class embedding
|
417 |
+
if class_embed_type is None and num_class_embeds is not None:
|
418 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
419 |
+
elif class_embed_type == "timestep":
|
420 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
421 |
+
elif class_embed_type == "identity":
|
422 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
423 |
+
elif class_embed_type == "projection":
|
424 |
+
if projection_class_embeddings_input_dim is None:
|
425 |
+
raise ValueError(
|
426 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
427 |
+
)
|
428 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
429 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
430 |
+
# 2. it projects from an arbitrary input dimension.
|
431 |
+
#
|
432 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
433 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
434 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
435 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
436 |
+
elif class_embed_type == "simple_projection":
|
437 |
+
if projection_class_embeddings_input_dim is None:
|
438 |
+
raise ValueError(
|
439 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
440 |
+
)
|
441 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
442 |
+
else:
|
443 |
+
self.class_embedding = None
|
444 |
+
|
445 |
+
if addition_embed_type == "text":
|
446 |
+
if encoder_hid_dim is not None:
|
447 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
448 |
+
else:
|
449 |
+
text_time_embedding_from_dim = cross_attention_dim
|
450 |
+
|
451 |
+
self.add_embedding = TextTimeEmbedding(
|
452 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
453 |
+
)
|
454 |
+
elif addition_embed_type == "text_image":
|
455 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
456 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
457 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
458 |
+
self.add_embedding = TextImageTimeEmbedding(
|
459 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
460 |
+
)
|
461 |
+
elif addition_embed_type == "text_time":
|
462 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
463 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
464 |
+
elif addition_embed_type == "image":
|
465 |
+
# Kandinsky 2.2
|
466 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
467 |
+
elif addition_embed_type == "image_hint":
|
468 |
+
# Kandinsky 2.2 ControlNet
|
469 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
470 |
+
elif addition_embed_type is not None:
|
471 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
472 |
+
|
473 |
+
if time_embedding_act_fn is None:
|
474 |
+
self.time_embed_act = None
|
475 |
+
else:
|
476 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
477 |
+
|
478 |
+
self.camera_embedding = nn.Sequential(
|
479 |
+
nn.Linear(camera_input_dim, time_embed_dim),
|
480 |
+
nn.SiLU(),
|
481 |
+
nn.Linear(time_embed_dim, time_embed_dim),
|
482 |
+
)
|
483 |
+
|
484 |
+
self.down_blocks = nn.ModuleList([])
|
485 |
+
self.up_blocks = nn.ModuleList([])
|
486 |
+
|
487 |
+
if isinstance(only_cross_attention, bool):
|
488 |
+
if mid_block_only_cross_attention is None:
|
489 |
+
mid_block_only_cross_attention = only_cross_attention
|
490 |
+
|
491 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
492 |
+
|
493 |
+
if mid_block_only_cross_attention is None:
|
494 |
+
mid_block_only_cross_attention = False
|
495 |
+
|
496 |
+
if isinstance(num_attention_heads, int):
|
497 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
498 |
+
|
499 |
+
if isinstance(attention_head_dim, int):
|
500 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
501 |
+
|
502 |
+
if isinstance(cross_attention_dim, int):
|
503 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
504 |
+
|
505 |
+
if isinstance(layers_per_block, int):
|
506 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
507 |
+
|
508 |
+
if isinstance(transformer_layers_per_block, int):
|
509 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
510 |
+
|
511 |
+
if class_embeddings_concat:
|
512 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
513 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
514 |
+
# regular time embeddings
|
515 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
516 |
+
else:
|
517 |
+
blocks_time_embed_dim = time_embed_dim
|
518 |
+
|
519 |
+
# down
|
520 |
+
output_channel = block_out_channels[0]
|
521 |
+
for i, down_block_type in enumerate(down_block_types):
|
522 |
+
input_channel = output_channel
|
523 |
+
output_channel = block_out_channels[i]
|
524 |
+
is_final_block = i == len(block_out_channels) - 1
|
525 |
+
|
526 |
+
down_block = get_down_block(
|
527 |
+
down_block_type,
|
528 |
+
num_layers=layers_per_block[i],
|
529 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
530 |
+
in_channels=input_channel,
|
531 |
+
out_channels=output_channel,
|
532 |
+
temb_channels=blocks_time_embed_dim,
|
533 |
+
add_downsample=not is_final_block,
|
534 |
+
resnet_eps=norm_eps,
|
535 |
+
resnet_act_fn=act_fn,
|
536 |
+
resnet_groups=norm_num_groups,
|
537 |
+
cross_attention_dim=cross_attention_dim[i],
|
538 |
+
num_attention_heads=num_attention_heads[i],
|
539 |
+
downsample_padding=downsample_padding,
|
540 |
+
dual_cross_attention=dual_cross_attention,
|
541 |
+
use_linear_projection=use_linear_projection,
|
542 |
+
only_cross_attention=only_cross_attention[i],
|
543 |
+
upcast_attention=upcast_attention,
|
544 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
545 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
546 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
547 |
+
cross_attention_norm=cross_attention_norm,
|
548 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
549 |
+
num_views=num_views,
|
550 |
+
joint_attention=joint_attention,
|
551 |
+
joint_attention_twice=joint_attention_twice,
|
552 |
+
multiview_attention=multiview_attention,
|
553 |
+
cross_domain_attention=cross_domain_attention
|
554 |
+
)
|
555 |
+
self.down_blocks.append(down_block)
|
556 |
+
|
557 |
+
# mid
|
558 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
559 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
560 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
561 |
+
in_channels=block_out_channels[-1],
|
562 |
+
temb_channels=blocks_time_embed_dim,
|
563 |
+
resnet_eps=norm_eps,
|
564 |
+
resnet_act_fn=act_fn,
|
565 |
+
output_scale_factor=mid_block_scale_factor,
|
566 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
567 |
+
cross_attention_dim=cross_attention_dim[-1],
|
568 |
+
num_attention_heads=num_attention_heads[-1],
|
569 |
+
resnet_groups=norm_num_groups,
|
570 |
+
dual_cross_attention=dual_cross_attention,
|
571 |
+
use_linear_projection=use_linear_projection,
|
572 |
+
upcast_attention=upcast_attention,
|
573 |
+
)
|
574 |
+
# custom MV2D attention block
|
575 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
576 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
577 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
578 |
+
in_channels=block_out_channels[-1],
|
579 |
+
temb_channels=blocks_time_embed_dim,
|
580 |
+
resnet_eps=norm_eps,
|
581 |
+
resnet_act_fn=act_fn,
|
582 |
+
output_scale_factor=mid_block_scale_factor,
|
583 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
584 |
+
cross_attention_dim=cross_attention_dim[-1],
|
585 |
+
num_attention_heads=num_attention_heads[-1],
|
586 |
+
resnet_groups=norm_num_groups,
|
587 |
+
dual_cross_attention=dual_cross_attention,
|
588 |
+
use_linear_projection=use_linear_projection,
|
589 |
+
upcast_attention=upcast_attention,
|
590 |
+
num_views=num_views,
|
591 |
+
joint_attention=joint_attention,
|
592 |
+
joint_attention_twice=joint_attention_twice,
|
593 |
+
multiview_attention=multiview_attention,
|
594 |
+
cross_domain_attention=cross_domain_attention
|
595 |
+
)
|
596 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
597 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
598 |
+
in_channels=block_out_channels[-1],
|
599 |
+
temb_channels=blocks_time_embed_dim,
|
600 |
+
resnet_eps=norm_eps,
|
601 |
+
resnet_act_fn=act_fn,
|
602 |
+
output_scale_factor=mid_block_scale_factor,
|
603 |
+
cross_attention_dim=cross_attention_dim[-1],
|
604 |
+
attention_head_dim=attention_head_dim[-1],
|
605 |
+
resnet_groups=norm_num_groups,
|
606 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
607 |
+
skip_time_act=resnet_skip_time_act,
|
608 |
+
only_cross_attention=mid_block_only_cross_attention,
|
609 |
+
cross_attention_norm=cross_attention_norm,
|
610 |
+
)
|
611 |
+
elif mid_block_type is None:
|
612 |
+
self.mid_block = None
|
613 |
+
else:
|
614 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
615 |
+
|
616 |
+
# count how many layers upsample the images
|
617 |
+
self.num_upsamplers = 0
|
618 |
+
|
619 |
+
# up
|
620 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
621 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
622 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
623 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
624 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
625 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
626 |
+
|
627 |
+
output_channel = reversed_block_out_channels[0]
|
628 |
+
for i, up_block_type in enumerate(up_block_types):
|
629 |
+
is_final_block = i == len(block_out_channels) - 1
|
630 |
+
|
631 |
+
prev_output_channel = output_channel
|
632 |
+
output_channel = reversed_block_out_channels[i]
|
633 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
634 |
+
|
635 |
+
# add upsample block for all BUT final layer
|
636 |
+
if not is_final_block:
|
637 |
+
add_upsample = True
|
638 |
+
self.num_upsamplers += 1
|
639 |
+
else:
|
640 |
+
add_upsample = False
|
641 |
+
|
642 |
+
up_block = get_up_block(
|
643 |
+
up_block_type,
|
644 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
645 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
646 |
+
in_channels=input_channel,
|
647 |
+
out_channels=output_channel,
|
648 |
+
prev_output_channel=prev_output_channel,
|
649 |
+
temb_channels=blocks_time_embed_dim,
|
650 |
+
add_upsample=add_upsample,
|
651 |
+
resnet_eps=norm_eps,
|
652 |
+
resnet_act_fn=act_fn,
|
653 |
+
resnet_groups=norm_num_groups,
|
654 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
655 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
656 |
+
dual_cross_attention=dual_cross_attention,
|
657 |
+
use_linear_projection=use_linear_projection,
|
658 |
+
only_cross_attention=only_cross_attention[i],
|
659 |
+
upcast_attention=upcast_attention,
|
660 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
661 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
662 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
663 |
+
cross_attention_norm=cross_attention_norm,
|
664 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
665 |
+
num_views=num_views,
|
666 |
+
joint_attention=joint_attention,
|
667 |
+
joint_attention_twice=joint_attention_twice,
|
668 |
+
multiview_attention=multiview_attention,
|
669 |
+
cross_domain_attention=cross_domain_attention
|
670 |
+
)
|
671 |
+
self.up_blocks.append(up_block)
|
672 |
+
prev_output_channel = output_channel
|
673 |
+
|
674 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_q = _LoRACompatibleLinear()
|
675 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_k = _LoRACompatibleLinear()
|
676 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_v = _LoRACompatibleLinear()
|
677 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_out = nn.ModuleList([Identity(), Identity()])
|
678 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm2 = Identity()
|
679 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn2 = None
|
680 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm3 = Identity()
|
681 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].ff = Identity()
|
682 |
+
self.up_blocks[3].attentions[2].proj_out = Identity()
|
683 |
+
|
684 |
+
@property
|
685 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
686 |
+
r"""
|
687 |
+
Returns:
|
688 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
689 |
+
indexed by its weight name.
|
690 |
+
"""
|
691 |
+
# set recursively
|
692 |
+
processors = {}
|
693 |
+
|
694 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
695 |
+
if hasattr(module, "set_processor"):
|
696 |
+
processors[f"{name}.processor"] = module.processor
|
697 |
+
|
698 |
+
for sub_name, child in module.named_children():
|
699 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
700 |
+
|
701 |
+
return processors
|
702 |
+
|
703 |
+
for name, module in self.named_children():
|
704 |
+
fn_recursive_add_processors(name, module, processors)
|
705 |
+
|
706 |
+
return processors
|
707 |
+
|
708 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
709 |
+
r"""
|
710 |
+
Sets the attention processor to use to compute attention.
|
711 |
+
|
712 |
+
Parameters:
|
713 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
714 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
715 |
+
for **all** `Attention` layers.
|
716 |
+
|
717 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
718 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
719 |
+
|
720 |
+
"""
|
721 |
+
count = len(self.attn_processors.keys())
|
722 |
+
|
723 |
+
if isinstance(processor, dict) and len(processor) != count:
|
724 |
+
raise ValueError(
|
725 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
726 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
727 |
+
)
|
728 |
+
|
729 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
730 |
+
if hasattr(module, "set_processor"):
|
731 |
+
if not isinstance(processor, dict):
|
732 |
+
module.set_processor(processor)
|
733 |
+
else:
|
734 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
735 |
+
|
736 |
+
for sub_name, child in module.named_children():
|
737 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
738 |
+
|
739 |
+
for name, module in self.named_children():
|
740 |
+
fn_recursive_attn_processor(name, module, processor)
|
741 |
+
|
742 |
+
def set_default_attn_processor(self):
|
743 |
+
"""
|
744 |
+
Disables custom attention processors and sets the default attention implementation.
|
745 |
+
"""
|
746 |
+
self.set_attn_processor(AttnProcessor())
|
747 |
+
|
748 |
+
def set_attention_slice(self, slice_size):
|
749 |
+
r"""
|
750 |
+
Enable sliced attention computation.
|
751 |
+
|
752 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
753 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
754 |
+
|
755 |
+
Args:
|
756 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
757 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
758 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
759 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
760 |
+
must be a multiple of `slice_size`.
|
761 |
+
"""
|
762 |
+
sliceable_head_dims = []
|
763 |
+
|
764 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
765 |
+
if hasattr(module, "set_attention_slice"):
|
766 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
767 |
+
|
768 |
+
for child in module.children():
|
769 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
770 |
+
|
771 |
+
# retrieve number of attention layers
|
772 |
+
for module in self.children():
|
773 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
774 |
+
|
775 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
776 |
+
|
777 |
+
if slice_size == "auto":
|
778 |
+
# half the attention head size is usually a good trade-off between
|
779 |
+
# speed and memory
|
780 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
781 |
+
elif slice_size == "max":
|
782 |
+
# make smallest slice possible
|
783 |
+
slice_size = num_sliceable_layers * [1]
|
784 |
+
|
785 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
786 |
+
|
787 |
+
if len(slice_size) != len(sliceable_head_dims):
|
788 |
+
raise ValueError(
|
789 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
790 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
791 |
+
)
|
792 |
+
|
793 |
+
for i in range(len(slice_size)):
|
794 |
+
size = slice_size[i]
|
795 |
+
dim = sliceable_head_dims[i]
|
796 |
+
if size is not None and size > dim:
|
797 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
798 |
+
|
799 |
+
# Recursively walk through all the children.
|
800 |
+
# Any children which exposes the set_attention_slice method
|
801 |
+
# gets the message
|
802 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
803 |
+
if hasattr(module, "set_attention_slice"):
|
804 |
+
module.set_attention_slice(slice_size.pop())
|
805 |
+
|
806 |
+
for child in module.children():
|
807 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
808 |
+
|
809 |
+
reversed_slice_size = list(reversed(slice_size))
|
810 |
+
for module in self.children():
|
811 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
812 |
+
|
813 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
814 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
815 |
+
module.gradient_checkpointing = value
|
816 |
+
|
817 |
+
def forward(
|
818 |
+
self,
|
819 |
+
sample: torch.FloatTensor,
|
820 |
+
timestep: Union[torch.Tensor, float, int],
|
821 |
+
encoder_hidden_states: torch.Tensor,
|
822 |
+
camera_matrixs: Optional[torch.Tensor] = None,
|
823 |
+
class_labels: Optional[torch.Tensor] = None,
|
824 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
826 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
827 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
828 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
829 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
830 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
831 |
+
return_dict: bool = True,
|
832 |
+
) -> Union[UNetMV2DRefOutput, Tuple]:
|
833 |
+
r"""
|
834 |
+
The [`UNet2DConditionModel`] forward method.
|
835 |
+
|
836 |
+
Args:
|
837 |
+
sample (`torch.FloatTensor`):
|
838 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
839 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
840 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
841 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
842 |
+
encoder_attention_mask (`torch.Tensor`):
|
843 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
844 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
845 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
846 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
847 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
848 |
+
tuple.
|
849 |
+
cross_attention_kwargs (`dict`, *optional*):
|
850 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
851 |
+
added_cond_kwargs: (`dict`, *optional*):
|
852 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
853 |
+
are passed along to the UNet blocks.
|
854 |
+
|
855 |
+
Returns:
|
856 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
857 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
858 |
+
a `tuple` is returned where the first element is the sample tensor.
|
859 |
+
"""
|
860 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
861 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
862 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
863 |
+
# on the fly if necessary.
|
864 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
865 |
+
|
866 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
867 |
+
forward_upsample_size = False
|
868 |
+
upsample_size = None
|
869 |
+
|
870 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
871 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
872 |
+
forward_upsample_size = True
|
873 |
+
|
874 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
875 |
+
# expects mask of shape:
|
876 |
+
# [batch, key_tokens]
|
877 |
+
# adds singleton query_tokens dimension:
|
878 |
+
# [batch, 1, key_tokens]
|
879 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
880 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
881 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
882 |
+
if attention_mask is not None:
|
883 |
+
# assume that mask is expressed as:
|
884 |
+
# (1 = keep, 0 = discard)
|
885 |
+
# convert mask into a bias that can be added to attention scores:
|
886 |
+
# (keep = +0, discard = -10000.0)
|
887 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
888 |
+
attention_mask = attention_mask.unsqueeze(1)
|
889 |
+
|
890 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
891 |
+
if encoder_attention_mask is not None:
|
892 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
893 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
894 |
+
|
895 |
+
# 0. center input if necessary
|
896 |
+
if self.config.center_input_sample:
|
897 |
+
sample = 2 * sample - 1.0
|
898 |
+
|
899 |
+
# 1. time
|
900 |
+
timesteps = timestep
|
901 |
+
if not torch.is_tensor(timesteps):
|
902 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
903 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
904 |
+
is_mps = sample.device.type == "mps"
|
905 |
+
if isinstance(timestep, float):
|
906 |
+
dtype = torch.float32 if is_mps else torch.float64
|
907 |
+
else:
|
908 |
+
dtype = torch.int32 if is_mps else torch.int64
|
909 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
910 |
+
elif len(timesteps.shape) == 0:
|
911 |
+
timesteps = timesteps[None].to(sample.device)
|
912 |
+
|
913 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
914 |
+
timesteps = timesteps.expand(sample.shape[0])
|
915 |
+
|
916 |
+
t_emb = self.time_proj(timesteps)
|
917 |
+
|
918 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
919 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
920 |
+
# there might be better ways to encapsulate this.
|
921 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
922 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
923 |
+
|
924 |
+
if camera_matrixs is not None:
|
925 |
+
emb = torch.unsqueeze(emb, 1)
|
926 |
+
cam_emb = self.camera_embedding(camera_matrixs)
|
927 |
+
emb = emb.repeat(1,cam_emb.shape[1],1)
|
928 |
+
emb = emb + cam_emb
|
929 |
+
emb = rearrange(emb, "b f c -> (b f) c", f=emb.shape[1])
|
930 |
+
|
931 |
+
aug_emb = None
|
932 |
+
|
933 |
+
if self.class_embedding is not None and class_labels is not None:
|
934 |
+
if class_labels is None:
|
935 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
936 |
+
|
937 |
+
if self.config.class_embed_type == "timestep":
|
938 |
+
class_labels = self.time_proj(class_labels)
|
939 |
+
|
940 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
941 |
+
# there might be better ways to encapsulate this.
|
942 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
943 |
+
|
944 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
945 |
+
|
946 |
+
if self.config.class_embeddings_concat:
|
947 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
948 |
+
else:
|
949 |
+
emb = emb + class_emb
|
950 |
+
|
951 |
+
if self.config.addition_embed_type == "text":
|
952 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
953 |
+
elif self.config.addition_embed_type == "text_image":
|
954 |
+
# Kandinsky 2.1 - style
|
955 |
+
if "image_embeds" not in added_cond_kwargs:
|
956 |
+
raise ValueError(
|
957 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
958 |
+
)
|
959 |
+
|
960 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
961 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
962 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
963 |
+
elif self.config.addition_embed_type == "text_time":
|
964 |
+
# SDXL - style
|
965 |
+
if "text_embeds" not in added_cond_kwargs:
|
966 |
+
raise ValueError(
|
967 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
968 |
+
)
|
969 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
970 |
+
if "time_ids" not in added_cond_kwargs:
|
971 |
+
raise ValueError(
|
972 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
973 |
+
)
|
974 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
975 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
976 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
977 |
+
|
978 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
979 |
+
add_embeds = add_embeds.to(emb.dtype)
|
980 |
+
aug_emb = self.add_embedding(add_embeds)
|
981 |
+
elif self.config.addition_embed_type == "image":
|
982 |
+
# Kandinsky 2.2 - style
|
983 |
+
if "image_embeds" not in added_cond_kwargs:
|
984 |
+
raise ValueError(
|
985 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
986 |
+
)
|
987 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
988 |
+
aug_emb = self.add_embedding(image_embs)
|
989 |
+
elif self.config.addition_embed_type == "image_hint":
|
990 |
+
# Kandinsky 2.2 - style
|
991 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
992 |
+
raise ValueError(
|
993 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
994 |
+
)
|
995 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
996 |
+
hint = added_cond_kwargs.get("hint")
|
997 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
998 |
+
sample = torch.cat([sample, hint], dim=1)
|
999 |
+
|
1000 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1001 |
+
|
1002 |
+
if self.time_embed_act is not None:
|
1003 |
+
emb = self.time_embed_act(emb)
|
1004 |
+
|
1005 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1006 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1007 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1008 |
+
# Kadinsky 2.1 - style
|
1009 |
+
if "image_embeds" not in added_cond_kwargs:
|
1010 |
+
raise ValueError(
|
1011 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1015 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1016 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1017 |
+
# Kandinsky 2.2 - style
|
1018 |
+
if "image_embeds" not in added_cond_kwargs:
|
1019 |
+
raise ValueError(
|
1020 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1021 |
+
)
|
1022 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1023 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1024 |
+
# 2. pre-process
|
1025 |
+
sample = rearrange(sample, "b c f h w -> (b f) c h w", f=sample.shape[2])
|
1026 |
+
sample = self.conv_in(sample)
|
1027 |
+
# 3. down
|
1028 |
+
|
1029 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1030 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
1031 |
+
|
1032 |
+
down_block_res_samples = (sample,)
|
1033 |
+
for downsample_block in self.down_blocks:
|
1034 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1035 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1036 |
+
additional_residuals = {}
|
1037 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1038 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
1039 |
+
|
1040 |
+
sample, res_samples = downsample_block(
|
1041 |
+
hidden_states=sample,
|
1042 |
+
temb=emb,
|
1043 |
+
encoder_hidden_states=encoder_hidden_states,
|
1044 |
+
attention_mask=attention_mask,
|
1045 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1046 |
+
encoder_attention_mask=encoder_attention_mask,
|
1047 |
+
**additional_residuals,
|
1048 |
+
)
|
1049 |
+
else:
|
1050 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1051 |
+
|
1052 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1053 |
+
sample += down_block_additional_residuals.pop(0)
|
1054 |
+
|
1055 |
+
down_block_res_samples += res_samples
|
1056 |
+
|
1057 |
+
if is_controlnet:
|
1058 |
+
new_down_block_res_samples = ()
|
1059 |
+
|
1060 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1061 |
+
down_block_res_samples, down_block_additional_residuals
|
1062 |
+
):
|
1063 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1064 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1065 |
+
|
1066 |
+
down_block_res_samples = new_down_block_res_samples
|
1067 |
+
|
1068 |
+
# 4. mid
|
1069 |
+
if self.mid_block is not None:
|
1070 |
+
sample = self.mid_block(
|
1071 |
+
sample,
|
1072 |
+
emb,
|
1073 |
+
encoder_hidden_states=encoder_hidden_states,
|
1074 |
+
attention_mask=attention_mask,
|
1075 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1076 |
+
encoder_attention_mask=encoder_attention_mask,
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
if is_controlnet:
|
1080 |
+
sample = sample + mid_block_additional_residual
|
1081 |
+
|
1082 |
+
# 5. up
|
1083 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1084 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1085 |
+
|
1086 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1087 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1088 |
+
|
1089 |
+
# if we have not reached the final block and need to forward the
|
1090 |
+
# upsample size, we do it here
|
1091 |
+
if not is_final_block and forward_upsample_size:
|
1092 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1093 |
+
|
1094 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1095 |
+
sample = upsample_block(
|
1096 |
+
hidden_states=sample,
|
1097 |
+
temb=emb,
|
1098 |
+
res_hidden_states_tuple=res_samples,
|
1099 |
+
encoder_hidden_states=encoder_hidden_states,
|
1100 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1101 |
+
upsample_size=upsample_size,
|
1102 |
+
attention_mask=attention_mask,
|
1103 |
+
encoder_attention_mask=encoder_attention_mask,
|
1104 |
+
)
|
1105 |
+
else:
|
1106 |
+
sample = upsample_block(
|
1107 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
if not return_dict:
|
1111 |
+
return (sample,)
|
1112 |
+
|
1113 |
+
return UNetMV2DRefOutput(sample=sample)
|
1114 |
+
|
1115 |
+
@classmethod
|
1116 |
+
def from_pretrained_2d(
|
1117 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1118 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1119 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1120 |
+
projection_class_embeddings_input_dim: int=6, joint_attention: bool = False,
|
1121 |
+
joint_attention_twice: bool = False, multiview_attention: bool = True,
|
1122 |
+
cross_domain_attention: bool = False,
|
1123 |
+
in_channels: int = 8, out_channels: int = 4, local_crossattn=False,
|
1124 |
+
**kwargs
|
1125 |
+
):
|
1126 |
+
r"""
|
1127 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1128 |
+
|
1129 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1130 |
+
train the model, set it back in training mode with `model.train()`.
|
1131 |
+
|
1132 |
+
Parameters:
|
1133 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1134 |
+
Can be either:
|
1135 |
+
|
1136 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1137 |
+
the Hub.
|
1138 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1139 |
+
with [`~ModelMixin.save_pretrained`].
|
1140 |
+
|
1141 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1142 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1143 |
+
is not used.
|
1144 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1145 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1146 |
+
dtype is automatically derived from the model's weights.
|
1147 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1148 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1149 |
+
cached versions if they exist.
|
1150 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1151 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1152 |
+
incompletely downloaded files are deleted.
|
1153 |
+
proxies (`Dict[str, str]`, *optional*):
|
1154 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1155 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1156 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1157 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1158 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1159 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1160 |
+
won't be downloaded from the Hub.
|
1161 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1162 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1163 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1164 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1165 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1166 |
+
allowed by Git.
|
1167 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1168 |
+
Load the model weights from a Flax checkpoint save file.
|
1169 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1170 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1171 |
+
mirror (`str`, *optional*):
|
1172 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1173 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1174 |
+
information.
|
1175 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1176 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1177 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1178 |
+
same device.
|
1179 |
+
|
1180 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1181 |
+
more information about each option see [designing a device
|
1182 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1183 |
+
max_memory (`Dict`, *optional*):
|
1184 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1185 |
+
each GPU and the available CPU RAM if unset.
|
1186 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1187 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1188 |
+
offload_state_dict (`bool`, *optional*):
|
1189 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1190 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1191 |
+
when there is some disk offload.
|
1192 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1193 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1194 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1195 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1196 |
+
argument to `True` will raise an error.
|
1197 |
+
variant (`str`, *optional*):
|
1198 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1199 |
+
loading `from_flax`.
|
1200 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1201 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1202 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1203 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1204 |
+
|
1205 |
+
<Tip>
|
1206 |
+
|
1207 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1208 |
+
`huggingface-cli login`. You can also activate the special
|
1209 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1210 |
+
firewalled environment.
|
1211 |
+
|
1212 |
+
</Tip>
|
1213 |
+
|
1214 |
+
Example:
|
1215 |
+
|
1216 |
+
```py
|
1217 |
+
from diffusers import UNet2DConditionModel
|
1218 |
+
|
1219 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1220 |
+
```
|
1221 |
+
|
1222 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1223 |
+
|
1224 |
+
```bash
|
1225 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1226 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1227 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1228 |
+
```
|
1229 |
+
"""
|
1230 |
+
cache_dir = kwargs.pop("cache_dir", HF_HUB_CACHE)
|
1231 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1232 |
+
force_download = kwargs.pop("force_download", False)
|
1233 |
+
from_flax = kwargs.pop("from_flax", False)
|
1234 |
+
resume_download = kwargs.pop("resume_download", False)
|
1235 |
+
proxies = kwargs.pop("proxies", None)
|
1236 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1237 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1238 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1239 |
+
revision = kwargs.pop("revision", None)
|
1240 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1241 |
+
subfolder = kwargs.pop("subfolder", None)
|
1242 |
+
device_map = kwargs.pop("device_map", None)
|
1243 |
+
max_memory = kwargs.pop("max_memory", None)
|
1244 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1245 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1246 |
+
variant = kwargs.pop("variant", None)
|
1247 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1248 |
+
|
1249 |
+
# if use_safetensors and not is_safetensors_available():
|
1250 |
+
# raise ValueError(
|
1251 |
+
# "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1252 |
+
# )
|
1253 |
+
|
1254 |
+
allow_pickle = False
|
1255 |
+
if use_safetensors is None:
|
1256 |
+
# use_safetensors = is_safetensors_available()
|
1257 |
+
use_safetensors = False
|
1258 |
+
allow_pickle = True
|
1259 |
+
|
1260 |
+
if device_map is not None and not is_accelerate_available():
|
1261 |
+
raise NotImplementedError(
|
1262 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1263 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1264 |
+
)
|
1265 |
+
|
1266 |
+
# Check if we can handle device_map and dispatching the weights
|
1267 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1268 |
+
raise NotImplementedError(
|
1269 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1270 |
+
" `device_map=None`."
|
1271 |
+
)
|
1272 |
+
|
1273 |
+
# Load config if we don't provide a configuration
|
1274 |
+
config_path = pretrained_model_name_or_path
|
1275 |
+
|
1276 |
+
user_agent = {
|
1277 |
+
"diffusers": __version__,
|
1278 |
+
"file_type": "model",
|
1279 |
+
"framework": "pytorch",
|
1280 |
+
}
|
1281 |
+
|
1282 |
+
# load config
|
1283 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1284 |
+
config_path,
|
1285 |
+
cache_dir=cache_dir,
|
1286 |
+
return_unused_kwargs=True,
|
1287 |
+
return_commit_hash=True,
|
1288 |
+
force_download=force_download,
|
1289 |
+
resume_download=resume_download,
|
1290 |
+
proxies=proxies,
|
1291 |
+
local_files_only=local_files_only,
|
1292 |
+
use_auth_token=use_auth_token,
|
1293 |
+
revision=revision,
|
1294 |
+
subfolder=subfolder,
|
1295 |
+
device_map=device_map,
|
1296 |
+
max_memory=max_memory,
|
1297 |
+
offload_folder=offload_folder,
|
1298 |
+
offload_state_dict=offload_state_dict,
|
1299 |
+
user_agent=user_agent,
|
1300 |
+
**kwargs,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
# modify config
|
1304 |
+
config["_class_name"] = cls.__name__
|
1305 |
+
config['in_channels'] = in_channels
|
1306 |
+
config['out_channels'] = out_channels
|
1307 |
+
config['sample_size'] = sample_size # training resolution
|
1308 |
+
config['num_views'] = num_views
|
1309 |
+
config['joint_attention'] = joint_attention
|
1310 |
+
config['joint_attention_twice'] = joint_attention_twice
|
1311 |
+
config['multiview_attention'] = multiview_attention
|
1312 |
+
config['cross_domain_attention'] = cross_domain_attention
|
1313 |
+
config["down_block_types"] = [
|
1314 |
+
"CrossAttnDownBlockMV2D",
|
1315 |
+
"CrossAttnDownBlockMV2D",
|
1316 |
+
"CrossAttnDownBlockMV2D",
|
1317 |
+
"DownBlock2D"
|
1318 |
+
]
|
1319 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1320 |
+
config["up_block_types"] = [
|
1321 |
+
"UpBlock2D",
|
1322 |
+
"CrossAttnUpBlockMV2D",
|
1323 |
+
"CrossAttnUpBlockMV2D",
|
1324 |
+
"CrossAttnUpBlockMV2D"
|
1325 |
+
]
|
1326 |
+
config['class_embed_type'] = 'projection'
|
1327 |
+
if camera_embedding_type == 'e_de_da_sincos':
|
1328 |
+
config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
|
1329 |
+
else:
|
1330 |
+
raise NotImplementedError
|
1331 |
+
|
1332 |
+
# load model
|
1333 |
+
model_file = None
|
1334 |
+
if from_flax:
|
1335 |
+
raise NotImplementedError
|
1336 |
+
else:
|
1337 |
+
if use_safetensors:
|
1338 |
+
try:
|
1339 |
+
model_file = _get_model_file(
|
1340 |
+
pretrained_model_name_or_path,
|
1341 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1342 |
+
cache_dir=cache_dir,
|
1343 |
+
force_download=force_download,
|
1344 |
+
resume_download=resume_download,
|
1345 |
+
proxies=proxies,
|
1346 |
+
local_files_only=local_files_only,
|
1347 |
+
use_auth_token=use_auth_token,
|
1348 |
+
revision=revision,
|
1349 |
+
subfolder=subfolder,
|
1350 |
+
user_agent=user_agent,
|
1351 |
+
commit_hash=commit_hash,
|
1352 |
+
)
|
1353 |
+
except IOError as e:
|
1354 |
+
if not allow_pickle:
|
1355 |
+
raise e
|
1356 |
+
pass
|
1357 |
+
if model_file is None:
|
1358 |
+
model_file = _get_model_file(
|
1359 |
+
pretrained_model_name_or_path,
|
1360 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1361 |
+
cache_dir=cache_dir,
|
1362 |
+
force_download=force_download,
|
1363 |
+
resume_download=resume_download,
|
1364 |
+
proxies=proxies,
|
1365 |
+
local_files_only=local_files_only,
|
1366 |
+
use_auth_token=use_auth_token,
|
1367 |
+
revision=revision,
|
1368 |
+
subfolder=subfolder,
|
1369 |
+
user_agent=user_agent,
|
1370 |
+
commit_hash=commit_hash,
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
model = cls.from_config(config, **unused_kwargs)
|
1374 |
+
if local_crossattn:
|
1375 |
+
unet_lora_attn_procs = dict()
|
1376 |
+
for name, _ in model.attn_processors.items():
|
1377 |
+
if not name.endswith("attn1.processor"):
|
1378 |
+
default_attn_proc = AttnProcessor()
|
1379 |
+
elif is_xformers_available():
|
1380 |
+
default_attn_proc = XFormersMVAttnProcessor()
|
1381 |
+
else:
|
1382 |
+
default_attn_proc = MVAttnProcessor()
|
1383 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
1384 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
1385 |
+
)
|
1386 |
+
model.set_attn_processor(unet_lora_attn_procs)
|
1387 |
+
state_dict = load_state_dict(model_file, variant=variant)
|
1388 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1389 |
+
|
1390 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1391 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1392 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1393 |
+
model,
|
1394 |
+
state_dict,
|
1395 |
+
model_file,
|
1396 |
+
pretrained_model_name_or_path,
|
1397 |
+
ignore_mismatched_sizes=True,
|
1398 |
+
)
|
1399 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1400 |
+
# initialize from the original SD structure
|
1401 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1402 |
+
|
1403 |
+
# whether to place all zero to new layers?
|
1404 |
+
if zero_init_conv_in:
|
1405 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1406 |
+
|
1407 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1408 |
+
# initialize from the original SD structure
|
1409 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1410 |
+
if out_channels == 8: # copy for the last 4 channels
|
1411 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1412 |
+
|
1413 |
+
if zero_init_camera_projection:
|
1414 |
+
for p in model.class_embedding.parameters():
|
1415 |
+
torch.nn.init.zeros_(p)
|
1416 |
+
|
1417 |
+
loading_info = {
|
1418 |
+
"missing_keys": missing_keys,
|
1419 |
+
"unexpected_keys": unexpected_keys,
|
1420 |
+
"mismatched_keys": mismatched_keys,
|
1421 |
+
"error_msgs": error_msgs,
|
1422 |
+
}
|
1423 |
+
|
1424 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1425 |
+
raise ValueError(
|
1426 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1427 |
+
)
|
1428 |
+
elif torch_dtype is not None:
|
1429 |
+
model = model.to(torch_dtype)
|
1430 |
+
|
1431 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1432 |
+
|
1433 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1434 |
+
model.eval()
|
1435 |
+
if output_loading_info:
|
1436 |
+
return model, loading_info
|
1437 |
+
|
1438 |
+
return model
|
1439 |
+
|
1440 |
+
@classmethod
|
1441 |
+
def _load_pretrained_model_2d(
|
1442 |
+
cls,
|
1443 |
+
model,
|
1444 |
+
state_dict,
|
1445 |
+
resolved_archive_file,
|
1446 |
+
pretrained_model_name_or_path,
|
1447 |
+
ignore_mismatched_sizes=False,
|
1448 |
+
):
|
1449 |
+
# Retrieve missing & unexpected_keys
|
1450 |
+
model_state_dict = model.state_dict()
|
1451 |
+
loaded_keys = list(state_dict.keys())
|
1452 |
+
|
1453 |
+
expected_keys = list(model_state_dict.keys())
|
1454 |
+
|
1455 |
+
original_loaded_keys = loaded_keys
|
1456 |
+
|
1457 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1458 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1459 |
+
|
1460 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1461 |
+
model_to_load = model
|
1462 |
+
|
1463 |
+
def _find_mismatched_keys(
|
1464 |
+
state_dict,
|
1465 |
+
model_state_dict,
|
1466 |
+
loaded_keys,
|
1467 |
+
ignore_mismatched_sizes,
|
1468 |
+
):
|
1469 |
+
mismatched_keys = []
|
1470 |
+
if ignore_mismatched_sizes:
|
1471 |
+
for checkpoint_key in loaded_keys:
|
1472 |
+
model_key = checkpoint_key
|
1473 |
+
|
1474 |
+
if (
|
1475 |
+
model_key in model_state_dict
|
1476 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1477 |
+
):
|
1478 |
+
mismatched_keys.append(
|
1479 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1480 |
+
)
|
1481 |
+
del state_dict[checkpoint_key]
|
1482 |
+
return mismatched_keys
|
1483 |
+
|
1484 |
+
if state_dict is not None:
|
1485 |
+
# Whole checkpoint
|
1486 |
+
mismatched_keys = _find_mismatched_keys(
|
1487 |
+
state_dict,
|
1488 |
+
model_state_dict,
|
1489 |
+
original_loaded_keys,
|
1490 |
+
ignore_mismatched_sizes,
|
1491 |
+
)
|
1492 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1493 |
+
|
1494 |
+
if len(error_msgs) > 0:
|
1495 |
+
error_msg = "\n\t".join(error_msgs)
|
1496 |
+
if "size mismatch" in error_msg:
|
1497 |
+
error_msg += (
|
1498 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1499 |
+
)
|
1500 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1501 |
+
|
1502 |
+
if len(unexpected_keys) > 0:
|
1503 |
+
logger.warning(
|
1504 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1505 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1506 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1507 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1508 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1509 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1510 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1511 |
+
" BertForSequenceClassification model)."
|
1512 |
+
)
|
1513 |
+
else:
|
1514 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1515 |
+
if len(missing_keys) > 0:
|
1516 |
+
logger.warning(
|
1517 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1518 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1519 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1520 |
+
)
|
1521 |
+
elif len(mismatched_keys) == 0:
|
1522 |
+
logger.info(
|
1523 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1524 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1525 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1526 |
+
" without further training."
|
1527 |
+
)
|
1528 |
+
if len(mismatched_keys) > 0:
|
1529 |
+
mismatched_warning = "\n".join(
|
1530 |
+
[
|
1531 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1532 |
+
for key, shape1, shape2 in mismatched_keys
|
1533 |
+
]
|
1534 |
+
)
|
1535 |
+
logger.warning(
|
1536 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1537 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1538 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1539 |
+
" able to use it for predictions and inference."
|
1540 |
+
)
|
1541 |
+
|
1542 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1543 |
+
|
canonicalize/pipeline_canonicalize.py
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
+
|
3 |
+
import tqdm
|
4 |
+
|
5 |
+
import inspect
|
6 |
+
from typing import Callable, List, Optional, Union
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from diffusers.utils import is_accelerate_available
|
13 |
+
from packaging import version
|
14 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
15 |
+
import torchvision.transforms.functional as TF
|
16 |
+
|
17 |
+
from diffusers.configuration_utils import FrozenDict
|
18 |
+
from diffusers.models import AutoencoderKL
|
19 |
+
from diffusers import DiffusionPipeline
|
20 |
+
from diffusers.schedulers import (
|
21 |
+
DDIMScheduler,
|
22 |
+
DPMSolverMultistepScheduler,
|
23 |
+
EulerAncestralDiscreteScheduler,
|
24 |
+
EulerDiscreteScheduler,
|
25 |
+
LMSDiscreteScheduler,
|
26 |
+
PNDMScheduler,
|
27 |
+
)
|
28 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
29 |
+
|
30 |
+
from einops import rearrange
|
31 |
+
|
32 |
+
from canonicalize.models.unet import UNet3DConditionModel
|
33 |
+
from torchvision.transforms import InterpolationMode
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
class CanonicalizationPipeline(DiffusionPipeline):
|
38 |
+
_optional_components = []
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
vae: AutoencoderKL,
|
43 |
+
text_encoder: CLIPTextModel,
|
44 |
+
tokenizer: CLIPTokenizer,
|
45 |
+
unet: UNet3DConditionModel,
|
46 |
+
|
47 |
+
scheduler: Union[
|
48 |
+
DDIMScheduler,
|
49 |
+
PNDMScheduler,
|
50 |
+
LMSDiscreteScheduler,
|
51 |
+
EulerDiscreteScheduler,
|
52 |
+
EulerAncestralDiscreteScheduler,
|
53 |
+
DPMSolverMultistepScheduler,
|
54 |
+
],
|
55 |
+
ref_unet = None,
|
56 |
+
feature_extractor=None,
|
57 |
+
image_encoder=None
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.ref_unet = ref_unet
|
61 |
+
self.feature_extractor = feature_extractor
|
62 |
+
self.image_encoder = image_encoder
|
63 |
+
|
64 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
65 |
+
deprecation_message = (
|
66 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
67 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
68 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
69 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
70 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
71 |
+
" file"
|
72 |
+
)
|
73 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
74 |
+
new_config = dict(scheduler.config)
|
75 |
+
new_config["steps_offset"] = 1
|
76 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
77 |
+
|
78 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
79 |
+
deprecation_message = (
|
80 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
81 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
82 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
83 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
84 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
85 |
+
)
|
86 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
87 |
+
new_config = dict(scheduler.config)
|
88 |
+
new_config["clip_sample"] = False
|
89 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
90 |
+
|
91 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
92 |
+
version.parse(unet.config._diffusers_version).base_version
|
93 |
+
) < version.parse("0.9.0.dev0")
|
94 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
95 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
96 |
+
deprecation_message = (
|
97 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
98 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
99 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
100 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
101 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
102 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
103 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
104 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
105 |
+
" the `unet/config.json` file"
|
106 |
+
)
|
107 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
108 |
+
new_config = dict(unet.config)
|
109 |
+
new_config["sample_size"] = 64
|
110 |
+
unet._internal_dict = FrozenDict(new_config)
|
111 |
+
|
112 |
+
self.register_modules(
|
113 |
+
vae=vae,
|
114 |
+
text_encoder=text_encoder,
|
115 |
+
tokenizer=tokenizer,
|
116 |
+
unet=unet,
|
117 |
+
scheduler=scheduler,
|
118 |
+
)
|
119 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
120 |
+
|
121 |
+
def enable_vae_slicing(self):
|
122 |
+
self.vae.enable_slicing()
|
123 |
+
|
124 |
+
def disable_vae_slicing(self):
|
125 |
+
self.vae.disable_slicing()
|
126 |
+
|
127 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
128 |
+
if is_accelerate_available():
|
129 |
+
from accelerate import cpu_offload
|
130 |
+
else:
|
131 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
132 |
+
|
133 |
+
device = torch.device(f"cuda:{gpu_id}")
|
134 |
+
|
135 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
136 |
+
if cpu_offloaded_model is not None:
|
137 |
+
cpu_offload(cpu_offloaded_model, device)
|
138 |
+
|
139 |
+
|
140 |
+
@property
|
141 |
+
def _execution_device(self):
|
142 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
143 |
+
return self.device
|
144 |
+
for module in self.unet.modules():
|
145 |
+
if (
|
146 |
+
hasattr(module, "_hf_hook")
|
147 |
+
and hasattr(module._hf_hook, "execution_device")
|
148 |
+
and module._hf_hook.execution_device is not None
|
149 |
+
):
|
150 |
+
return torch.device(module._hf_hook.execution_device)
|
151 |
+
return self.device
|
152 |
+
|
153 |
+
def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance, img_proj=None):
|
154 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
155 |
+
|
156 |
+
# image encoding
|
157 |
+
clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device, dtype=torch.float32)
|
158 |
+
clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device, dtype=torch.float32)
|
159 |
+
imgs_in_proc = TF.resize(image_pil, (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC)
|
160 |
+
# do the normalization in float32 to preserve precision
|
161 |
+
imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(dtype)
|
162 |
+
if img_proj is None:
|
163 |
+
# (B*Nv, 1, 768)
|
164 |
+
image_embeddings = self.image_encoder(imgs_in_proc).image_embeds.unsqueeze(1)
|
165 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
166 |
+
# Note: repeat differently from official pipelines
|
167 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
168 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
169 |
+
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
|
170 |
+
if do_classifier_free_guidance:
|
171 |
+
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
172 |
+
|
173 |
+
# For classifier free guidance, we need to do two forward passes.
|
174 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
175 |
+
# to avoid doing two forward passes
|
176 |
+
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
177 |
+
else:
|
178 |
+
if do_classifier_free_guidance:
|
179 |
+
negative_image_proc = torch.zeros_like(imgs_in_proc)
|
180 |
+
|
181 |
+
# For classifier free guidance, we need to do two forward passes.
|
182 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
183 |
+
# to avoid doing two forward passes
|
184 |
+
imgs_in_proc = torch.cat([negative_image_proc, imgs_in_proc])
|
185 |
+
|
186 |
+
image_embeds = image_encoder(imgs_in_proc, output_hidden_states=True).hidden_states[-2]
|
187 |
+
image_embeddings = img_proj(image_embeds)
|
188 |
+
|
189 |
+
image_latents = self.vae.encode(image_pil* 2.0 - 1.0).latent_dist.mode() * self.vae.config.scaling_factor
|
190 |
+
|
191 |
+
# Note: repeat differently from official pipelines
|
192 |
+
# B1B2B3B4 -> B1B2B3B4B1B2B3B4
|
193 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
194 |
+
return image_embeddings, image_latents
|
195 |
+
|
196 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
197 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
198 |
+
|
199 |
+
text_inputs = self.tokenizer(
|
200 |
+
prompt,
|
201 |
+
padding="max_length",
|
202 |
+
max_length=self.tokenizer.model_max_length,
|
203 |
+
truncation=True,
|
204 |
+
return_tensors="pt",
|
205 |
+
)
|
206 |
+
text_input_ids = text_inputs.input_ids
|
207 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
208 |
+
|
209 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
210 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
211 |
+
logger.warning(
|
212 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
213 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
214 |
+
)
|
215 |
+
|
216 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
217 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
218 |
+
else:
|
219 |
+
attention_mask = None
|
220 |
+
|
221 |
+
text_embeddings = self.text_encoder(
|
222 |
+
text_input_ids.to(device),
|
223 |
+
attention_mask=attention_mask,
|
224 |
+
)
|
225 |
+
text_embeddings = text_embeddings[0]
|
226 |
+
|
227 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
228 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
229 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
230 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
231 |
+
|
232 |
+
# get unconditional embeddings for classifier free guidance
|
233 |
+
if do_classifier_free_guidance:
|
234 |
+
uncond_tokens: List[str]
|
235 |
+
if negative_prompt is None:
|
236 |
+
uncond_tokens = [""] * batch_size
|
237 |
+
elif type(prompt) is not type(negative_prompt):
|
238 |
+
raise TypeError(
|
239 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
240 |
+
f" {type(prompt)}."
|
241 |
+
)
|
242 |
+
elif isinstance(negative_prompt, str):
|
243 |
+
uncond_tokens = [negative_prompt]
|
244 |
+
elif batch_size != len(negative_prompt):
|
245 |
+
raise ValueError(
|
246 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
247 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
248 |
+
" the batch size of `prompt`."
|
249 |
+
)
|
250 |
+
else:
|
251 |
+
uncond_tokens = negative_prompt
|
252 |
+
|
253 |
+
max_length = text_input_ids.shape[-1]
|
254 |
+
uncond_input = self.tokenizer(
|
255 |
+
uncond_tokens,
|
256 |
+
padding="max_length",
|
257 |
+
max_length=max_length,
|
258 |
+
truncation=True,
|
259 |
+
return_tensors="pt",
|
260 |
+
)
|
261 |
+
|
262 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
263 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
264 |
+
else:
|
265 |
+
attention_mask = None
|
266 |
+
|
267 |
+
uncond_embeddings = self.text_encoder(
|
268 |
+
uncond_input.input_ids.to(device),
|
269 |
+
attention_mask=attention_mask,
|
270 |
+
)
|
271 |
+
uncond_embeddings = uncond_embeddings[0]
|
272 |
+
|
273 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
274 |
+
seq_len = uncond_embeddings.shape[1]
|
275 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
276 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
277 |
+
|
278 |
+
# For classifier free guidance, we need to do two forward passes.
|
279 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
280 |
+
# to avoid doing two forward passes
|
281 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
282 |
+
|
283 |
+
return text_embeddings
|
284 |
+
|
285 |
+
def decode_latents(self, latents):
|
286 |
+
video_length = latents.shape[2]
|
287 |
+
latents = 1 / 0.18215 * latents
|
288 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
289 |
+
video = self.vae.decode(latents).sample
|
290 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
291 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
292 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
293 |
+
video = video.cpu().float().numpy()
|
294 |
+
return video
|
295 |
+
|
296 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
297 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
298 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
299 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
300 |
+
# and should be between [0, 1]
|
301 |
+
|
302 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
303 |
+
extra_step_kwargs = {}
|
304 |
+
if accepts_eta:
|
305 |
+
extra_step_kwargs["eta"] = eta
|
306 |
+
|
307 |
+
# check if the scheduler accepts generator
|
308 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
309 |
+
if accepts_generator:
|
310 |
+
extra_step_kwargs["generator"] = generator
|
311 |
+
return extra_step_kwargs
|
312 |
+
|
313 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
314 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
315 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
316 |
+
|
317 |
+
if height % 8 != 0 or width % 8 != 0:
|
318 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
319 |
+
|
320 |
+
if (callback_steps is None) or (
|
321 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
322 |
+
):
|
323 |
+
raise ValueError(
|
324 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
325 |
+
f" {type(callback_steps)}."
|
326 |
+
)
|
327 |
+
|
328 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
329 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
330 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
331 |
+
raise ValueError(
|
332 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
333 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
334 |
+
)
|
335 |
+
|
336 |
+
if latents is None:
|
337 |
+
rand_device = "cpu" if device.type == "mps" else device
|
338 |
+
|
339 |
+
if isinstance(generator, list):
|
340 |
+
shape = (1,) + shape[1:]
|
341 |
+
latents = [
|
342 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
343 |
+
for i in range(batch_size)
|
344 |
+
]
|
345 |
+
latents = torch.cat(latents, dim=0).to(device)
|
346 |
+
else:
|
347 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
348 |
+
else:
|
349 |
+
if latents.shape != shape:
|
350 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
351 |
+
latents = latents.to(device)
|
352 |
+
|
353 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
354 |
+
latents = latents * self.scheduler.init_noise_sigma
|
355 |
+
return latents
|
356 |
+
|
357 |
+
@torch.no_grad()
|
358 |
+
def __call__(
|
359 |
+
self,
|
360 |
+
prompt: Union[str, List[str]],
|
361 |
+
image: Union[str, List[str]],
|
362 |
+
height: Optional[int] = None,
|
363 |
+
width: Optional[int] = None,
|
364 |
+
num_inference_steps: int = 50,
|
365 |
+
guidance_scale: float = 7.5,
|
366 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
367 |
+
num_videos_per_prompt: Optional[int] = 1,
|
368 |
+
eta: float = 0.0,
|
369 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
370 |
+
latents: Optional[torch.FloatTensor] = None,
|
371 |
+
output_type: Optional[str] = "tensor",
|
372 |
+
return_dict: bool = True,
|
373 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
374 |
+
callback_steps: Optional[int] = 1,
|
375 |
+
class_labels = None,
|
376 |
+
prompt_ids = None,
|
377 |
+
unet_condition_type = None,
|
378 |
+
img_proj=None,
|
379 |
+
use_noise=True,
|
380 |
+
use_shifted_noise=False,
|
381 |
+
rescale = 0.7,
|
382 |
+
**kwargs,
|
383 |
+
):
|
384 |
+
# Default height and width to unet
|
385 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
386 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
387 |
+
video_length = 1
|
388 |
+
|
389 |
+
# Check inputs. Raise error if not correct
|
390 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
391 |
+
if isinstance(image, list):
|
392 |
+
batch_size = len(image)
|
393 |
+
else:
|
394 |
+
batch_size = image.shape[0]
|
395 |
+
# Define call parameters
|
396 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
397 |
+
device = self._execution_device
|
398 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
399 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
400 |
+
# corresponds to doing no classifier free guidance.
|
401 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
402 |
+
|
403 |
+
# 3. Encode input image
|
404 |
+
image_embeddings, image_latents = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance, img_proj=img_proj) #torch.Size([64, 1, 768]) torch.Size([64, 4, 32, 32])
|
405 |
+
image_latents = rearrange(image_latents, "(b f) c h w -> b c f h w", f=1) #torch.Size([64, 4, 1, 32, 32])
|
406 |
+
|
407 |
+
# Encode input prompt
|
408 |
+
text_embeddings = self._encode_prompt( #torch.Size([64, 77, 768])
|
409 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
410 |
+
)
|
411 |
+
|
412 |
+
# Prepare timesteps
|
413 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
414 |
+
timesteps = self.scheduler.timesteps
|
415 |
+
|
416 |
+
# Prepare latent variables
|
417 |
+
num_channels_latents = self.unet.in_channels
|
418 |
+
latents = self.prepare_latents(
|
419 |
+
batch_size * num_videos_per_prompt,
|
420 |
+
num_channels_latents,
|
421 |
+
video_length,
|
422 |
+
height,
|
423 |
+
width,
|
424 |
+
text_embeddings.dtype,
|
425 |
+
device,
|
426 |
+
generator,
|
427 |
+
latents,
|
428 |
+
)
|
429 |
+
latents_dtype = latents.dtype
|
430 |
+
|
431 |
+
# Prepare extra step kwargs.
|
432 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
433 |
+
|
434 |
+
# Denoising loop
|
435 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
436 |
+
|
437 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
438 |
+
for i, t in enumerate(tqdm.tqdm(timesteps)):
|
439 |
+
# expand the latents if we are doing classifier free guidance
|
440 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
441 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
442 |
+
|
443 |
+
noise_cond = torch.randn_like(image_latents)
|
444 |
+
if use_noise:
|
445 |
+
cond_latents = self.scheduler.add_noise(image_latents, noise_cond, t)
|
446 |
+
else:
|
447 |
+
cond_latents = image_latents
|
448 |
+
cond_latent_model_input = torch.cat([cond_latents] * 2) if do_classifier_free_guidance else cond_latents
|
449 |
+
cond_latent_model_input = self.scheduler.scale_model_input(cond_latent_model_input, t)
|
450 |
+
|
451 |
+
# predict the noise residual
|
452 |
+
# ref text condition
|
453 |
+
ref_dict = {}
|
454 |
+
if self.ref_unet is not None:
|
455 |
+
noise_pred_cond = self.ref_unet(
|
456 |
+
cond_latent_model_input,
|
457 |
+
t,
|
458 |
+
encoder_hidden_states=text_embeddings.to(torch.float32),
|
459 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict)
|
460 |
+
).sample.to(dtype=latents_dtype)
|
461 |
+
|
462 |
+
# text condition for unet
|
463 |
+
text_embeddings_unet = text_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1,1)
|
464 |
+
text_embeddings_unet = rearrange(text_embeddings_unet, 'B Nv d c -> (B Nv) d c')
|
465 |
+
# image condition for unet
|
466 |
+
image_embeddings_unet = image_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1, 1)
|
467 |
+
image_embeddings_unet = rearrange(image_embeddings_unet, 'B Nv d c -> (B Nv) d c')
|
468 |
+
|
469 |
+
encoder_hidden_states_unet_cond = image_embeddings_unet
|
470 |
+
|
471 |
+
if self.ref_unet is not None:
|
472 |
+
noise_pred = self.unet(
|
473 |
+
latent_model_input.to(torch.float32),
|
474 |
+
t,
|
475 |
+
encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32),
|
476 |
+
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
477 |
+
).sample.to(dtype=latents_dtype)
|
478 |
+
else:
|
479 |
+
noise_pred = self.unet(
|
480 |
+
latent_model_input.to(torch.float32),
|
481 |
+
t,
|
482 |
+
encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32),
|
483 |
+
cross_attention_kwargs=dict(mode="n", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance)
|
484 |
+
).sample.to(dtype=latents_dtype)
|
485 |
+
# perform guidance
|
486 |
+
if do_classifier_free_guidance:
|
487 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
488 |
+
if use_shifted_noise:
|
489 |
+
# Apply regular classifier-free guidance.
|
490 |
+
cfg = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
491 |
+
# Calculate standard deviations.
|
492 |
+
std_pos = noise_pred_text.std([1,2,3], keepdim=True)
|
493 |
+
std_cfg = cfg.std([1,2,3], keepdim=True)
|
494 |
+
# Apply guidance rescale with fused operations.
|
495 |
+
factor = std_pos / std_cfg
|
496 |
+
factor = rescale * factor + (1 - rescale)
|
497 |
+
noise_pred = cfg * factor
|
498 |
+
else:
|
499 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
500 |
+
|
501 |
+
# compute the previous noisy sample x_t -> x_t-1
|
502 |
+
noise_pred = rearrange(noise_pred, "(b f) c h w -> b c f h w", f=video_length)
|
503 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
504 |
+
|
505 |
+
# call the callback, if provided
|
506 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
507 |
+
progress_bar.update()
|
508 |
+
if callback is not None and i % callback_steps == 0:
|
509 |
+
callback(i, t, latents)
|
510 |
+
|
511 |
+
# Post-processing
|
512 |
+
video = self.decode_latents(latents)
|
513 |
+
|
514 |
+
# Convert to tensor
|
515 |
+
if output_type == "tensor":
|
516 |
+
video = torch.from_numpy(video)
|
517 |
+
|
518 |
+
return video
|
canonicalize/util.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
def shifted_noise(betas, image_d=512, noise_d=256, shifted_noise=True):
|
13 |
+
alphas = 1 - betas
|
14 |
+
alphas_bar = torch.cumprod(alphas, dim=0)
|
15 |
+
d = (image_d / noise_d) ** 2
|
16 |
+
if shifted_noise:
|
17 |
+
alphas_bar = alphas_bar / (d - (d - 1) * alphas_bar)
|
18 |
+
alphas_bar_sqrt = torch.sqrt(alphas_bar)
|
19 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
20 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
21 |
+
# Shift so last timestep is zero.
|
22 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
23 |
+
# Scale so first timestep is back to old value.
|
24 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (
|
25 |
+
alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
26 |
+
|
27 |
+
# Convert alphas_bar_sqrt to betas
|
28 |
+
alphas_bar = alphas_bar_sqrt ** 2
|
29 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1]
|
30 |
+
alphas = torch.cat([alphas_bar[0:1], alphas])
|
31 |
+
betas = 1 - alphas
|
32 |
+
return betas
|
33 |
+
|
34 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
35 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
36 |
+
outputs = []
|
37 |
+
for x in videos:
|
38 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
39 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
40 |
+
if rescale:
|
41 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
42 |
+
x = (x * 255).numpy().astype(np.uint8)
|
43 |
+
outputs.append(x)
|
44 |
+
|
45 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
46 |
+
imageio.mimsave(path, outputs, duration=1000/fps)
|
47 |
+
|
48 |
+
def save_imgs_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
49 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
50 |
+
for i, x in enumerate(videos):
|
51 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
52 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
53 |
+
if rescale:
|
54 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
55 |
+
x = (x * 255).numpy().astype(np.uint8)
|
56 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
57 |
+
cv2.imwrite(os.path.join(path, f'view_{i}.png'), x[:,:,::-1])
|
58 |
+
|
59 |
+
def imgs_grid(videos: torch.Tensor, rescale=False, n_rows=4, fps=8):
|
60 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
61 |
+
image_list = []
|
62 |
+
for i, x in enumerate(videos):
|
63 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
64 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
65 |
+
if rescale:
|
66 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
67 |
+
x = (x * 255).numpy().astype(np.uint8)
|
68 |
+
# image_list.append(x[:,:,::-1])
|
69 |
+
image_list.append(x)
|
70 |
+
return image_list
|
71 |
+
|
72 |
+
# DDIM Inversion
|
73 |
+
@torch.no_grad()
|
74 |
+
def init_prompt(prompt, pipeline):
|
75 |
+
uncond_input = pipeline.tokenizer(
|
76 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
77 |
+
return_tensors="pt"
|
78 |
+
)
|
79 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
80 |
+
text_input = pipeline.tokenizer(
|
81 |
+
[prompt],
|
82 |
+
padding="max_length",
|
83 |
+
max_length=pipeline.tokenizer.model_max_length,
|
84 |
+
truncation=True,
|
85 |
+
return_tensors="pt",
|
86 |
+
)
|
87 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
88 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
89 |
+
|
90 |
+
return context
|
91 |
+
|
92 |
+
|
93 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
94 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
95 |
+
timestep, next_timestep = min(
|
96 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
97 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
98 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
99 |
+
beta_prod_t = 1 - alpha_prod_t
|
100 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
101 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
102 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
103 |
+
return next_sample
|
104 |
+
|
105 |
+
|
106 |
+
def get_noise_pred_single(latents, t, context, unet):
|
107 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
108 |
+
return noise_pred
|
109 |
+
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
113 |
+
context = init_prompt(prompt, pipeline)
|
114 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
115 |
+
all_latent = [latent]
|
116 |
+
latent = latent.clone().detach()
|
117 |
+
for i in tqdm(range(num_inv_steps)):
|
118 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
119 |
+
noise_pred = get_noise_pred_single(latent.to(torch.float32), t, cond_embeddings.to(torch.float32), pipeline.unet)
|
120 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
121 |
+
all_latent.append(latent)
|
122 |
+
return all_latent
|
123 |
+
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
127 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
128 |
+
return ddim_latents
|
configs/canonicalization-infer.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: "./ckpt/StdGEN-canonicalize-1024"
|
2 |
+
|
3 |
+
validation:
|
4 |
+
guidance_scale: 5.0
|
5 |
+
timestep: 40
|
6 |
+
width_input: 640
|
7 |
+
height_input: 1024
|
8 |
+
use_inv_latent: False
|
9 |
+
|
10 |
+
use_noise: False
|
11 |
+
unet_condition_type: image
|
12 |
+
|
13 |
+
unet_from_pretrained_kwargs:
|
14 |
+
camera_embedding_type: 'e_de_da_sincos'
|
15 |
+
projection_class_embeddings_input_dim: 10 # modify
|
16 |
+
joint_attention: false # modify
|
17 |
+
num_views: 1
|
18 |
+
sample_size: 96
|
19 |
+
zero_init_conv_in: false
|
20 |
+
zero_init_camera_projection: false
|
21 |
+
in_channels: 4
|
22 |
+
use_safetensors: true
|
configs/mesh-slrm-infer.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_config:
|
2 |
+
target: slrm.models.lrm_mesh.MeshSLRM
|
3 |
+
params:
|
4 |
+
encoder_feat_dim: 768
|
5 |
+
encoder_freeze: false
|
6 |
+
encoder_model_name: facebook/dino-vitb16
|
7 |
+
transformer_dim: 1024
|
8 |
+
transformer_layers: 16
|
9 |
+
transformer_heads: 16
|
10 |
+
triplane_low_res: 32
|
11 |
+
triplane_high_res: 64
|
12 |
+
triplane_dim: 80
|
13 |
+
rendering_samples_per_ray: 128
|
14 |
+
grid_res_xy: 100
|
15 |
+
grid_res_z: 150
|
16 |
+
grid_scale_xy: 1.4
|
17 |
+
grid_scale_z: 2.1
|
18 |
+
is_ortho: false
|
19 |
+
lora_rank: 128
|
20 |
+
|
21 |
+
|
22 |
+
infer_config:
|
23 |
+
model_path: ckpt/StdGEN-mesh-slrm.pth
|
24 |
+
texture_resolution: 1024
|
25 |
+
render_resolution: 512
|
data/test_list.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
"7/3439809555813808357",
|
3 |
+
"2/6732152415572359482",
|
4 |
+
"6/6198244732386977066",
|
5 |
+
"7/7008911571585236777",
|
6 |
+
"8/8155498832525298838",
|
7 |
+
"1/2204149645140259881",
|
8 |
+
"0/1323933330222715340",
|
9 |
+
"7/1098644675621653787",
|
10 |
+
"9/6777209416978605329",
|
11 |
+
"1/1542224037528704351",
|
12 |
+
"0/8703316823295014690",
|
13 |
+
"3/5204013134706272913",
|
14 |
+
"0/6457137167414843850",
|
15 |
+
"2/6617574843151473382",
|
16 |
+
"8/7981152186026608038",
|
17 |
+
"1/4344590844740564561",
|
18 |
+
"2/7649110201056191442",
|
19 |
+
"2/1146977392849123402",
|
20 |
+
"2/2426517581512337892",
|
21 |
+
"7/2824689386300465357",
|
22 |
+
"6/2270010410433478366",
|
23 |
+
"3/3814323604952041013",
|
24 |
+
"9/8728960448674306769",
|
25 |
+
"7/1506365063811110387",
|
26 |
+
"5/5718924742282692475",
|
27 |
+
"1/1633099290949034671",
|
28 |
+
"5/8999640709832005845",
|
29 |
+
"5/720254657332917065",
|
30 |
+
"7/4357384925726277837",
|
31 |
+
"3/4227726538279421493",
|
32 |
+
"2/4382303856103217892",
|
33 |
+
"8/6632593566609006548",
|
34 |
+
"7/3749944138508065767",
|
35 |
+
"2/878764636138223992",
|
36 |
+
"5/8170908340955840135",
|
37 |
+
"6/4845695357833755236",
|
38 |
+
"1/2743140748471131991",
|
39 |
+
"1/5803218296084123071",
|
40 |
+
"6/9182882771353803536",
|
41 |
+
"5/5872666540206860925",
|
42 |
+
"4/9212223181352426964",
|
43 |
+
"5/3899312551169605935",
|
44 |
+
"0/7695929267562496220",
|
45 |
+
"7/3104109662674926717",
|
46 |
+
"8/2319063723115019838",
|
47 |
+
"6/8112121852475729956",
|
48 |
+
"9/5705939742315993109",
|
49 |
+
"1/6952166826280123421",
|
50 |
+
"0/6830091751476954110",
|
51 |
+
"2/8891263394100940152",
|
52 |
+
"3/8287958311266406833",
|
53 |
+
"9/8934151403263879299",
|
54 |
+
"7/730625960893750417",
|
55 |
+
"8/2007959965099676308",
|
56 |
+
"7/7110997111250638537",
|
57 |
+
"1/1910258394089325361",
|
58 |
+
"6/7538221091944098366",
|
59 |
+
"9/8509393563940760269",
|
60 |
+
"3/1981376850787241243",
|
61 |
+
"4/821179359686508964",
|
62 |
+
"6/2359248447840976906",
|
63 |
+
"2/5396219174677320232",
|
64 |
+
"7/4683457172478674257",
|
65 |
+
"8/1863701953709398218",
|
66 |
+
"9/910003033484940229",
|
67 |
+
"3/880320695540753593",
|
68 |
+
"0/990769530404275120",
|
69 |
+
"2/4551500513185396552",
|
70 |
+
"5/5015097855418058995",
|
71 |
+
"7/4896074338113329997",
|
72 |
+
"5/7306978321405535555",
|
73 |
+
"9/7776834385265136719",
|
74 |
+
"6/6631395994048613416",
|
75 |
+
"8/3757051138516476638",
|
76 |
+
"3/3283421712821668743",
|
77 |
+
"1/8144010044536474571",
|
78 |
+
"2/7876180780086370752",
|
79 |
+
"6/1647234603582341626",
|
80 |
+
"6/1341337037707864016",
|
81 |
+
"2/6302505551505574612",
|
82 |
+
"0/3465024955374919620",
|
83 |
+
"5/7900060151297927765",
|
84 |
+
"1/4675194210589373061",
|
85 |
+
"0/3282208207844657250",
|
86 |
+
"4/3240020585468727994",
|
87 |
+
"2/7833064532316643952",
|
88 |
+
"6/4790345485250053216",
|
89 |
+
"7/2935339105576984837",
|
90 |
+
"8/2599602859354916028",
|
91 |
+
"2/4769742243183930282",
|
92 |
+
"6/604217236327738596",
|
93 |
+
"4/5117485835686648194",
|
94 |
+
"0/1487097526635566140",
|
95 |
+
"4/3484530361677579674",
|
96 |
+
"3/8530544536064633943",
|
97 |
+
"7/4144922250519743927",
|
98 |
+
"9/2413192196654279969",
|
99 |
+
"2/1350971297625987822",
|
100 |
+
"5/6433334135280042785",
|
101 |
+
"7/6692827166906062907",
|
102 |
+
"8/4678213844371676838",
|
103 |
+
"9/262140445129918559",
|
104 |
+
"5/4188635875053572005",
|
105 |
+
"9/6950138434143075689",
|
106 |
+
"4/6953579337597168824",
|
107 |
+
"6/16762222989681526",
|
108 |
+
"0/8704380013906593380",
|
109 |
+
"0/6734578480501157450",
|
110 |
+
"1/8562961060475858791"
|
111 |
+
]
|
data/train_list.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
infer_api.py
ADDED
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import glob
|
3 |
+
|
4 |
+
import io
|
5 |
+
import argparse
|
6 |
+
import inspect
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
import tempfile
|
10 |
+
from typing import Dict, Optional, Tuple
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
17 |
+
from diffusers.utils import check_min_version
|
18 |
+
from tqdm.auto import tqdm
|
19 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
|
20 |
+
from torchvision import transforms
|
21 |
+
|
22 |
+
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
|
23 |
+
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
|
24 |
+
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
|
25 |
+
from einops import rearrange
|
26 |
+
from torchvision.utils import save_image
|
27 |
+
import json
|
28 |
+
import cv2
|
29 |
+
|
30 |
+
import onnxruntime as rt
|
31 |
+
from huggingface_hub.file_download import hf_hub_download
|
32 |
+
from huggingface_hub import list_repo_files
|
33 |
+
from rm_anime_bg.cli import get_mask, SCALE
|
34 |
+
|
35 |
+
import argparse
|
36 |
+
import os
|
37 |
+
import cv2
|
38 |
+
import glob
|
39 |
+
import numpy as np
|
40 |
+
import matplotlib.pyplot as plt
|
41 |
+
from typing import Dict, Optional, List
|
42 |
+
from omegaconf import OmegaConf, DictConfig
|
43 |
+
from PIL import Image
|
44 |
+
from pathlib import Path
|
45 |
+
from dataclasses import dataclass
|
46 |
+
from typing import Dict
|
47 |
+
import torch
|
48 |
+
import torch.nn.functional as F
|
49 |
+
import torch.utils.checkpoint
|
50 |
+
import torchvision.transforms.functional as TF
|
51 |
+
from torch.utils.data import Dataset, DataLoader
|
52 |
+
from torchvision import transforms
|
53 |
+
from torchvision.utils import make_grid, save_image
|
54 |
+
from accelerate.utils import set_seed
|
55 |
+
from tqdm.auto import tqdm
|
56 |
+
from einops import rearrange, repeat
|
57 |
+
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline
|
58 |
+
|
59 |
+
import os
|
60 |
+
import imageio
|
61 |
+
import numpy as np
|
62 |
+
import torch
|
63 |
+
import cv2
|
64 |
+
import glob
|
65 |
+
import matplotlib.pyplot as plt
|
66 |
+
from PIL import Image
|
67 |
+
from torchvision.transforms import v2
|
68 |
+
from pytorch_lightning import seed_everything
|
69 |
+
from omegaconf import OmegaConf
|
70 |
+
from tqdm import tqdm
|
71 |
+
|
72 |
+
from slrm.utils.train_util import instantiate_from_config
|
73 |
+
from slrm.utils.camera_util import (
|
74 |
+
FOV_to_intrinsics,
|
75 |
+
get_circular_camera_poses,
|
76 |
+
)
|
77 |
+
from slrm.utils.mesh_util import save_obj, save_glb
|
78 |
+
from slrm.utils.infer_util import images_to_video
|
79 |
+
|
80 |
+
import cv2
|
81 |
+
import numpy as np
|
82 |
+
import os
|
83 |
+
import trimesh
|
84 |
+
import argparse
|
85 |
+
import torch
|
86 |
+
import scipy
|
87 |
+
from PIL import Image
|
88 |
+
|
89 |
+
from refine.mesh_refine import geo_refine
|
90 |
+
from refine.func import make_star_cameras_orthographic
|
91 |
+
from refine.render import NormalsRenderer, calc_vertex_normals
|
92 |
+
|
93 |
+
import pytorch3d
|
94 |
+
from pytorch3d.structures import Meshes
|
95 |
+
from sklearn.neighbors import KDTree
|
96 |
+
|
97 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
98 |
+
|
99 |
+
check_min_version("0.24.0")
|
100 |
+
weight_dtype = torch.float16
|
101 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
102 |
+
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
103 |
+
|
104 |
+
|
105 |
+
def set_seed(seed):
|
106 |
+
random.seed(seed)
|
107 |
+
np.random.seed(seed)
|
108 |
+
torch.manual_seed(seed)
|
109 |
+
torch.cuda.manual_seed_all(seed)
|
110 |
+
|
111 |
+
class BkgRemover:
|
112 |
+
def __init__(self, force_cpu: Optional[bool] = True):
|
113 |
+
session_infer_path = hf_hub_download(
|
114 |
+
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
|
115 |
+
)
|
116 |
+
providers: list[str] = ["CPUExecutionProvider"]
|
117 |
+
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
|
118 |
+
providers = ["CUDAExecutionProvider"]
|
119 |
+
|
120 |
+
self.session_infer = rt.InferenceSession(
|
121 |
+
session_infer_path, providers=providers,
|
122 |
+
)
|
123 |
+
|
124 |
+
def remove_background(
|
125 |
+
self,
|
126 |
+
img: np.ndarray,
|
127 |
+
alpha_min: float,
|
128 |
+
alpha_max: float,
|
129 |
+
) -> list:
|
130 |
+
img = np.array(img)
|
131 |
+
mask = get_mask(self.session_infer, img)
|
132 |
+
mask[mask < alpha_min] = 0.0
|
133 |
+
mask[mask > alpha_max] = 1.0
|
134 |
+
img_after = (mask * img).astype(np.uint8)
|
135 |
+
mask = (mask * SCALE).astype(np.uint8)
|
136 |
+
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
|
137 |
+
return Image.fromarray(img_after)
|
138 |
+
|
139 |
+
|
140 |
+
def process_image(image, totensor, width, height):
|
141 |
+
assert image.mode == "RGBA"
|
142 |
+
|
143 |
+
# Find non-transparent pixels
|
144 |
+
non_transparent = np.nonzero(np.array(image)[..., 3])
|
145 |
+
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
|
146 |
+
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
|
147 |
+
image = image.crop((min_x, min_y, max_x, max_y))
|
148 |
+
|
149 |
+
# paste to center
|
150 |
+
max_dim = max(image.width, image.height)
|
151 |
+
max_height = int(max_dim * 1.2)
|
152 |
+
max_width = int(max_dim / (height/width) * 1.2)
|
153 |
+
new_image = Image.new("RGBA", (max_width, max_height))
|
154 |
+
left = (max_width - image.width) // 2
|
155 |
+
top = (max_height - image.height) // 2
|
156 |
+
new_image.paste(image, (left, top))
|
157 |
+
|
158 |
+
image = new_image.resize((width, height), resample=Image.BICUBIC)
|
159 |
+
image = np.array(image)
|
160 |
+
image = image.astype(np.float32) / 255.
|
161 |
+
assert image.shape[-1] == 4 # RGBA
|
162 |
+
alpha = image[..., 3:4]
|
163 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
164 |
+
image = image[..., :3] * alpha + bg_color * (1 - alpha)
|
165 |
+
return totensor(image)
|
166 |
+
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def inference(validation_pipeline, bkg_remover, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
|
170 |
+
text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
|
171 |
+
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
|
172 |
+
set_seed(seed)
|
173 |
+
|
174 |
+
totensor = transforms.ToTensor()
|
175 |
+
|
176 |
+
prompts = "high quality, best quality"
|
177 |
+
prompt_ids = tokenizer(
|
178 |
+
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
|
179 |
+
return_tensors="pt"
|
180 |
+
).input_ids[0]
|
181 |
+
|
182 |
+
# (B*Nv, 3, H, W)
|
183 |
+
B = 1
|
184 |
+
if input_image.mode != "RGBA":
|
185 |
+
# remove background
|
186 |
+
input_image = bkg_remover.remove_background(input_image, 0.1, 0.9)
|
187 |
+
imgs_in = process_image(input_image, totensor, val_width, val_height)
|
188 |
+
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
|
189 |
+
|
190 |
+
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
|
191 |
+
imgs_in = imgs_in.to(device=device)
|
192 |
+
# B*Nv images
|
193 |
+
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
|
194 |
+
num_inference_steps=timestep, prompt_ids=prompt_ids,
|
195 |
+
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
|
196 |
+
use_noise=use_noise, **validation,)
|
197 |
+
out = rearrange(out, "B C f H W -> (B f) C H W", f=1)
|
198 |
+
|
199 |
+
img_buf = io.BytesIO()
|
200 |
+
save_image(out[0], img_buf, format='PNG')
|
201 |
+
img_buf.seek(0)
|
202 |
+
img = Image.open(img_buf)
|
203 |
+
|
204 |
+
torch.cuda.empty_cache()
|
205 |
+
return img
|
206 |
+
|
207 |
+
|
208 |
+
######### Multi View Part #############
|
209 |
+
weight_dtype = torch.float16
|
210 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
211 |
+
|
212 |
+
def tensor_to_numpy(tensor):
|
213 |
+
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
214 |
+
|
215 |
+
|
216 |
+
@dataclass
|
217 |
+
class TestConfig:
|
218 |
+
pretrained_model_name_or_path: str
|
219 |
+
pretrained_unet_path:Optional[str]
|
220 |
+
revision: Optional[str]
|
221 |
+
validation_dataset: Dict
|
222 |
+
save_dir: str
|
223 |
+
seed: Optional[int]
|
224 |
+
validation_batch_size: int
|
225 |
+
dataloader_num_workers: int
|
226 |
+
save_mode: str
|
227 |
+
local_rank: int
|
228 |
+
|
229 |
+
pipe_kwargs: Dict
|
230 |
+
pipe_validation_kwargs: Dict
|
231 |
+
unet_from_pretrained_kwargs: Dict
|
232 |
+
validation_grid_nrow: int
|
233 |
+
camera_embedding_lr_mult: float
|
234 |
+
|
235 |
+
num_views: int
|
236 |
+
camera_embedding_type: str
|
237 |
+
|
238 |
+
pred_type: str
|
239 |
+
regress_elevation: bool
|
240 |
+
enable_xformers_memory_efficient_attention: bool
|
241 |
+
|
242 |
+
cond_on_normals: bool
|
243 |
+
cond_on_colors: bool
|
244 |
+
|
245 |
+
regress_elevation: bool
|
246 |
+
regress_focal_length: bool
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
def convert_to_numpy(tensor):
|
251 |
+
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
252 |
+
|
253 |
+
def save_image(tensor):
|
254 |
+
ndarr = convert_to_numpy(tensor)
|
255 |
+
return save_image_numpy(ndarr)
|
256 |
+
|
257 |
+
def save_image_numpy(ndarr):
|
258 |
+
im = Image.fromarray(ndarr)
|
259 |
+
# pad to square
|
260 |
+
if im.size[0] != im.size[1]:
|
261 |
+
size = max(im.size)
|
262 |
+
new_im = Image.new("RGB", (size, size))
|
263 |
+
# set to white
|
264 |
+
new_im.paste((255, 255, 255), (0, 0, size, size))
|
265 |
+
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
|
266 |
+
im = new_im
|
267 |
+
# resize to 1024x1024
|
268 |
+
im = im.resize((1024, 1024), Image.LANCZOS)
|
269 |
+
return im
|
270 |
+
|
271 |
+
def run_multiview_infer(data, pipeline, cfg: TestConfig, num_levels=3):
|
272 |
+
if cfg.seed is None:
|
273 |
+
generator = None
|
274 |
+
else:
|
275 |
+
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
|
276 |
+
|
277 |
+
images_cond = []
|
278 |
+
results = {}
|
279 |
+
|
280 |
+
torch.cuda.empty_cache()
|
281 |
+
images_cond.append(data['image_cond_rgb'][:, 0].cuda())
|
282 |
+
imgs_in = torch.cat([data['image_cond_rgb']]*2, dim=0).cuda()
|
283 |
+
num_views = imgs_in.shape[1]
|
284 |
+
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
|
285 |
+
|
286 |
+
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]
|
287 |
+
|
288 |
+
normal_prompt_embeddings, clr_prompt_embeddings = data['normal_prompt_embeddings'].cuda(), data['color_prompt_embeddings'].cuda()
|
289 |
+
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
|
290 |
+
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
|
291 |
+
|
292 |
+
# B*Nv images
|
293 |
+
unet_out = pipeline(
|
294 |
+
imgs_in, None, prompt_embeds=prompt_embeddings,
|
295 |
+
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
|
296 |
+
height=cfg.height, width=cfg.width,
|
297 |
+
num_inference_steps=40, eta=1.0,
|
298 |
+
num_levels=num_levels,
|
299 |
+
)
|
300 |
+
|
301 |
+
for level in range(num_levels):
|
302 |
+
out = unet_out[level].images
|
303 |
+
bsz = out.shape[0] // 2
|
304 |
+
|
305 |
+
normals_pred = out[:bsz]
|
306 |
+
images_pred = out[bsz:]
|
307 |
+
|
308 |
+
if num_levels == 2:
|
309 |
+
results[level+1] = {'normals': [], 'images': []}
|
310 |
+
else:
|
311 |
+
results[level] = {'normals': [], 'images': []}
|
312 |
+
|
313 |
+
for i in range(bsz//num_views):
|
314 |
+
img_in_ = images_cond[-1][i].to(out.device)
|
315 |
+
for j in range(num_views):
|
316 |
+
view = VIEWS[j]
|
317 |
+
idx = i*num_views + j
|
318 |
+
normal = normals_pred[idx]
|
319 |
+
color = images_pred[idx]
|
320 |
+
|
321 |
+
## save color and normal---------------------
|
322 |
+
new_normal = save_image(normal)
|
323 |
+
new_color = save_image(color)
|
324 |
+
|
325 |
+
if num_levels == 2:
|
326 |
+
results[level+1]['normals'].append(new_normal)
|
327 |
+
results[level+1]['images'].append(new_color)
|
328 |
+
else:
|
329 |
+
results[level]['normals'].append(new_normal)
|
330 |
+
results[level]['images'].append(new_color)
|
331 |
+
|
332 |
+
torch.cuda.empty_cache()
|
333 |
+
return results
|
334 |
+
|
335 |
+
|
336 |
+
def load_multiview_pipeline(cfg):
|
337 |
+
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
338 |
+
cfg.pretrained_path,
|
339 |
+
torch_dtype=torch.float16,)
|
340 |
+
pipeline.unet.enable_xformers_memory_efficient_attention()
|
341 |
+
if torch.cuda.is_available():
|
342 |
+
pipeline.to(device)
|
343 |
+
return pipeline
|
344 |
+
|
345 |
+
|
346 |
+
class InferAPI:
|
347 |
+
def __init__(self,
|
348 |
+
canonical_configs,
|
349 |
+
multiview_configs,
|
350 |
+
slrm_configs,
|
351 |
+
refine_configs):
|
352 |
+
self.canonical_configs = canonical_configs
|
353 |
+
self.multiview_configs = multiview_configs
|
354 |
+
self.slrm_configs = slrm_configs
|
355 |
+
self.refine_configs = refine_configs
|
356 |
+
|
357 |
+
repo_id = "hyz317/StdGEN"
|
358 |
+
all_files = list_repo_files(repo_id, revision="main")
|
359 |
+
for file in all_files:
|
360 |
+
if os.path.exists(file):
|
361 |
+
continue
|
362 |
+
hf_hub_download(repo_id, file, local_dir="./ckpt")
|
363 |
+
|
364 |
+
self.canonical_infer = InferCanonicalAPI(self.canonical_configs)
|
365 |
+
self.multiview_infer = InferMultiviewAPI(self.multiview_configs)
|
366 |
+
self.slrm_infer = InferSlrmAPI(self.slrm_configs)
|
367 |
+
self.refine_infer = InferRefineAPI(self.refine_configs)
|
368 |
+
|
369 |
+
def genStage1(self, img, seed):
|
370 |
+
return self.canonical_infer.gen(img, seed)
|
371 |
+
|
372 |
+
def genStage2(self, img, seed, num_levels):
|
373 |
+
return self.multiview_infer.gen(img, seed, num_levels)
|
374 |
+
|
375 |
+
def genStage3(self, img):
|
376 |
+
return self.slrm_infer.gen(img)
|
377 |
+
|
378 |
+
def genStage4(self, meshes, imgs):
|
379 |
+
return self.refine_infer.refine(meshes, imgs)
|
380 |
+
|
381 |
+
|
382 |
+
############## Refine ##############
|
383 |
+
def fix_vert_color_glb(mesh_path):
|
384 |
+
from pygltflib import GLTF2, Material, PbrMetallicRoughness
|
385 |
+
obj1 = GLTF2().load(mesh_path)
|
386 |
+
obj1.meshes[0].primitives[0].material = 0
|
387 |
+
obj1.materials.append(Material(
|
388 |
+
pbrMetallicRoughness = PbrMetallicRoughness(
|
389 |
+
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
|
390 |
+
metallicFactor = 0.,
|
391 |
+
roughnessFactor = 1.0,
|
392 |
+
),
|
393 |
+
emissiveFactor = [0.0, 0.0, 0.0],
|
394 |
+
doubleSided = True,
|
395 |
+
))
|
396 |
+
obj1.save(mesh_path)
|
397 |
+
|
398 |
+
|
399 |
+
def srgb_to_linear(c_srgb):
|
400 |
+
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
|
401 |
+
return c_linear.clip(0, 1.)
|
402 |
+
|
403 |
+
|
404 |
+
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
|
405 |
+
# convert from pytorch3d meshes to trimesh mesh
|
406 |
+
vertices = meshes.verts_packed().cpu().float().numpy()
|
407 |
+
triangles = meshes.faces_packed().cpu().long().numpy()
|
408 |
+
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
|
409 |
+
if save_glb_path.endswith(".glb"):
|
410 |
+
# rotate 180 along +Y
|
411 |
+
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
|
412 |
+
|
413 |
+
if apply_sRGB_to_LinearRGB:
|
414 |
+
np_color = srgb_to_linear(np_color)
|
415 |
+
assert vertices.shape[0] == np_color.shape[0]
|
416 |
+
assert np_color.shape[1] == 3
|
417 |
+
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
|
418 |
+
np_color = np.clip(np_color, 0, 1)
|
419 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
|
420 |
+
mesh.remove_unreferenced_vertices()
|
421 |
+
# save mesh
|
422 |
+
mesh.export(save_glb_path)
|
423 |
+
if save_glb_path.endswith(".glb"):
|
424 |
+
fix_vert_color_glb(save_glb_path)
|
425 |
+
print(f"saving to {save_glb_path}")
|
426 |
+
|
427 |
+
|
428 |
+
def calc_horizontal_offset(target_img, source_img):
|
429 |
+
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
|
430 |
+
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
|
431 |
+
best_offset = -114514
|
432 |
+
for offset in range(-200, 200):
|
433 |
+
offset_mask = np.roll(source_mask, offset, axis=1)
|
434 |
+
overlap = (target_mask & offset_mask).sum()
|
435 |
+
if overlap > best_offset:
|
436 |
+
best_offset = overlap
|
437 |
+
best_offset_value = offset
|
438 |
+
return best_offset_value
|
439 |
+
|
440 |
+
|
441 |
+
def calc_horizontal_offset2(target_mask, source_img):
|
442 |
+
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
|
443 |
+
best_offset = -114514
|
444 |
+
for offset in range(-200, 200):
|
445 |
+
offset_mask = np.roll(source_mask, offset, axis=1)
|
446 |
+
overlap = (target_mask & offset_mask).sum()
|
447 |
+
if overlap > best_offset:
|
448 |
+
best_offset = overlap
|
449 |
+
best_offset_value = offset
|
450 |
+
return best_offset_value
|
451 |
+
|
452 |
+
|
453 |
+
def get_distract_mask(generator, color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
|
454 |
+
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
|
455 |
+
if normal_0 is not None and normal_1 is not None:
|
456 |
+
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
|
457 |
+
labeled_array, num_features = scipy.ndimage.label(distract_area)
|
458 |
+
results = []
|
459 |
+
|
460 |
+
random_sampled_points = []
|
461 |
+
|
462 |
+
for i in range(num_features + 1):
|
463 |
+
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
|
464 |
+
results.append((i, np.sum(labeled_array == i)))
|
465 |
+
# random sample a point in the area
|
466 |
+
points = np.argwhere(labeled_array == i)
|
467 |
+
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
|
468 |
+
|
469 |
+
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
|
470 |
+
distract_mask = np.zeros_like(distract_area)
|
471 |
+
distract_bbox = np.zeros_like(distract_area)
|
472 |
+
for i, _ in results:
|
473 |
+
distract_mask |= labeled_array == i
|
474 |
+
bbox = np.argwhere(labeled_array == i)
|
475 |
+
min_x, min_y = bbox.min(axis=0)
|
476 |
+
max_x, max_y = bbox.max(axis=0)
|
477 |
+
distract_bbox[min_x:max_x, min_y:max_y] = 1
|
478 |
+
|
479 |
+
points = np.array(random_sampled_points)[:, ::-1]
|
480 |
+
labels = np.ones(len(points), dtype=np.int32)
|
481 |
+
|
482 |
+
masks = generator.generate((color_1 * 255).astype(np.uint8))
|
483 |
+
|
484 |
+
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
|
485 |
+
|
486 |
+
final_mask = np.zeros_like(distract_mask)
|
487 |
+
for iii, mask in enumerate(masks):
|
488 |
+
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
|
489 |
+
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
|
490 |
+
total = mask['segmentation'].sum()
|
491 |
+
iou = intersection / total
|
492 |
+
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
|
493 |
+
outside_total = mask['segmentation'].sum()
|
494 |
+
outside_iou = outside_intersection / outside_total
|
495 |
+
if iou > ratio and outside_iou < outside_ratio:
|
496 |
+
final_mask |= mask['segmentation']
|
497 |
+
|
498 |
+
# calculate coverage
|
499 |
+
intersection = np.logical_and(final_mask, distract_mask).sum()
|
500 |
+
total = distract_mask.sum()
|
501 |
+
coverage = intersection / total
|
502 |
+
|
503 |
+
if coverage < 0.8:
|
504 |
+
# use original distract mask
|
505 |
+
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
|
506 |
+
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
507 |
+
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
|
508 |
+
for i in range(num_features_dilate + 1):
|
509 |
+
if np.sum(labeled_array_dilate == i) < 200:
|
510 |
+
final_mask[labeled_array_dilate == i] = 255
|
511 |
+
|
512 |
+
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
513 |
+
final_mask = final_mask > 127
|
514 |
+
|
515 |
+
return distract_mask, distract_bbox, random_sampled_points, final_mask
|
516 |
+
|
517 |
+
|
518 |
+
class InferRefineAPI:
|
519 |
+
def __init__(self, config):
|
520 |
+
self.sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
|
521 |
+
self.generator = SamAutomaticMaskGenerator(
|
522 |
+
model=self.sam,
|
523 |
+
points_per_side=64,
|
524 |
+
pred_iou_thresh=0.80,
|
525 |
+
stability_score_thresh=0.92,
|
526 |
+
crop_n_layers=1,
|
527 |
+
crop_n_points_downscale_factor=2,
|
528 |
+
min_mask_region_area=100,
|
529 |
+
)
|
530 |
+
self.outside_ratio = 0.20
|
531 |
+
|
532 |
+
def refine(self, meshes, imgs):
|
533 |
+
fixed_v, fixed_f, fixed_t = None, None, None
|
534 |
+
flow_vert, flow_vector = None, None
|
535 |
+
last_colors, last_normals = None, None
|
536 |
+
last_front_color, last_front_normal = None, None
|
537 |
+
distract_mask = None
|
538 |
+
|
539 |
+
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
|
540 |
+
mv = mv[[4, 3, 2, 0, 6, 5]]
|
541 |
+
renderer = NormalsRenderer(mv,proj,(1024,1024))
|
542 |
+
|
543 |
+
results = []
|
544 |
+
|
545 |
+
for name_idx, level in zip([2, 0, 1], [2, 1, 0]):
|
546 |
+
mesh = trimesh.load(meshes[name_idx])
|
547 |
+
new_mesh = mesh.split(only_watertight=False)
|
548 |
+
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
|
549 |
+
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
|
550 |
+
mesh_v, mesh_f = mesh.vertices, mesh.faces
|
551 |
+
|
552 |
+
if last_colors is None:
|
553 |
+
images = renderer.render(
|
554 |
+
torch.tensor(mesh_v, device='cuda').float(),
|
555 |
+
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
|
556 |
+
torch.tensor(mesh_f, device='cuda'),
|
557 |
+
)
|
558 |
+
mask = (images[..., 3] < 0.9).cpu().numpy()
|
559 |
+
|
560 |
+
colors, normals = [], []
|
561 |
+
for i in range(6):
|
562 |
+
color = np.array(imgs[level]['images'][i])
|
563 |
+
normal = np.array(imgs[level]['normals'][i])
|
564 |
+
|
565 |
+
if last_colors is not None:
|
566 |
+
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
|
567 |
+
# print('offset', i, offset)
|
568 |
+
else:
|
569 |
+
offset = calc_horizontal_offset2(mask[i], color)
|
570 |
+
# print('init offset', i, offset)
|
571 |
+
|
572 |
+
if offset != 0:
|
573 |
+
color = np.roll(color, offset, axis=1)
|
574 |
+
normal = np.roll(normal, offset, axis=1)
|
575 |
+
|
576 |
+
color = Image.fromarray(color)
|
577 |
+
normal = Image.fromarray(normal)
|
578 |
+
colors.append(color)
|
579 |
+
normals.append(normal)
|
580 |
+
|
581 |
+
if last_front_color is not None and level == 0:
|
582 |
+
original_mask, distract_bbox, _, distract_mask = get_distract_mask(self.generator, last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=self.outside_ratio)
|
583 |
+
else:
|
584 |
+
distract_mask = None
|
585 |
+
distract_bbox = None
|
586 |
+
|
587 |
+
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
|
588 |
+
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0
|
589 |
+
|
590 |
+
if last_colors is None:
|
591 |
+
from copy import deepcopy
|
592 |
+
last_colors, last_normals = deepcopy(colors), deepcopy(normals)
|
593 |
+
|
594 |
+
# my mesh flow weight by nearest vertexs
|
595 |
+
if fixed_v is not None and fixed_f is not None and level == 1:
|
596 |
+
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
|
597 |
+
|
598 |
+
fixed_v_cpu = fixed_v.cpu().numpy()
|
599 |
+
kdtree_anchor = KDTree(fixed_v_cpu)
|
600 |
+
kdtree_mesh_v = KDTree(mesh_v)
|
601 |
+
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
|
602 |
+
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
|
603 |
+
idx_anchor = idx_anchor.squeeze()
|
604 |
+
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
|
605 |
+
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
|
606 |
+
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
|
607 |
+
neighbor_dists[neighbor_dists > 0.06] = 114514.
|
608 |
+
neighbor_weights = torch.exp(-neighbor_dists * 1.)
|
609 |
+
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
|
610 |
+
anchors = fixed_v[idx_anchor] # V, 3
|
611 |
+
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
|
612 |
+
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
|
613 |
+
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
|
614 |
+
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
|
615 |
+
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
616 |
+
mesh_v += weighted_vec_anchor.cpu().numpy()
|
617 |
+
|
618 |
+
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
|
619 |
+
|
620 |
+
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
|
621 |
+
mesh_f = torch.tensor(mesh_f, device='cuda')
|
622 |
+
|
623 |
+
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)
|
624 |
+
|
625 |
+
# my mesh flow weight by nearest vertexs
|
626 |
+
try:
|
627 |
+
if fixed_v is not None and fixed_f is not None and level != 0:
|
628 |
+
new_mesh_v = new_mesh.verts_packed().cpu().numpy()
|
629 |
+
|
630 |
+
fixed_v_cpu = fixed_v.cpu().numpy()
|
631 |
+
kdtree_anchor = KDTree(fixed_v_cpu)
|
632 |
+
kdtree_mesh_v = KDTree(new_mesh_v)
|
633 |
+
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
|
634 |
+
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
|
635 |
+
idx_anchor = idx_anchor.squeeze()
|
636 |
+
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
|
637 |
+
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
|
638 |
+
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
|
639 |
+
neighbor_dists[neighbor_dists > 0.06] = 114514.
|
640 |
+
neighbor_weights = torch.exp(-neighbor_dists * 1.)
|
641 |
+
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
|
642 |
+
anchors = fixed_v[idx_anchor] # V, 3
|
643 |
+
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
|
644 |
+
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
|
645 |
+
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
|
646 |
+
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
|
647 |
+
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
648 |
+
new_mesh_v += weighted_vec_anchor.cpu().numpy()
|
649 |
+
|
650 |
+
# replace new_mesh verts with new_mesh_v
|
651 |
+
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
|
652 |
+
|
653 |
+
except Exception as e:
|
654 |
+
pass
|
655 |
+
|
656 |
+
notsimp_v, notsimp_f, notsimp_t = new_mesh.verts_packed(), new_mesh.faces_packed(), new_mesh.textures.verts_features_packed()
|
657 |
+
|
658 |
+
if fixed_v is None:
|
659 |
+
fixed_v, fixed_f = simp_v, simp_f
|
660 |
+
complete_v, complete_f, complete_t = notsimp_v, notsimp_f, notsimp_t
|
661 |
+
else:
|
662 |
+
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
|
663 |
+
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
|
664 |
+
|
665 |
+
complete_f = torch.cat([complete_f, notsimp_f + complete_v.shape[0]], dim=0)
|
666 |
+
complete_v = torch.cat([complete_v, notsimp_v], dim=0)
|
667 |
+
complete_t = torch.cat([complete_t, notsimp_t], dim=0)
|
668 |
+
|
669 |
+
if level == 2:
|
670 |
+
new_mesh = Meshes(verts=[new_mesh.verts_packed()], faces=[new_mesh.faces_packed()], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[torch.ones_like(new_mesh.textures.verts_features_packed(), device=new_mesh.verts_packed().device)*0.5]))
|
671 |
+
|
672 |
+
save_py3dmesh_with_trimesh_fast(new_mesh, meshes[name_idx].replace('.obj', '_refined.obj'), apply_sRGB_to_LinearRGB=False)
|
673 |
+
results.append(meshes[name_idx].replace('.obj', '_refined.obj'))
|
674 |
+
|
675 |
+
# save whole mesh
|
676 |
+
save_py3dmesh_with_trimesh_fast(Meshes(verts=[complete_v], faces=[complete_f], textures=pytorch3d.renderer.mesh.textures.TexturesVertex(verts_features=[complete_t])), meshes[name_idx].replace('.obj', '_refined_whole.obj'), apply_sRGB_to_LinearRGB=False)
|
677 |
+
results.append(meshes[name_idx].replace('.obj', '_refined_whole.obj'))
|
678 |
+
|
679 |
+
return results
|
680 |
+
|
681 |
+
|
682 |
+
class InferSlrmAPI:
|
683 |
+
def __init__(self, config):
|
684 |
+
self.config_path = config['config_path']
|
685 |
+
self.config = OmegaConf.load(self.config_path)
|
686 |
+
self.config_name = os.path.basename(self.config_path).replace('.yaml', '')
|
687 |
+
self.model_config = self.config.model_config
|
688 |
+
self.infer_config = self.config.infer_config
|
689 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
690 |
+
self.model = instantiate_from_config(self.model_config)
|
691 |
+
state_dict = torch.load(self.infer_config.model_path, map_location='cpu')
|
692 |
+
self.model.load_state_dict(state_dict, strict=False)
|
693 |
+
self.model = self.model.to(self.device)
|
694 |
+
self.model.init_flexicubes_geometry(self.device, fovy=30.0, is_ortho=self.model.is_ortho)
|
695 |
+
self.model = self.model.eval()
|
696 |
+
|
697 |
+
def gen(self, imgs):
|
698 |
+
imgs = [ cv2.imread(img[0])[:, :, ::-1] for img in imgs ]
|
699 |
+
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
|
700 |
+
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
|
701 |
+
mesh_glb_fpaths = self.make3d(imgs)
|
702 |
+
return mesh_glb_fpaths[1:4] + mesh_glb_fpaths[0:1]
|
703 |
+
|
704 |
+
def make3d(self, images):
|
705 |
+
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
|
706 |
+
|
707 |
+
images = images.unsqueeze(0).to(device)
|
708 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
709 |
+
|
710 |
+
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
711 |
+
print(mesh_fpath)
|
712 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
713 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
714 |
+
|
715 |
+
with torch.no_grad():
|
716 |
+
# get triplane
|
717 |
+
planes = self.model.forward_planes(images, input_cameras.float())
|
718 |
+
|
719 |
+
# get mesh
|
720 |
+
mesh_glb_fpaths = []
|
721 |
+
for j in range(4):
|
722 |
+
mesh_glb_fpath = self.make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
|
723 |
+
mesh_glb_fpaths.append(mesh_glb_fpath)
|
724 |
+
|
725 |
+
return mesh_glb_fpaths
|
726 |
+
|
727 |
+
def make_mesh(self, mesh_fpath, planes, level=None):
|
728 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
729 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
730 |
+
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
731 |
+
|
732 |
+
with torch.no_grad():
|
733 |
+
# get mesh
|
734 |
+
mesh_out = self.model.extract_mesh(
|
735 |
+
planes,
|
736 |
+
use_texture_map=False,
|
737 |
+
levels=torch.tensor([level]).to(device),
|
738 |
+
**self.infer_config,
|
739 |
+
)
|
740 |
+
|
741 |
+
vertices, faces, vertex_colors = mesh_out
|
742 |
+
vertices = vertices[:, [1, 2, 0]]
|
743 |
+
|
744 |
+
if level == 2:
|
745 |
+
# fill all vertex_colors with 127
|
746 |
+
vertex_colors = np.ones_like(vertex_colors) * 127
|
747 |
+
|
748 |
+
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
749 |
+
|
750 |
+
return mesh_fpath
|
751 |
+
|
752 |
+
|
753 |
+
class InferMultiviewAPI:
|
754 |
+
def __init__(self, config):
|
755 |
+
parser = argparse.ArgumentParser()
|
756 |
+
parser.add_argument("--seed", type=int, default=42)
|
757 |
+
parser.add_argument("--num_views", type=int, default=6)
|
758 |
+
parser.add_argument("--num_levels", type=int, default=3)
|
759 |
+
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
|
760 |
+
parser.add_argument("--height", type=int, default=1024)
|
761 |
+
parser.add_argument("--width", type=int, default=576)
|
762 |
+
self.cfg = parser.parse_args()
|
763 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
764 |
+
self.pipeline = load_multiview_pipeline(self.cfg)
|
765 |
+
self.results = {}
|
766 |
+
if torch.cuda.is_available():
|
767 |
+
self.pipeline.to(device)
|
768 |
+
|
769 |
+
self.image_transforms = [transforms.Resize(int(max(self.cfg.height, self.cfg.width))),
|
770 |
+
transforms.CenterCrop((self.cfg.height, self.cfg.width)),
|
771 |
+
transforms.ToTensor(),
|
772 |
+
transforms.Lambda(lambda x: x * 2. - 1),
|
773 |
+
]
|
774 |
+
self.image_transforms = transforms.Compose(self.image_transforms)
|
775 |
+
|
776 |
+
prompt_embeds_path = './multiview/fixed_prompt_embeds_6view'
|
777 |
+
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
|
778 |
+
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
|
779 |
+
self.total_views = self.cfg.num_views
|
780 |
+
|
781 |
+
|
782 |
+
def process_im(self, im):
|
783 |
+
im = self.image_transforms(im)
|
784 |
+
return im
|
785 |
+
|
786 |
+
|
787 |
+
def gen(self, img, seed, num_levels):
|
788 |
+
set_seed(seed)
|
789 |
+
data = {}
|
790 |
+
|
791 |
+
cond_im_rgb = self.process_im(img)
|
792 |
+
cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0)
|
793 |
+
data["image_cond_rgb"] = cond_im_rgb[None, ...]
|
794 |
+
data["normal_prompt_embeddings"] = self.normal_text_embeds[None, ...]
|
795 |
+
data["color_prompt_embeddings"] = self.color_text_embeds[None, ...]
|
796 |
+
|
797 |
+
results = run_multiview_infer(data, self.pipeline, self.cfg, num_levels=num_levels)
|
798 |
+
for k in results:
|
799 |
+
self.results[k] = results[k]
|
800 |
+
return results
|
801 |
+
|
802 |
+
|
803 |
+
class InferCanonicalAPI:
|
804 |
+
def __init__(self, config):
|
805 |
+
self.config = config
|
806 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
807 |
+
|
808 |
+
self.config_path = config['config_path']
|
809 |
+
self.loaded_config = OmegaConf.load(self.config_path)
|
810 |
+
|
811 |
+
self.setup(**self.loaded_config)
|
812 |
+
|
813 |
+
def setup(self,
|
814 |
+
validation: Dict,
|
815 |
+
pretrained_model_path: str,
|
816 |
+
local_crossattn: bool = True,
|
817 |
+
unet_from_pretrained_kwargs=None,
|
818 |
+
unet_condition_type=None,
|
819 |
+
use_noise=True,
|
820 |
+
noise_d=256,
|
821 |
+
timestep: int = 40,
|
822 |
+
width_input: int = 640,
|
823 |
+
height_input: int = 1024,
|
824 |
+
):
|
825 |
+
self.width_input = width_input
|
826 |
+
self.height_input = height_input
|
827 |
+
self.timestep = timestep
|
828 |
+
self.use_noise = use_noise
|
829 |
+
self.noise_d = noise_d
|
830 |
+
self.validation = validation
|
831 |
+
self.unet_condition_type = unet_condition_type
|
832 |
+
self.pretrained_model_path = pretrained_model_path
|
833 |
+
|
834 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
835 |
+
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
836 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
|
837 |
+
self.feature_extractor = CLIPImageProcessor()
|
838 |
+
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
839 |
+
self.unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
840 |
+
self.ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
841 |
+
|
842 |
+
self.text_encoder.to(device, dtype=weight_dtype)
|
843 |
+
self.image_encoder.to(device, dtype=weight_dtype)
|
844 |
+
self.vae.to(device, dtype=weight_dtype)
|
845 |
+
self.ref_unet.to(device, dtype=weight_dtype)
|
846 |
+
self.unet.to(device, dtype=weight_dtype)
|
847 |
+
|
848 |
+
self.vae.requires_grad_(False)
|
849 |
+
self.ref_unet.requires_grad_(False)
|
850 |
+
self.unet.requires_grad_(False)
|
851 |
+
|
852 |
+
self.noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
|
853 |
+
self.validation_pipeline = CanonicalizationPipeline(
|
854 |
+
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, ref_unet=self.ref_unet,feature_extractor=self.feature_extractor,image_encoder=self.image_encoder,
|
855 |
+
scheduler=self.noise_scheduler
|
856 |
+
)
|
857 |
+
self.validation_pipeline.set_progress_bar_config(disable=True)
|
858 |
+
|
859 |
+
self.bkg_remover = BkgRemover()
|
860 |
+
|
861 |
+
def canonicalize(self, image, seed):
|
862 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
863 |
+
return inference(
|
864 |
+
self.validation_pipeline, self.bkg_remover, image, self.vae, self.feature_extractor, self.image_encoder, self.unet, self.ref_unet, self.tokenizer, self.text_encoder,
|
865 |
+
self.pretrained_model_path, generator, self.validation, self.width_input, self.height_input, self.unet_condition_type,
|
866 |
+
use_noise=self.use_noise, noise_d=self.noise_d, crop=True, seed=seed, timestep=self.timestep
|
867 |
+
)
|
868 |
+
|
869 |
+
def gen(self, img_input, seed=0):
|
870 |
+
if np.array(img_input).shape[-1] == 4 and np.array(img_input)[..., 3].min() == 255:
|
871 |
+
# convert to RGB
|
872 |
+
img_input = img_input.convert("RGB")
|
873 |
+
img_output = self.canonicalize(img_input, seed)
|
874 |
+
|
875 |
+
max_dim = max(img_output.width, img_output.height)
|
876 |
+
new_image = Image.new("RGBA", (max_dim, max_dim))
|
877 |
+
left = (max_dim - img_output.width) // 2
|
878 |
+
top = (max_dim - img_output.height) // 2
|
879 |
+
new_image.paste(img_output, (left, top))
|
880 |
+
|
881 |
+
return new_image
|
infer_canonicalize.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import glob
|
3 |
+
|
4 |
+
import io
|
5 |
+
import argparse
|
6 |
+
import inspect
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
from typing import Dict, Optional, Tuple
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from diffusers import AutoencoderKL, DDIMScheduler
|
16 |
+
from diffusers.utils import check_min_version
|
17 |
+
from tqdm.auto import tqdm
|
18 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor, CLIPVisionModelWithProjection
|
19 |
+
from torchvision import transforms
|
20 |
+
|
21 |
+
from canonicalize.models.unet_mv2d_condition import UNetMV2DConditionModel
|
22 |
+
from canonicalize.models.unet_mv2d_ref import UNetMV2DRefModel
|
23 |
+
from canonicalize.pipeline_canonicalize import CanonicalizationPipeline
|
24 |
+
from einops import rearrange
|
25 |
+
from torchvision.utils import save_image
|
26 |
+
import json
|
27 |
+
import cv2
|
28 |
+
|
29 |
+
import onnxruntime as rt
|
30 |
+
from huggingface_hub.file_download import hf_hub_download
|
31 |
+
from rm_anime_bg.cli import get_mask, SCALE
|
32 |
+
|
33 |
+
check_min_version("0.24.0")
|
34 |
+
weight_dtype = torch.float16
|
35 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
36 |
+
|
37 |
+
|
38 |
+
class BkgRemover:
|
39 |
+
def __init__(self, force_cpu: Optional[bool] = True):
|
40 |
+
session_infer_path = hf_hub_download(
|
41 |
+
repo_id="skytnt/anime-seg", filename="isnetis.onnx",
|
42 |
+
)
|
43 |
+
providers: list[str] = ["CPUExecutionProvider"]
|
44 |
+
if not force_cpu and "CUDAExecutionProvider" in rt.get_available_providers():
|
45 |
+
providers = ["CUDAExecutionProvider"]
|
46 |
+
|
47 |
+
self.session_infer = rt.InferenceSession(
|
48 |
+
session_infer_path, providers=providers,
|
49 |
+
)
|
50 |
+
|
51 |
+
def remove_background(
|
52 |
+
self,
|
53 |
+
img: np.ndarray,
|
54 |
+
alpha_min: float,
|
55 |
+
alpha_max: float,
|
56 |
+
) -> list:
|
57 |
+
img = np.array(img)
|
58 |
+
mask = get_mask(self.session_infer, img)
|
59 |
+
mask[mask < alpha_min] = 0.0
|
60 |
+
mask[mask > alpha_max] = 1.0
|
61 |
+
img_after = (mask * img).astype(np.uint8)
|
62 |
+
mask = (mask * SCALE).astype(np.uint8)
|
63 |
+
img_after = np.concatenate([img_after, mask], axis=2, dtype=np.uint8)
|
64 |
+
return Image.fromarray(img_after)
|
65 |
+
|
66 |
+
|
67 |
+
def set_seed(seed):
|
68 |
+
random.seed(seed)
|
69 |
+
np.random.seed(seed)
|
70 |
+
torch.manual_seed(seed)
|
71 |
+
torch.cuda.manual_seed_all(seed)
|
72 |
+
|
73 |
+
|
74 |
+
def process_image(image, totensor, width, height):
|
75 |
+
assert image.mode == "RGBA"
|
76 |
+
|
77 |
+
# Find non-transparent pixels
|
78 |
+
non_transparent = np.nonzero(np.array(image)[..., 3])
|
79 |
+
min_x, max_x = non_transparent[1].min(), non_transparent[1].max()
|
80 |
+
min_y, max_y = non_transparent[0].min(), non_transparent[0].max()
|
81 |
+
image = image.crop((min_x, min_y, max_x, max_y))
|
82 |
+
|
83 |
+
# paste to center
|
84 |
+
max_dim = max(image.width, image.height)
|
85 |
+
max_height = int(max_dim * 1.2)
|
86 |
+
max_width = int(max_dim / (height/width) * 1.2)
|
87 |
+
new_image = Image.new("RGBA", (max_width, max_height))
|
88 |
+
left = (max_width - image.width) // 2
|
89 |
+
top = (max_height - image.height) // 2
|
90 |
+
new_image.paste(image, (left, top))
|
91 |
+
|
92 |
+
image = new_image.resize((width, height), resample=Image.BICUBIC)
|
93 |
+
image = np.array(image)
|
94 |
+
image = image.astype(np.float32) / 255.
|
95 |
+
assert image.shape[-1] == 4 # RGBA
|
96 |
+
alpha = image[..., 3:4]
|
97 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
98 |
+
image = image[..., :3] * alpha + bg_color * (1 - alpha)
|
99 |
+
return totensor(image)
|
100 |
+
|
101 |
+
|
102 |
+
@torch.no_grad()
|
103 |
+
def inference(validation_pipeline, bkg_remover, input_image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer,
|
104 |
+
text_encoder, pretrained_model_path, generator, validation, val_width, val_height, unet_condition_type,
|
105 |
+
use_noise=True, noise_d=256, crop=False, seed=100, timestep=20):
|
106 |
+
set_seed(seed)
|
107 |
+
|
108 |
+
totensor = transforms.ToTensor()
|
109 |
+
|
110 |
+
prompts = "high quality, best quality"
|
111 |
+
prompt_ids = tokenizer(
|
112 |
+
prompts, max_length=tokenizer.model_max_length, padding="max_length", truncation=True,
|
113 |
+
return_tensors="pt"
|
114 |
+
).input_ids[0]
|
115 |
+
|
116 |
+
# (B*Nv, 3, H, W)
|
117 |
+
B = 1
|
118 |
+
if input_image.mode != "RGBA":
|
119 |
+
# remove background
|
120 |
+
input_image = bkg_remover.remove_background(input_image, 0.1, 0.9)
|
121 |
+
imgs_in = process_image(input_image, totensor, val_width, val_height)
|
122 |
+
imgs_in = rearrange(imgs_in.unsqueeze(0).unsqueeze(0), "B Nv C H W -> (B Nv) C H W")
|
123 |
+
|
124 |
+
with torch.autocast('cuda' if torch.cuda.is_available() else 'cpu', dtype=weight_dtype):
|
125 |
+
imgs_in = imgs_in.to(device=device)
|
126 |
+
# B*Nv images
|
127 |
+
out = validation_pipeline(prompt=prompts, image=imgs_in.to(weight_dtype), generator=generator,
|
128 |
+
num_inference_steps=timestep, prompt_ids=prompt_ids,
|
129 |
+
height=val_height, width=val_width, unet_condition_type=unet_condition_type,
|
130 |
+
use_noise=use_noise, **validation,)
|
131 |
+
out = rearrange(out, "B C f H W -> (B f) C H W", f=1)
|
132 |
+
|
133 |
+
img_buf = io.BytesIO()
|
134 |
+
save_image(out[0], img_buf, format='PNG')
|
135 |
+
img_buf.seek(0)
|
136 |
+
img = Image.open(img_buf)
|
137 |
+
|
138 |
+
torch.cuda.empty_cache()
|
139 |
+
return img
|
140 |
+
|
141 |
+
|
142 |
+
@torch.no_grad()
|
143 |
+
def main(
|
144 |
+
input_dir: str,
|
145 |
+
output_dir: str,
|
146 |
+
pretrained_model_path: str,
|
147 |
+
validation: Dict,
|
148 |
+
local_crossattn: bool = True,
|
149 |
+
unet_from_pretrained_kwargs=None,
|
150 |
+
unet_condition_type=None,
|
151 |
+
use_noise=True,
|
152 |
+
noise_d=256,
|
153 |
+
seed: int = 42,
|
154 |
+
timestep: int = 40,
|
155 |
+
width_input: int = 640,
|
156 |
+
height_input: int = 1024,
|
157 |
+
):
|
158 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
159 |
+
|
160 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
161 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
162 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(pretrained_model_path, subfolder="image_encoder")
|
163 |
+
feature_extractor = CLIPImageProcessor()
|
164 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
165 |
+
unet = UNetMV2DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
166 |
+
ref_unet = UNetMV2DRefModel.from_pretrained_2d(pretrained_model_path, subfolder="ref_unet", local_crossattn=local_crossattn, **unet_from_pretrained_kwargs)
|
167 |
+
|
168 |
+
text_encoder.to(device, dtype=weight_dtype)
|
169 |
+
image_encoder.to(device, dtype=weight_dtype)
|
170 |
+
vae.to(device, dtype=weight_dtype)
|
171 |
+
ref_unet.to(device, dtype=weight_dtype)
|
172 |
+
unet.to(device, dtype=weight_dtype)
|
173 |
+
|
174 |
+
vae.requires_grad_(False)
|
175 |
+
unet.requires_grad_(False)
|
176 |
+
ref_unet.requires_grad_(False)
|
177 |
+
|
178 |
+
# set pipeline
|
179 |
+
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler-zerosnr")
|
180 |
+
validation_pipeline = CanonicalizationPipeline(
|
181 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, ref_unet=ref_unet,feature_extractor=feature_extractor,image_encoder=image_encoder,
|
182 |
+
scheduler=noise_scheduler
|
183 |
+
)
|
184 |
+
validation_pipeline.set_progress_bar_config(disable=True)
|
185 |
+
|
186 |
+
bkg_remover = BkgRemover()
|
187 |
+
|
188 |
+
def canonicalize(image, width, height, seed, timestep):
|
189 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
190 |
+
return inference(
|
191 |
+
validation_pipeline, bkg_remover, image, vae, feature_extractor, image_encoder, unet, ref_unet, tokenizer, text_encoder,
|
192 |
+
pretrained_model_path, generator, validation, width, height, unet_condition_type,
|
193 |
+
use_noise=use_noise, noise_d=noise_d, crop=True, seed=seed, timestep=timestep
|
194 |
+
)
|
195 |
+
|
196 |
+
img_paths = sorted(glob.glob(os.path.join(input_dir, "*.png")))
|
197 |
+
os.makedirs(output_dir, exist_ok=True)
|
198 |
+
|
199 |
+
for path in tqdm(img_paths):
|
200 |
+
img_input = Image.open(path)
|
201 |
+
if np.array(img_input)[..., 3].min() == 255:
|
202 |
+
# convert to RGB
|
203 |
+
img_input = img_input.convert("RGB")
|
204 |
+
img_output = canonicalize(img_input, width_input, height_input, seed, timestep)
|
205 |
+
img_output.save(os.path.join(output_dir, f"{os.path.basename(path).split('.')[0]}.png"))
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
parser = argparse.ArgumentParser()
|
209 |
+
parser.add_argument("--config", type=str, default="./configs/canonicalization-infer.yaml")
|
210 |
+
parser.add_argument("--input_dir", type=str, default="./input_cases")
|
211 |
+
parser.add_argument("--output_dir", type=str, default="./result/apose")
|
212 |
+
parser.add_argument("--seed", type=int, default=42)
|
213 |
+
args = parser.parse_args()
|
214 |
+
|
215 |
+
main(**OmegaConf.load(args.config), seed=args.seed, input_dir=args.input_dir, output_dir=args.output_dir)
|
infer_multiview.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import glob
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from typing import Dict, Optional, List
|
8 |
+
from omegaconf import OmegaConf, DictConfig
|
9 |
+
from PIL import Image
|
10 |
+
from pathlib import Path
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from typing import Dict
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint
|
16 |
+
import torchvision.transforms.functional as TF
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
from torchvision import transforms
|
19 |
+
from torchvision.utils import make_grid, save_image
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from tqdm.auto import tqdm
|
22 |
+
from einops import rearrange, repeat
|
23 |
+
from multiview.pipeline_multiclass import StableUnCLIPImg2ImgPipeline
|
24 |
+
|
25 |
+
weight_dtype = torch.float16
|
26 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
27 |
+
|
28 |
+
def tensor_to_numpy(tensor):
|
29 |
+
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
30 |
+
|
31 |
+
|
32 |
+
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
33 |
+
|
34 |
+
def nonzero_normalize_depth(depth, mask=None):
|
35 |
+
if mask.max() > 0: # not all transparent
|
36 |
+
nonzero_depth_min = depth[mask > 0].min()
|
37 |
+
else:
|
38 |
+
nonzero_depth_min = 0
|
39 |
+
depth = (depth - nonzero_depth_min) / depth.max()
|
40 |
+
return np.clip(depth, 0, 1)
|
41 |
+
|
42 |
+
|
43 |
+
class SingleImageData(Dataset):
|
44 |
+
def __init__(self,
|
45 |
+
input_dir,
|
46 |
+
prompt_embeds_path='./multiview/fixed_prompt_embeds_6view',
|
47 |
+
image_transforms=[],
|
48 |
+
total_views=6,
|
49 |
+
ext="png",
|
50 |
+
return_paths=True,
|
51 |
+
) -> None:
|
52 |
+
"""Create a dataset from a folder of images.
|
53 |
+
If you pass in a root directory it will be searched for images
|
54 |
+
ending in ext (ext can be a list)
|
55 |
+
"""
|
56 |
+
self.input_dir = Path(input_dir)
|
57 |
+
self.return_paths = return_paths
|
58 |
+
self.total_views = total_views
|
59 |
+
|
60 |
+
self.paths = glob.glob(str(self.input_dir / f'*.{ext}'))
|
61 |
+
|
62 |
+
print('============= length of dataset %d =============' % len(self.paths))
|
63 |
+
self.tform = image_transforms
|
64 |
+
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
|
65 |
+
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
|
66 |
+
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.paths)
|
70 |
+
|
71 |
+
|
72 |
+
def load_rgb(self, path, color):
|
73 |
+
img = plt.imread(path)
|
74 |
+
img = Image.fromarray(np.uint8(img * 255.))
|
75 |
+
new_img = Image.new("RGB", (1024, 1024))
|
76 |
+
# white background
|
77 |
+
width, height = img.size
|
78 |
+
new_width = int(width / height * 1024)
|
79 |
+
img = img.resize((new_width, 1024))
|
80 |
+
new_img.paste((255, 255, 255), (0, 0, 1024, 1024))
|
81 |
+
offset = (1024 - new_width) // 2
|
82 |
+
new_img.paste(img, (offset, 0))
|
83 |
+
return new_img
|
84 |
+
|
85 |
+
def __getitem__(self, index):
|
86 |
+
data = {}
|
87 |
+
filename = self.paths[index]
|
88 |
+
|
89 |
+
if self.return_paths:
|
90 |
+
data["path"] = str(filename)
|
91 |
+
color = 1.0
|
92 |
+
cond_im_rgb = self.process_im(self.load_rgb(filename, color))
|
93 |
+
cond_im_rgb = torch.stack([cond_im_rgb] * self.total_views, dim=0)
|
94 |
+
|
95 |
+
data["image_cond_rgb"] = cond_im_rgb
|
96 |
+
data["normal_prompt_embeddings"] = self.normal_text_embeds
|
97 |
+
data["color_prompt_embeddings"] = self.color_text_embeds
|
98 |
+
data["filename"] = filename.split('/')[-1]
|
99 |
+
|
100 |
+
return data
|
101 |
+
|
102 |
+
def process_im(self, im):
|
103 |
+
im = im.convert("RGB")
|
104 |
+
return self.tform(im)
|
105 |
+
|
106 |
+
def tensor_to_image(self, tensor):
|
107 |
+
return Image.fromarray(np.uint8(tensor.numpy() * 255.))
|
108 |
+
|
109 |
+
|
110 |
+
@dataclass
|
111 |
+
class TestConfig:
|
112 |
+
pretrained_model_name_or_path: str
|
113 |
+
pretrained_unet_path:Optional[str]
|
114 |
+
revision: Optional[str]
|
115 |
+
validation_dataset: Dict
|
116 |
+
save_dir: str
|
117 |
+
seed: Optional[int]
|
118 |
+
validation_batch_size: int
|
119 |
+
dataloader_num_workers: int
|
120 |
+
save_mode: str
|
121 |
+
local_rank: int
|
122 |
+
|
123 |
+
pipe_kwargs: Dict
|
124 |
+
pipe_validation_kwargs: Dict
|
125 |
+
unet_from_pretrained_kwargs: Dict
|
126 |
+
validation_grid_nrow: int
|
127 |
+
camera_embedding_lr_mult: float
|
128 |
+
|
129 |
+
num_views: int
|
130 |
+
camera_embedding_type: str
|
131 |
+
|
132 |
+
pred_type: str
|
133 |
+
regress_elevation: bool
|
134 |
+
enable_xformers_memory_efficient_attention: bool
|
135 |
+
|
136 |
+
cond_on_normals: bool
|
137 |
+
cond_on_colors: bool
|
138 |
+
|
139 |
+
regress_elevation: bool
|
140 |
+
regress_focal_length: bool
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
def convert_to_numpy(tensor):
|
145 |
+
return tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
146 |
+
|
147 |
+
def save_image(tensor, fp):
|
148 |
+
ndarr = convert_to_numpy(tensor)
|
149 |
+
save_image_numpy(ndarr, fp)
|
150 |
+
return ndarr
|
151 |
+
|
152 |
+
def save_image_numpy(ndarr, fp):
|
153 |
+
im = Image.fromarray(ndarr)
|
154 |
+
# pad to square
|
155 |
+
if im.size[0] != im.size[1]:
|
156 |
+
size = max(im.size)
|
157 |
+
new_im = Image.new("RGB", (size, size))
|
158 |
+
# set to white
|
159 |
+
new_im.paste((255, 255, 255), (0, 0, size, size))
|
160 |
+
new_im.paste(im, ((size - im.size[0]) // 2, (size - im.size[1]) // 2))
|
161 |
+
im = new_im
|
162 |
+
# resize to 1024x1024
|
163 |
+
im = im.resize((1024, 1024), Image.LANCZOS)
|
164 |
+
im.save(fp)
|
165 |
+
|
166 |
+
def run_multiview_infer(dataloader, pipeline, cfg: TestConfig, save_dir, num_levels=3):
|
167 |
+
if cfg.seed is None:
|
168 |
+
generator = None
|
169 |
+
else:
|
170 |
+
generator = torch.Generator(device=pipeline.unet.device).manual_seed(cfg.seed)
|
171 |
+
|
172 |
+
images_cond = []
|
173 |
+
for _, batch in tqdm(enumerate(dataloader)):
|
174 |
+
torch.cuda.empty_cache()
|
175 |
+
images_cond.append(batch['image_cond_rgb'][:, 0].cuda())
|
176 |
+
imgs_in = torch.cat([batch['image_cond_rgb']]*2, dim=0).cuda()
|
177 |
+
num_views = imgs_in.shape[1]
|
178 |
+
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
|
179 |
+
|
180 |
+
target_h, target_w = imgs_in.shape[-2], imgs_in.shape[-1]
|
181 |
+
|
182 |
+
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'].cuda(), batch['color_prompt_embeddings'].cuda()
|
183 |
+
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
|
184 |
+
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
|
185 |
+
|
186 |
+
# B*Nv images
|
187 |
+
unet_out = pipeline(
|
188 |
+
imgs_in, None, prompt_embeds=prompt_embeddings,
|
189 |
+
generator=generator, guidance_scale=3.0, output_type='pt', num_images_per_prompt=1,
|
190 |
+
height=cfg.height, width=cfg.width,
|
191 |
+
num_inference_steps=40, eta=1.0,
|
192 |
+
num_levels=num_levels,
|
193 |
+
)
|
194 |
+
|
195 |
+
for level in range(num_levels):
|
196 |
+
out = unet_out[level].images
|
197 |
+
bsz = out.shape[0] // 2
|
198 |
+
|
199 |
+
normals_pred = out[:bsz]
|
200 |
+
images_pred = out[bsz:]
|
201 |
+
|
202 |
+
cur_dir = save_dir
|
203 |
+
os.makedirs(cur_dir, exist_ok=True)
|
204 |
+
|
205 |
+
for i in range(bsz//num_views):
|
206 |
+
scene = batch['filename'][i].split('.')[0]
|
207 |
+
scene_dir = os.path.join(cur_dir, scene, f'level{level}')
|
208 |
+
os.makedirs(scene_dir, exist_ok=True)
|
209 |
+
|
210 |
+
img_in_ = images_cond[-1][i].to(out.device)
|
211 |
+
for j in range(num_views):
|
212 |
+
view = VIEWS[j]
|
213 |
+
idx = i*num_views + j
|
214 |
+
normal = normals_pred[idx]
|
215 |
+
color = images_pred[idx]
|
216 |
+
|
217 |
+
## save color and normal---------------------
|
218 |
+
normal_filename = f"normal_{j}.png"
|
219 |
+
rgb_filename = f"color_{j}.png"
|
220 |
+
save_image(normal, os.path.join(scene_dir, normal_filename))
|
221 |
+
save_image(color, os.path.join(scene_dir, rgb_filename))
|
222 |
+
|
223 |
+
torch.cuda.empty_cache()
|
224 |
+
|
225 |
+
def load_multiview_pipeline(cfg):
|
226 |
+
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
|
227 |
+
cfg.pretrained_path,
|
228 |
+
torch_dtype=torch.float16,)
|
229 |
+
pipeline.unet.enable_xformers_memory_efficient_attention()
|
230 |
+
if torch.cuda.is_available():
|
231 |
+
pipeline.to(device)
|
232 |
+
return pipeline
|
233 |
+
|
234 |
+
def main(
|
235 |
+
cfg: TestConfig
|
236 |
+
):
|
237 |
+
set_seed(cfg.seed)
|
238 |
+
pipeline = load_multiview_pipeline(cfg)
|
239 |
+
if torch.cuda.is_available():
|
240 |
+
pipeline.to(device)
|
241 |
+
|
242 |
+
image_transforms = [transforms.Resize(int(max(cfg.height, cfg.width))),
|
243 |
+
transforms.CenterCrop((cfg.height, cfg.width)),
|
244 |
+
transforms.ToTensor(),
|
245 |
+
transforms.Lambda(lambda x: x * 2. - 1),
|
246 |
+
]
|
247 |
+
image_transforms = transforms.Compose(image_transforms)
|
248 |
+
dataset = SingleImageData(image_transforms=image_transforms, input_dir=cfg.input_dir, total_views=cfg.num_views)
|
249 |
+
dataloader = torch.utils.data.DataLoader(
|
250 |
+
dataset, batch_size=1, shuffle=False, num_workers=1
|
251 |
+
)
|
252 |
+
os.makedirs(cfg.output_dir, exist_ok=True)
|
253 |
+
|
254 |
+
with torch.no_grad():
|
255 |
+
run_multiview_infer(dataloader, pipeline, cfg, cfg.output_dir, num_levels=cfg.num_levels)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == '__main__':
|
259 |
+
parser = argparse.ArgumentParser()
|
260 |
+
parser.add_argument("--seed", type=int, default=42)
|
261 |
+
parser.add_argument("--num_views", type=int, default=6)
|
262 |
+
parser.add_argument("--num_levels", type=int, default=3)
|
263 |
+
parser.add_argument("--pretrained_path", type=str, default='./ckpt/StdGEN-multiview-1024')
|
264 |
+
parser.add_argument("--height", type=int, default=1024)
|
265 |
+
parser.add_argument("--width", type=int, default=576)
|
266 |
+
parser.add_argument("--input_dir", type=str, default='./result/apose')
|
267 |
+
parser.add_argument("--output_dir", type=str, default='./result/multiview')
|
268 |
+
cfg = parser.parse_args()
|
269 |
+
|
270 |
+
if cfg.num_views == 6:
|
271 |
+
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
|
272 |
+
else:
|
273 |
+
raise NotImplementedError(f"Number of views {cfg.num_views} not supported")
|
274 |
+
main(cfg)
|
infer_refine.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
import trimesh
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
import scipy
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from refine.mesh_refine import geo_refine
|
11 |
+
from refine.func import make_star_cameras_orthographic
|
12 |
+
from refine.render import NormalsRenderer, calc_vertex_normals
|
13 |
+
|
14 |
+
from pytorch3d.structures import Meshes
|
15 |
+
from sklearn.neighbors import KDTree
|
16 |
+
|
17 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
18 |
+
|
19 |
+
sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
|
20 |
+
generator = SamAutomaticMaskGenerator(
|
21 |
+
model=sam,
|
22 |
+
points_per_side=64,
|
23 |
+
pred_iou_thresh=0.80,
|
24 |
+
stability_score_thresh=0.92,
|
25 |
+
crop_n_layers=1,
|
26 |
+
crop_n_points_downscale_factor=2,
|
27 |
+
min_mask_region_area=100,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def fix_vert_color_glb(mesh_path):
|
32 |
+
from pygltflib import GLTF2, Material, PbrMetallicRoughness
|
33 |
+
obj1 = GLTF2().load(mesh_path)
|
34 |
+
obj1.meshes[0].primitives[0].material = 0
|
35 |
+
obj1.materials.append(Material(
|
36 |
+
pbrMetallicRoughness = PbrMetallicRoughness(
|
37 |
+
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
|
38 |
+
metallicFactor = 0.,
|
39 |
+
roughnessFactor = 1.0,
|
40 |
+
),
|
41 |
+
emissiveFactor = [0.0, 0.0, 0.0],
|
42 |
+
doubleSided = True,
|
43 |
+
))
|
44 |
+
obj1.save(mesh_path)
|
45 |
+
|
46 |
+
|
47 |
+
def srgb_to_linear(c_srgb):
|
48 |
+
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
|
49 |
+
return c_linear.clip(0, 1.)
|
50 |
+
|
51 |
+
|
52 |
+
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
|
53 |
+
# convert from pytorch3d meshes to trimesh mesh
|
54 |
+
vertices = meshes.verts_packed().cpu().float().numpy()
|
55 |
+
triangles = meshes.faces_packed().cpu().long().numpy()
|
56 |
+
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
|
57 |
+
if save_glb_path.endswith(".glb"):
|
58 |
+
# rotate 180 along +Y
|
59 |
+
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
|
60 |
+
|
61 |
+
if apply_sRGB_to_LinearRGB:
|
62 |
+
np_color = srgb_to_linear(np_color)
|
63 |
+
assert vertices.shape[0] == np_color.shape[0]
|
64 |
+
assert np_color.shape[1] == 3
|
65 |
+
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
|
66 |
+
np_color = np.clip(np_color, 0, 1)
|
67 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
|
68 |
+
mesh.remove_unreferenced_vertices()
|
69 |
+
# save mesh
|
70 |
+
mesh.export(save_glb_path)
|
71 |
+
if save_glb_path.endswith(".glb"):
|
72 |
+
fix_vert_color_glb(save_glb_path)
|
73 |
+
print(f"saving to {save_glb_path}")
|
74 |
+
|
75 |
+
|
76 |
+
def calc_horizontal_offset(target_img, source_img):
|
77 |
+
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
|
78 |
+
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
|
79 |
+
best_offset = -114514
|
80 |
+
for offset in range(-200, 200):
|
81 |
+
offset_mask = np.roll(source_mask, offset, axis=1)
|
82 |
+
overlap = (target_mask & offset_mask).sum()
|
83 |
+
if overlap > best_offset:
|
84 |
+
best_offset = overlap
|
85 |
+
best_offset_value = offset
|
86 |
+
return best_offset_value
|
87 |
+
|
88 |
+
|
89 |
+
def calc_horizontal_offset2(target_mask, source_img):
|
90 |
+
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
|
91 |
+
best_offset = -114514
|
92 |
+
for offset in range(-200, 200):
|
93 |
+
offset_mask = np.roll(source_mask, offset, axis=1)
|
94 |
+
overlap = (target_mask & offset_mask).sum()
|
95 |
+
if overlap > best_offset:
|
96 |
+
best_offset = overlap
|
97 |
+
best_offset_value = offset
|
98 |
+
return best_offset_value
|
99 |
+
|
100 |
+
|
101 |
+
def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
|
102 |
+
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
|
103 |
+
if normal_0 is not None and normal_1 is not None:
|
104 |
+
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
|
105 |
+
labeled_array, num_features = scipy.ndimage.label(distract_area)
|
106 |
+
results = []
|
107 |
+
|
108 |
+
random_sampled_points = []
|
109 |
+
|
110 |
+
for i in range(num_features + 1):
|
111 |
+
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
|
112 |
+
results.append((i, np.sum(labeled_array == i)))
|
113 |
+
# random sample a point in the area
|
114 |
+
points = np.argwhere(labeled_array == i)
|
115 |
+
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
|
116 |
+
|
117 |
+
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
|
118 |
+
distract_mask = np.zeros_like(distract_area)
|
119 |
+
distract_bbox = np.zeros_like(distract_area)
|
120 |
+
for i, _ in results:
|
121 |
+
distract_mask |= labeled_array == i
|
122 |
+
bbox = np.argwhere(labeled_array == i)
|
123 |
+
min_x, min_y = bbox.min(axis=0)
|
124 |
+
max_x, max_y = bbox.max(axis=0)
|
125 |
+
distract_bbox[min_x:max_x, min_y:max_y] = 1
|
126 |
+
|
127 |
+
points = np.array(random_sampled_points)[:, ::-1]
|
128 |
+
labels = np.ones(len(points), dtype=np.int32)
|
129 |
+
|
130 |
+
masks = generator.generate((color_1 * 255).astype(np.uint8))
|
131 |
+
|
132 |
+
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
|
133 |
+
|
134 |
+
final_mask = np.zeros_like(distract_mask)
|
135 |
+
for iii, mask in enumerate(masks):
|
136 |
+
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
|
137 |
+
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
|
138 |
+
total = mask['segmentation'].sum()
|
139 |
+
iou = intersection / total
|
140 |
+
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
|
141 |
+
outside_total = mask['segmentation'].sum()
|
142 |
+
outside_iou = outside_intersection / outside_total
|
143 |
+
if iou > ratio and outside_iou < outside_ratio:
|
144 |
+
final_mask |= mask['segmentation']
|
145 |
+
|
146 |
+
# calculate coverage
|
147 |
+
intersection = np.logical_and(final_mask, distract_mask).sum()
|
148 |
+
total = distract_mask.sum()
|
149 |
+
coverage = intersection / total
|
150 |
+
|
151 |
+
if coverage < 0.8:
|
152 |
+
# use original distract mask
|
153 |
+
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
|
154 |
+
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
155 |
+
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
|
156 |
+
for i in range(num_features_dilate + 1):
|
157 |
+
if np.sum(labeled_array_dilate == i) < 200:
|
158 |
+
final_mask[labeled_array_dilate == i] = 255
|
159 |
+
|
160 |
+
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
|
161 |
+
final_mask = final_mask > 127
|
162 |
+
|
163 |
+
return distract_mask, distract_bbox, random_sampled_points, final_mask
|
164 |
+
|
165 |
+
|
166 |
+
if __name__ == '__main__':
|
167 |
+
parser = argparse.ArgumentParser()
|
168 |
+
parser.add_argument('--input_mv_dir', type=str, default='result/multiview')
|
169 |
+
parser.add_argument('--input_obj_dir', type=str, default='result/slrm')
|
170 |
+
parser.add_argument('--output_dir', type=str, default='result/refined')
|
171 |
+
parser.add_argument('--outside_ratio', type=float, default=0.20)
|
172 |
+
parser.add_argument('--no_decompose', action='store_true')
|
173 |
+
args = parser.parse_args()
|
174 |
+
|
175 |
+
for test_idx in os.listdir(args.input_mv_dir):
|
176 |
+
mv_root_dir = os.path.join(args.input_mv_dir, test_idx)
|
177 |
+
obj_dir = os.path.join(args.input_obj_dir, test_idx)
|
178 |
+
|
179 |
+
fixed_v, fixed_f = None, None
|
180 |
+
flow_vert, flow_vector = None, None
|
181 |
+
last_colors, last_normals = None, None
|
182 |
+
last_front_color, last_front_normal = None, None
|
183 |
+
distract_mask = None
|
184 |
+
|
185 |
+
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
|
186 |
+
mv = mv[[4, 3, 2, 0, 6, 5]]
|
187 |
+
renderer = NormalsRenderer(mv,proj,(1024,1024))
|
188 |
+
|
189 |
+
if not args.no_decompose:
|
190 |
+
for name_idx, level in zip([3, 1, 2], [2, 1, 0]):
|
191 |
+
mesh = trimesh.load(obj_dir + f'_{name_idx}.obj')
|
192 |
+
new_mesh = mesh.split(only_watertight=False)
|
193 |
+
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
|
194 |
+
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
|
195 |
+
mesh_v, mesh_f = mesh.vertices, mesh.faces
|
196 |
+
|
197 |
+
if last_colors is None:
|
198 |
+
images = renderer.render(
|
199 |
+
torch.tensor(mesh_v, device='cuda').float(),
|
200 |
+
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
|
201 |
+
torch.tensor(mesh_f, device='cuda'),
|
202 |
+
)
|
203 |
+
mask = (images[..., 3] < 0.9).cpu().numpy()
|
204 |
+
|
205 |
+
colors, normals = [], []
|
206 |
+
for i in range(6):
|
207 |
+
color_path = os.path.join(mv_root_dir, f'level{level}', f'color_{i}.png')
|
208 |
+
normal_path = os.path.join(mv_root_dir, f'level{level}', f'normal_{i}.png')
|
209 |
+
color = cv2.imread(color_path)
|
210 |
+
normal = cv2.imread(normal_path)
|
211 |
+
color = color[..., ::-1]
|
212 |
+
normal = normal[..., ::-1]
|
213 |
+
|
214 |
+
if last_colors is not None:
|
215 |
+
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
|
216 |
+
# print('offset', i, offset)
|
217 |
+
else:
|
218 |
+
offset = calc_horizontal_offset2(mask[i], color)
|
219 |
+
# print('init offset', i, offset)
|
220 |
+
|
221 |
+
if offset != 0:
|
222 |
+
color = np.roll(color, offset, axis=1)
|
223 |
+
normal = np.roll(normal, offset, axis=1)
|
224 |
+
|
225 |
+
color = Image.fromarray(color)
|
226 |
+
normal = Image.fromarray(normal)
|
227 |
+
colors.append(color)
|
228 |
+
normals.append(normal)
|
229 |
+
|
230 |
+
if last_front_color is not None and level == 0:
|
231 |
+
original_mask, distract_bbox, _, distract_mask = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=args.outside_ratio)
|
232 |
+
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255)
|
233 |
+
else:
|
234 |
+
distract_mask = None
|
235 |
+
distract_bbox = None
|
236 |
+
|
237 |
+
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
|
238 |
+
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0
|
239 |
+
|
240 |
+
if last_colors is None:
|
241 |
+
from copy import deepcopy
|
242 |
+
last_colors, last_normals = deepcopy(colors), deepcopy(normals)
|
243 |
+
|
244 |
+
# my mesh flow weight by nearest vertexs
|
245 |
+
if fixed_v is not None and fixed_f is not None and level == 1:
|
246 |
+
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
|
247 |
+
|
248 |
+
fixed_v_cpu = fixed_v.cpu().numpy()
|
249 |
+
kdtree_anchor = KDTree(fixed_v_cpu)
|
250 |
+
kdtree_mesh_v = KDTree(mesh_v)
|
251 |
+
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
|
252 |
+
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
|
253 |
+
idx_anchor = idx_anchor.squeeze()
|
254 |
+
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
|
255 |
+
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
|
256 |
+
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
|
257 |
+
neighbor_dists[neighbor_dists > 0.06] = 114514.
|
258 |
+
neighbor_weights = torch.exp(-neighbor_dists * 1.)
|
259 |
+
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
|
260 |
+
anchors = fixed_v[idx_anchor] # V, 3
|
261 |
+
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
|
262 |
+
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
|
263 |
+
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
|
264 |
+
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
|
265 |
+
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
266 |
+
mesh_v += weighted_vec_anchor.cpu().numpy()
|
267 |
+
|
268 |
+
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
|
269 |
+
|
270 |
+
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
|
271 |
+
mesh_f = torch.tensor(mesh_f, device='cuda')
|
272 |
+
|
273 |
+
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)
|
274 |
+
|
275 |
+
# my mesh flow weight by nearest vertexs
|
276 |
+
try:
|
277 |
+
if fixed_v is not None and fixed_f is not None and level != 0:
|
278 |
+
new_mesh_v = new_mesh.verts_packed().cpu().numpy()
|
279 |
+
|
280 |
+
fixed_v_cpu = fixed_v.cpu().numpy()
|
281 |
+
kdtree_anchor = KDTree(fixed_v_cpu)
|
282 |
+
kdtree_mesh_v = KDTree(new_mesh_v)
|
283 |
+
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
|
284 |
+
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
|
285 |
+
idx_anchor = idx_anchor.squeeze()
|
286 |
+
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
|
287 |
+
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
|
288 |
+
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
|
289 |
+
neighbor_dists[neighbor_dists > 0.06] = 114514.
|
290 |
+
neighbor_weights = torch.exp(-neighbor_dists * 1.)
|
291 |
+
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
|
292 |
+
anchors = fixed_v[idx_anchor] # V, 3
|
293 |
+
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
|
294 |
+
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
|
295 |
+
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
|
296 |
+
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
|
297 |
+
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
|
298 |
+
new_mesh_v += weighted_vec_anchor.cpu().numpy()
|
299 |
+
|
300 |
+
# replace new_mesh verts with new_mesh_v
|
301 |
+
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
pass
|
305 |
+
|
306 |
+
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
|
307 |
+
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_{level}.glb', apply_sRGB_to_LinearRGB=False)
|
308 |
+
|
309 |
+
if fixed_v is None:
|
310 |
+
fixed_v, fixed_f = simp_v, simp_f
|
311 |
+
else:
|
312 |
+
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
|
313 |
+
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
|
314 |
+
|
315 |
+
|
316 |
+
else:
|
317 |
+
mesh = trimesh.load(obj_dir + f'_0.obj')
|
318 |
+
mesh_v, mesh_f = mesh.vertices, mesh.faces
|
319 |
+
|
320 |
+
images = renderer.render(
|
321 |
+
torch.tensor(mesh_v, device='cuda').float(),
|
322 |
+
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
|
323 |
+
torch.tensor(mesh_f, device='cuda'),
|
324 |
+
)
|
325 |
+
mask = (images[..., 3] < 0.9).cpu().numpy()
|
326 |
+
|
327 |
+
colors, normals = [], []
|
328 |
+
for i in range(6):
|
329 |
+
color_path = os.path.join(mv_root_dir, f'level0', f'color_{i}.png')
|
330 |
+
normal_path = os.path.join(mv_root_dir, f'level0', f'normal_{i}.png')
|
331 |
+
color = cv2.imread(color_path)
|
332 |
+
normal = cv2.imread(normal_path)
|
333 |
+
color = color[..., ::-1]
|
334 |
+
normal = normal[..., ::-1]
|
335 |
+
|
336 |
+
offset = calc_horizontal_offset2(mask[i], color)
|
337 |
+
|
338 |
+
if offset != 0:
|
339 |
+
color = np.roll(color, offset, axis=1)
|
340 |
+
normal = np.roll(normal, offset, axis=1)
|
341 |
+
|
342 |
+
color = Image.fromarray(color)
|
343 |
+
normal = Image.fromarray(normal)
|
344 |
+
colors.append(color)
|
345 |
+
normals.append(normal)
|
346 |
+
|
347 |
+
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
|
348 |
+
mesh_f = torch.tensor(mesh_f, device='cuda')
|
349 |
+
|
350 |
+
new_mesh, _, _ = geo_refine(mesh_v, mesh_f, colors, normals, no_decompose=True, expansion_weight=0.)
|
351 |
+
|
352 |
+
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
|
353 |
+
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_nodecomp.glb', apply_sRGB_to_LinearRGB=False)
|
infer_slrm.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import glob
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import v2
|
10 |
+
from pytorch_lightning import seed_everything
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
from slrm.utils.train_util import instantiate_from_config
|
15 |
+
from slrm.utils.camera_util import (
|
16 |
+
FOV_to_intrinsics,
|
17 |
+
get_circular_camera_poses,
|
18 |
+
)
|
19 |
+
from slrm.utils.mesh_util import save_obj, save_glb
|
20 |
+
from slrm.utils.infer_util import images_to_video
|
21 |
+
|
22 |
+
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict
|
23 |
+
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
27 |
+
"""
|
28 |
+
Get the rendering camera parameters.
|
29 |
+
"""
|
30 |
+
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
31 |
+
if is_flexicubes:
|
32 |
+
cameras = torch.linalg.inv(c2ws)
|
33 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
34 |
+
else:
|
35 |
+
extrinsics = c2ws.flatten(-2)
|
36 |
+
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
37 |
+
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
38 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
39 |
+
return cameras
|
40 |
+
|
41 |
+
|
42 |
+
def images_to_video(images, output_dir, fps=30):
|
43 |
+
# images: (N, C, H, W)
|
44 |
+
os.makedirs(os.path.dirname(output_dir), exist_ok=True)
|
45 |
+
frames = []
|
46 |
+
for i in range(images.shape[0]):
|
47 |
+
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
48 |
+
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
49 |
+
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
50 |
+
assert frame.min() >= 0 and frame.max() <= 255, \
|
51 |
+
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
52 |
+
frames.append(frame)
|
53 |
+
imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264')
|
54 |
+
|
55 |
+
|
56 |
+
###############################################################################
|
57 |
+
# Configuration.
|
58 |
+
###############################################################################
|
59 |
+
|
60 |
+
seed_everything(0)
|
61 |
+
|
62 |
+
config_path = 'configs/mesh-slrm-infer.yaml'
|
63 |
+
config = OmegaConf.load(config_path)
|
64 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
65 |
+
model_config = config.model_config
|
66 |
+
infer_config = config.infer_config
|
67 |
+
|
68 |
+
IS_FLEXICUBES = True if config_name.startswith('mesh') else False
|
69 |
+
|
70 |
+
device = torch.device('cuda')
|
71 |
+
|
72 |
+
# load reconstruction model
|
73 |
+
print('Loading reconstruction model ...')
|
74 |
+
model = instantiate_from_config(model_config)
|
75 |
+
state_dict = torch.load(infer_config.model_path, map_location='cpu')
|
76 |
+
model.load_state_dict(state_dict, strict=False)
|
77 |
+
|
78 |
+
model = model.to(device)
|
79 |
+
if IS_FLEXICUBES:
|
80 |
+
model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho)
|
81 |
+
model = model.eval()
|
82 |
+
|
83 |
+
print('Loading Finished!')
|
84 |
+
|
85 |
+
def make_mesh(mesh_fpath, planes, level=None):
|
86 |
+
|
87 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
88 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
89 |
+
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
# get mesh
|
93 |
+
mesh_out = model.extract_mesh(
|
94 |
+
planes,
|
95 |
+
use_texture_map=False,
|
96 |
+
levels=torch.tensor([level]).to(device),
|
97 |
+
**infer_config,
|
98 |
+
)
|
99 |
+
|
100 |
+
vertices, faces, vertex_colors = mesh_out
|
101 |
+
vertices = vertices[:, [1, 2, 0]]
|
102 |
+
|
103 |
+
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
104 |
+
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
105 |
+
|
106 |
+
return mesh_fpath, mesh_glb_fpath
|
107 |
+
|
108 |
+
|
109 |
+
def make3d(images, name, output_dir):
|
110 |
+
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
|
111 |
+
|
112 |
+
render_cameras = get_render_cameras(
|
113 |
+
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
|
114 |
+
|
115 |
+
images = images.unsqueeze(0).to(device)
|
116 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
117 |
+
|
118 |
+
mesh_fpath = os.path.join(output_dir, f"{name}.obj")
|
119 |
+
|
120 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
121 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
122 |
+
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
123 |
+
|
124 |
+
with torch.no_grad():
|
125 |
+
# get triplane
|
126 |
+
planes = model.forward_planes(images, input_cameras.float())
|
127 |
+
|
128 |
+
# get video
|
129 |
+
chunk_size = 20 if IS_FLEXICUBES else 1
|
130 |
+
render_size = 512
|
131 |
+
|
132 |
+
frames = [ [] for _ in range(4) ]
|
133 |
+
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
134 |
+
if IS_FLEXICUBES:
|
135 |
+
frame = model.forward_geometry_separate(
|
136 |
+
planes,
|
137 |
+
render_cameras[:, i:i+chunk_size],
|
138 |
+
render_size=render_size,
|
139 |
+
levels=torch.tensor([0]).to(device),
|
140 |
+
)['imgs']
|
141 |
+
for j in range(4):
|
142 |
+
frames[j].append(frame[j])
|
143 |
+
else:
|
144 |
+
frame = model.synthesizer(
|
145 |
+
planes,
|
146 |
+
cameras=render_cameras[:, i:i+chunk_size],
|
147 |
+
render_size=render_size,
|
148 |
+
)['images_rgb']
|
149 |
+
frames.append(frame)
|
150 |
+
|
151 |
+
for j in range(4):
|
152 |
+
frames[j] = torch.cat(frames[j], dim=1)
|
153 |
+
video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4')
|
154 |
+
images_to_video(
|
155 |
+
frames[j][0],
|
156 |
+
video_fpath_j,
|
157 |
+
fps=30,
|
158 |
+
)
|
159 |
+
|
160 |
+
_, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
|
161 |
+
|
162 |
+
return video_fpath, mesh_fpath, mesh_glb_fpath
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == '__main__':
|
166 |
+
import argparse
|
167 |
+
parser = argparse.ArgumentParser()
|
168 |
+
parser.add_argument('--input_dir', type=str, default="result/multiview")
|
169 |
+
parser.add_argument('--output_dir', type=str, default="result/slrm")
|
170 |
+
args = parser.parse_args()
|
171 |
+
|
172 |
+
paths = glob.glob(args.input_dir + '/*')
|
173 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
174 |
+
|
175 |
+
def load_rgb(path):
|
176 |
+
img = plt.imread(path)
|
177 |
+
img = Image.fromarray(np.uint8(img * 255.))
|
178 |
+
return img
|
179 |
+
|
180 |
+
for path in tqdm(paths):
|
181 |
+
name = path.split('/')[-1]
|
182 |
+
index_targets = [
|
183 |
+
'level0/color_0.png',
|
184 |
+
'level0/color_1.png',
|
185 |
+
'level0/color_2.png',
|
186 |
+
'level0/color_3.png',
|
187 |
+
'level0/color_4.png',
|
188 |
+
'level0/color_5.png',
|
189 |
+
]
|
190 |
+
imgs = []
|
191 |
+
for index_target in index_targets:
|
192 |
+
img = load_rgb(os.path.join(path, index_target))
|
193 |
+
imgs.append(img)
|
194 |
+
|
195 |
+
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
|
196 |
+
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
|
197 |
+
|
198 |
+
video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir)
|
199 |
+
|
input_cases/1.png
ADDED
![]() |
input_cases/2.png
ADDED
![]() |
input_cases/3.png
ADDED
![]() |
input_cases/4.png
ADDED
![]() |
input_cases/ayaka.png
ADDED
![]() |
input_cases/firefly2.png
ADDED
![]() |
input_cases_apose/1.png
ADDED
![]() |
input_cases_apose/2.png
ADDED
![]() |
input_cases_apose/3.png
ADDED
![]() |
input_cases_apose/4.png
ADDED
![]() |
input_cases_apose/ayaka.png
ADDED
![]() |
input_cases_apose/belle.png
ADDED
![]() |
input_cases_apose/firefly.png
ADDED
![]() |
multiview/__init__.py
ADDED
File without changes
|
multiview/fixed_prompt_embeds_6view/clr_embeds.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e51666588d0f075e031262744d371e12076160231aab19a531dbf7ab976e4d
|
3 |
+
size 946932
|
multiview/fixed_prompt_embeds_6view/normal_embeds.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53dfcd17f62fbfd8aeba60b1b05fa7559d72179738fd048e2ac1d53e5be5ed9d
|
3 |
+
size 946941
|
multiview/models/transformer_mv2d_image.py
ADDED
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange, repeat
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
|
35 |
+
|
36 |
+
if is_xformers_available():
|
37 |
+
import xformers
|
38 |
+
import xformers.ops
|
39 |
+
else:
|
40 |
+
xformers = None
|
41 |
+
|
42 |
+
def my_repeat(tensor, num_repeats):
|
43 |
+
"""
|
44 |
+
Repeat a tensor along a given dimension
|
45 |
+
"""
|
46 |
+
if len(tensor.shape) == 3:
|
47 |
+
return repeat(tensor, "b d c -> (b v) d c", v=num_repeats)
|
48 |
+
elif len(tensor.shape) == 4:
|
49 |
+
return repeat(tensor, "a b d c -> (a v) b d c", v=num_repeats)
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
54 |
+
"""
|
55 |
+
The output of [`Transformer2DModel`].
|
56 |
+
|
57 |
+
Args:
|
58 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
59 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
60 |
+
distributions for the unnoised latent pixels.
|
61 |
+
"""
|
62 |
+
|
63 |
+
sample: torch.FloatTensor
|
64 |
+
|
65 |
+
|
66 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
67 |
+
"""
|
68 |
+
A 2D Transformer model for image-like data.
|
69 |
+
|
70 |
+
Parameters:
|
71 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
72 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
73 |
+
in_channels (`int`, *optional*):
|
74 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
75 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
76 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
77 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
78 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
79 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
80 |
+
num_vector_embeds (`int`, *optional*):
|
81 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
82 |
+
Includes the class for the masked latent pixel.
|
83 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
84 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
85 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
86 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
87 |
+
added to the hidden states.
|
88 |
+
|
89 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
90 |
+
attention_bias (`bool`, *optional*):
|
91 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
92 |
+
"""
|
93 |
+
|
94 |
+
@register_to_config
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
num_attention_heads: int = 16,
|
98 |
+
attention_head_dim: int = 88,
|
99 |
+
in_channels: Optional[int] = None,
|
100 |
+
out_channels: Optional[int] = None,
|
101 |
+
num_layers: int = 1,
|
102 |
+
dropout: float = 0.0,
|
103 |
+
norm_num_groups: int = 32,
|
104 |
+
cross_attention_dim: Optional[int] = None,
|
105 |
+
attention_bias: bool = False,
|
106 |
+
sample_size: Optional[int] = None,
|
107 |
+
num_vector_embeds: Optional[int] = None,
|
108 |
+
patch_size: Optional[int] = None,
|
109 |
+
activation_fn: str = "geglu",
|
110 |
+
num_embeds_ada_norm: Optional[int] = None,
|
111 |
+
use_linear_projection: bool = False,
|
112 |
+
only_cross_attention: bool = False,
|
113 |
+
upcast_attention: bool = False,
|
114 |
+
norm_type: str = "layer_norm",
|
115 |
+
norm_elementwise_affine: bool = True,
|
116 |
+
num_views: int = 1,
|
117 |
+
cd_attention_last: bool=False,
|
118 |
+
cd_attention_mid: bool=False,
|
119 |
+
multiview_attention: bool=True,
|
120 |
+
sparse_mv_attention: bool = False,
|
121 |
+
mvcd_attention: bool=False
|
122 |
+
):
|
123 |
+
super().__init__()
|
124 |
+
self.use_linear_projection = use_linear_projection
|
125 |
+
self.num_attention_heads = num_attention_heads
|
126 |
+
self.attention_head_dim = attention_head_dim
|
127 |
+
inner_dim = num_attention_heads * attention_head_dim
|
128 |
+
|
129 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
130 |
+
# Define whether input is continuous or discrete depending on configuration
|
131 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
132 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
133 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
134 |
+
|
135 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
136 |
+
deprecation_message = (
|
137 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
138 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
139 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
140 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
141 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
142 |
+
)
|
143 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
144 |
+
norm_type = "ada_norm"
|
145 |
+
|
146 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
147 |
+
raise ValueError(
|
148 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
149 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
150 |
+
)
|
151 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
152 |
+
raise ValueError(
|
153 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
154 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
155 |
+
)
|
156 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
157 |
+
raise ValueError(
|
158 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
159 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
160 |
+
)
|
161 |
+
|
162 |
+
# 2. Define input layers
|
163 |
+
if self.is_input_continuous:
|
164 |
+
self.in_channels = in_channels
|
165 |
+
|
166 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
167 |
+
if use_linear_projection:
|
168 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
169 |
+
else:
|
170 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
171 |
+
elif self.is_input_vectorized:
|
172 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
173 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
174 |
+
|
175 |
+
self.height = sample_size
|
176 |
+
self.width = sample_size
|
177 |
+
self.num_vector_embeds = num_vector_embeds
|
178 |
+
self.num_latent_pixels = self.height * self.width
|
179 |
+
|
180 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
181 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
182 |
+
)
|
183 |
+
elif self.is_input_patches:
|
184 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
185 |
+
|
186 |
+
self.height = sample_size
|
187 |
+
self.width = sample_size
|
188 |
+
|
189 |
+
self.patch_size = patch_size
|
190 |
+
self.pos_embed = PatchEmbed(
|
191 |
+
height=sample_size,
|
192 |
+
width=sample_size,
|
193 |
+
patch_size=patch_size,
|
194 |
+
in_channels=in_channels,
|
195 |
+
embed_dim=inner_dim,
|
196 |
+
)
|
197 |
+
|
198 |
+
# 3. Define transformers blocks
|
199 |
+
self.transformer_blocks = nn.ModuleList(
|
200 |
+
[
|
201 |
+
BasicMVTransformerBlock(
|
202 |
+
inner_dim,
|
203 |
+
num_attention_heads,
|
204 |
+
attention_head_dim,
|
205 |
+
dropout=dropout,
|
206 |
+
cross_attention_dim=cross_attention_dim,
|
207 |
+
activation_fn=activation_fn,
|
208 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
209 |
+
attention_bias=attention_bias,
|
210 |
+
only_cross_attention=only_cross_attention,
|
211 |
+
upcast_attention=upcast_attention,
|
212 |
+
norm_type=norm_type,
|
213 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
214 |
+
num_views=num_views,
|
215 |
+
cd_attention_last=cd_attention_last,
|
216 |
+
cd_attention_mid=cd_attention_mid,
|
217 |
+
multiview_attention=multiview_attention,
|
218 |
+
sparse_mv_attention=sparse_mv_attention,
|
219 |
+
mvcd_attention=mvcd_attention
|
220 |
+
)
|
221 |
+
for d in range(num_layers)
|
222 |
+
]
|
223 |
+
)
|
224 |
+
|
225 |
+
# 4. Define output layers
|
226 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
227 |
+
if self.is_input_continuous:
|
228 |
+
# TODO: should use out_channels for continuous projections
|
229 |
+
if use_linear_projection:
|
230 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
231 |
+
else:
|
232 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
233 |
+
elif self.is_input_vectorized:
|
234 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
235 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
236 |
+
elif self.is_input_patches:
|
237 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
238 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
239 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
hidden_states: torch.Tensor,
|
244 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
245 |
+
timestep: Optional[torch.LongTensor] = None,
|
246 |
+
class_labels: Optional[torch.LongTensor] = None,
|
247 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
249 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
250 |
+
return_dict: bool = True,
|
251 |
+
):
|
252 |
+
"""
|
253 |
+
The [`Transformer2DModel`] forward method.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
257 |
+
Input `hidden_states`.
|
258 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
259 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
260 |
+
self-attention.
|
261 |
+
timestep ( `torch.LongTensor`, *optional*):
|
262 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
263 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
264 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
265 |
+
`AdaLayerZeroNorm`.
|
266 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
267 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
268 |
+
|
269 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
270 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
271 |
+
|
272 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
273 |
+
above. This bias will be added to the cross-attention scores.
|
274 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
275 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
276 |
+
tuple.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
280 |
+
`tuple` where the first element is the sample tensor.
|
281 |
+
"""
|
282 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
283 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
284 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
285 |
+
# expects mask of shape:
|
286 |
+
# [batch, key_tokens]
|
287 |
+
# adds singleton query_tokens dimension:
|
288 |
+
# [batch, 1, key_tokens]
|
289 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
290 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
291 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
292 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
293 |
+
# assume that mask is expressed as:
|
294 |
+
# (1 = keep, 0 = discard)
|
295 |
+
# convert mask into a bias that can be added to attention scores:
|
296 |
+
# (keep = +0, discard = -10000.0)
|
297 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
298 |
+
attention_mask = attention_mask.unsqueeze(1)
|
299 |
+
|
300 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
301 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
302 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
303 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
304 |
+
|
305 |
+
# 1. Input
|
306 |
+
if self.is_input_continuous:
|
307 |
+
batch, _, height, width = hidden_states.shape
|
308 |
+
residual = hidden_states
|
309 |
+
|
310 |
+
hidden_states = self.norm(hidden_states)
|
311 |
+
if not self.use_linear_projection:
|
312 |
+
hidden_states = self.proj_in(hidden_states)
|
313 |
+
inner_dim = hidden_states.shape[1]
|
314 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
315 |
+
else:
|
316 |
+
inner_dim = hidden_states.shape[1]
|
317 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
318 |
+
hidden_states = self.proj_in(hidden_states)
|
319 |
+
elif self.is_input_vectorized:
|
320 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
321 |
+
elif self.is_input_patches:
|
322 |
+
hidden_states = self.pos_embed(hidden_states)
|
323 |
+
|
324 |
+
# 2. Blocks
|
325 |
+
for block in self.transformer_blocks:
|
326 |
+
hidden_states = block(
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=attention_mask,
|
329 |
+
encoder_hidden_states=encoder_hidden_states,
|
330 |
+
encoder_attention_mask=encoder_attention_mask,
|
331 |
+
timestep=timestep,
|
332 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
333 |
+
class_labels=class_labels,
|
334 |
+
)
|
335 |
+
|
336 |
+
# 3. Output
|
337 |
+
if self.is_input_continuous:
|
338 |
+
if not self.use_linear_projection:
|
339 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
340 |
+
hidden_states = self.proj_out(hidden_states)
|
341 |
+
else:
|
342 |
+
hidden_states = self.proj_out(hidden_states)
|
343 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
344 |
+
|
345 |
+
output = hidden_states + residual
|
346 |
+
elif self.is_input_vectorized:
|
347 |
+
hidden_states = self.norm_out(hidden_states)
|
348 |
+
logits = self.out(hidden_states)
|
349 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
350 |
+
logits = logits.permute(0, 2, 1)
|
351 |
+
|
352 |
+
# log(p(x_0))
|
353 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
354 |
+
elif self.is_input_patches:
|
355 |
+
# TODO: cleanup!
|
356 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
357 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
358 |
+
)
|
359 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
360 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
361 |
+
hidden_states = self.proj_out_2(hidden_states)
|
362 |
+
|
363 |
+
# unpatchify
|
364 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
365 |
+
hidden_states = hidden_states.reshape(
|
366 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
367 |
+
)
|
368 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
369 |
+
output = hidden_states.reshape(
|
370 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
371 |
+
)
|
372 |
+
|
373 |
+
if not return_dict:
|
374 |
+
return (output,)
|
375 |
+
|
376 |
+
return TransformerMV2DModelOutput(sample=output)
|
377 |
+
|
378 |
+
|
379 |
+
@maybe_allow_in_graph
|
380 |
+
class BasicMVTransformerBlock(nn.Module):
|
381 |
+
r"""
|
382 |
+
A basic Transformer block.
|
383 |
+
|
384 |
+
Parameters:
|
385 |
+
dim (`int`): The number of channels in the input and output.
|
386 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
387 |
+
attention_head_dim (`int`): The number of channels in each head.
|
388 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
389 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
390 |
+
only_cross_attention (`bool`, *optional*):
|
391 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
392 |
+
double_self_attention (`bool`, *optional*):
|
393 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
394 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
395 |
+
num_embeds_ada_norm (:
|
396 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
397 |
+
attention_bias (:
|
398 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
399 |
+
"""
|
400 |
+
|
401 |
+
def __init__(
|
402 |
+
self,
|
403 |
+
dim: int,
|
404 |
+
num_attention_heads: int,
|
405 |
+
attention_head_dim: int,
|
406 |
+
dropout=0.0,
|
407 |
+
cross_attention_dim: Optional[int] = None,
|
408 |
+
activation_fn: str = "geglu",
|
409 |
+
num_embeds_ada_norm: Optional[int] = None,
|
410 |
+
attention_bias: bool = False,
|
411 |
+
only_cross_attention: bool = False,
|
412 |
+
double_self_attention: bool = False,
|
413 |
+
upcast_attention: bool = False,
|
414 |
+
norm_elementwise_affine: bool = True,
|
415 |
+
norm_type: str = "layer_norm",
|
416 |
+
final_dropout: bool = False,
|
417 |
+
num_views: int = 1,
|
418 |
+
cd_attention_last: bool = False,
|
419 |
+
cd_attention_mid: bool = False,
|
420 |
+
multiview_attention: bool = True,
|
421 |
+
sparse_mv_attention: bool = False,
|
422 |
+
mvcd_attention: bool = False
|
423 |
+
):
|
424 |
+
super().__init__()
|
425 |
+
self.only_cross_attention = only_cross_attention
|
426 |
+
|
427 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
428 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
429 |
+
|
430 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
431 |
+
raise ValueError(
|
432 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
433 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
434 |
+
)
|
435 |
+
|
436 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
437 |
+
# 1. Self-Attn
|
438 |
+
if self.use_ada_layer_norm:
|
439 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
440 |
+
elif self.use_ada_layer_norm_zero:
|
441 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
442 |
+
else:
|
443 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
444 |
+
|
445 |
+
self.multiview_attention = multiview_attention
|
446 |
+
self.sparse_mv_attention = sparse_mv_attention
|
447 |
+
self.mvcd_attention = mvcd_attention
|
448 |
+
|
449 |
+
self.attn1 = CustomAttention(
|
450 |
+
query_dim=dim,
|
451 |
+
heads=num_attention_heads,
|
452 |
+
dim_head=attention_head_dim,
|
453 |
+
dropout=dropout,
|
454 |
+
bias=attention_bias,
|
455 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
456 |
+
upcast_attention=upcast_attention,
|
457 |
+
processor=MVAttnProcessor()
|
458 |
+
)
|
459 |
+
|
460 |
+
# 2. Cross-Attn
|
461 |
+
if cross_attention_dim is not None or double_self_attention:
|
462 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
463 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
464 |
+
# the second cross attention block.
|
465 |
+
self.norm2 = (
|
466 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
467 |
+
if self.use_ada_layer_norm
|
468 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
469 |
+
)
|
470 |
+
self.attn2 = Attention(
|
471 |
+
query_dim=dim,
|
472 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
473 |
+
heads=num_attention_heads,
|
474 |
+
dim_head=attention_head_dim,
|
475 |
+
dropout=dropout,
|
476 |
+
bias=attention_bias,
|
477 |
+
upcast_attention=upcast_attention,
|
478 |
+
) # is self-attn if encoder_hidden_states is none
|
479 |
+
else:
|
480 |
+
self.norm2 = None
|
481 |
+
self.attn2 = None
|
482 |
+
|
483 |
+
# 3. Feed-forward
|
484 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
485 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
486 |
+
|
487 |
+
# let chunk size default to None
|
488 |
+
self._chunk_size = None
|
489 |
+
self._chunk_dim = 0
|
490 |
+
|
491 |
+
self.num_views = num_views
|
492 |
+
|
493 |
+
self.cd_attention_last = cd_attention_last
|
494 |
+
|
495 |
+
if self.cd_attention_last:
|
496 |
+
# Joint task -Attn
|
497 |
+
self.attn_joint_last = CustomJointAttention(
|
498 |
+
query_dim=dim,
|
499 |
+
heads=num_attention_heads,
|
500 |
+
dim_head=attention_head_dim,
|
501 |
+
dropout=dropout,
|
502 |
+
bias=attention_bias,
|
503 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
504 |
+
upcast_attention=upcast_attention,
|
505 |
+
processor=JointAttnProcessor()
|
506 |
+
)
|
507 |
+
nn.init.zeros_(self.attn_joint_last.to_out[0].weight.data)
|
508 |
+
self.norm_joint_last = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
509 |
+
|
510 |
+
|
511 |
+
self.cd_attention_mid = cd_attention_mid
|
512 |
+
|
513 |
+
if self.cd_attention_mid:
|
514 |
+
print("cross-domain attn in the middle")
|
515 |
+
# Joint task -Attn
|
516 |
+
self.attn_joint_mid = CustomJointAttention(
|
517 |
+
query_dim=dim,
|
518 |
+
heads=num_attention_heads,
|
519 |
+
dim_head=attention_head_dim,
|
520 |
+
dropout=dropout,
|
521 |
+
bias=attention_bias,
|
522 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
523 |
+
upcast_attention=upcast_attention,
|
524 |
+
processor=JointAttnProcessor()
|
525 |
+
)
|
526 |
+
nn.init.zeros_(self.attn_joint_mid.to_out[0].weight.data)
|
527 |
+
self.norm_joint_mid = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
528 |
+
|
529 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
530 |
+
# Sets chunk feed-forward
|
531 |
+
self._chunk_size = chunk_size
|
532 |
+
self._chunk_dim = dim
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states: torch.FloatTensor,
|
537 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
538 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
539 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
540 |
+
timestep: Optional[torch.LongTensor] = None,
|
541 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
542 |
+
class_labels: Optional[torch.LongTensor] = None,
|
543 |
+
):
|
544 |
+
assert attention_mask is None # not supported yet
|
545 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
546 |
+
# 1. Self-Attention
|
547 |
+
if self.use_ada_layer_norm:
|
548 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
549 |
+
elif self.use_ada_layer_norm_zero:
|
550 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
551 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
norm_hidden_states = self.norm1(hidden_states)
|
555 |
+
|
556 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
557 |
+
|
558 |
+
attn_output = self.attn1(
|
559 |
+
norm_hidden_states,
|
560 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
561 |
+
attention_mask=attention_mask,
|
562 |
+
num_views=self.num_views,
|
563 |
+
multiview_attention=self.multiview_attention,
|
564 |
+
sparse_mv_attention=self.sparse_mv_attention,
|
565 |
+
mvcd_attention=self.mvcd_attention,
|
566 |
+
**cross_attention_kwargs,
|
567 |
+
)
|
568 |
+
|
569 |
+
|
570 |
+
if self.use_ada_layer_norm_zero:
|
571 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
572 |
+
hidden_states = attn_output + hidden_states
|
573 |
+
|
574 |
+
# joint attention twice
|
575 |
+
if self.cd_attention_mid:
|
576 |
+
norm_hidden_states = (
|
577 |
+
self.norm_joint_mid(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_mid(hidden_states)
|
578 |
+
)
|
579 |
+
hidden_states = self.attn_joint_mid(norm_hidden_states) + hidden_states
|
580 |
+
|
581 |
+
# 2. Cross-Attention
|
582 |
+
if self.attn2 is not None:
|
583 |
+
norm_hidden_states = (
|
584 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
585 |
+
)
|
586 |
+
|
587 |
+
attn_output = self.attn2(
|
588 |
+
norm_hidden_states,
|
589 |
+
encoder_hidden_states=encoder_hidden_states,
|
590 |
+
attention_mask=encoder_attention_mask,
|
591 |
+
**cross_attention_kwargs,
|
592 |
+
)
|
593 |
+
hidden_states = attn_output + hidden_states
|
594 |
+
|
595 |
+
# 3. Feed-forward
|
596 |
+
norm_hidden_states = self.norm3(hidden_states)
|
597 |
+
|
598 |
+
if self.use_ada_layer_norm_zero:
|
599 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
600 |
+
|
601 |
+
if self._chunk_size is not None:
|
602 |
+
# "feed_forward_chunk_size" can be used to save memory
|
603 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
604 |
+
raise ValueError(
|
605 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
606 |
+
)
|
607 |
+
|
608 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
609 |
+
ff_output = torch.cat(
|
610 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
611 |
+
dim=self._chunk_dim,
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
ff_output = self.ff(norm_hidden_states)
|
615 |
+
|
616 |
+
if self.use_ada_layer_norm_zero:
|
617 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
618 |
+
|
619 |
+
hidden_states = ff_output + hidden_states
|
620 |
+
|
621 |
+
if self.cd_attention_last:
|
622 |
+
norm_hidden_states = (
|
623 |
+
self.norm_joint_last(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_last(hidden_states)
|
624 |
+
)
|
625 |
+
hidden_states = self.attn_joint_last(norm_hidden_states) + hidden_states
|
626 |
+
|
627 |
+
return hidden_states
|
628 |
+
|
629 |
+
|
630 |
+
class CustomAttention(Attention):
|
631 |
+
def set_use_memory_efficient_attention_xformers(
|
632 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
633 |
+
):
|
634 |
+
processor = XFormersMVAttnProcessor()
|
635 |
+
self.set_processor(processor)
|
636 |
+
# print("using xformers attention processor")
|
637 |
+
|
638 |
+
|
639 |
+
class CustomJointAttention(Attention):
|
640 |
+
def set_use_memory_efficient_attention_xformers(
|
641 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
642 |
+
):
|
643 |
+
processor = XFormersJointAttnProcessor()
|
644 |
+
self.set_processor(processor)
|
645 |
+
# print("using xformers attention processor")
|
646 |
+
|
647 |
+
class MVAttnProcessor:
|
648 |
+
r"""
|
649 |
+
Default processor for performing attention-related computations.
|
650 |
+
"""
|
651 |
+
|
652 |
+
def __call__(
|
653 |
+
self,
|
654 |
+
attn: Attention,
|
655 |
+
hidden_states,
|
656 |
+
encoder_hidden_states=None,
|
657 |
+
attention_mask=None,
|
658 |
+
temb=None,
|
659 |
+
num_views=1,
|
660 |
+
multiview_attention=True
|
661 |
+
):
|
662 |
+
residual = hidden_states
|
663 |
+
|
664 |
+
if attn.spatial_norm is not None:
|
665 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
666 |
+
|
667 |
+
input_ndim = hidden_states.ndim
|
668 |
+
|
669 |
+
if input_ndim == 4:
|
670 |
+
batch_size, channel, height, width = hidden_states.shape
|
671 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
672 |
+
|
673 |
+
batch_size, sequence_length, _ = (
|
674 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
675 |
+
)
|
676 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
677 |
+
|
678 |
+
if attn.group_norm is not None:
|
679 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
680 |
+
|
681 |
+
query = attn.to_q(hidden_states)
|
682 |
+
|
683 |
+
if encoder_hidden_states is None:
|
684 |
+
encoder_hidden_states = hidden_states
|
685 |
+
elif attn.norm_cross:
|
686 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
687 |
+
|
688 |
+
key = attn.to_k(encoder_hidden_states)
|
689 |
+
value = attn.to_v(encoder_hidden_states)
|
690 |
+
|
691 |
+
# multi-view self-attention
|
692 |
+
if multiview_attention:
|
693 |
+
if num_views <= 6:
|
694 |
+
# after use xformer; possible to train with 6 views
|
695 |
+
key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
696 |
+
value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
697 |
+
else: # apply sparse attention
|
698 |
+
raise NotImplementedError("sparse attention not implemented yet.")
|
699 |
+
|
700 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
701 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
702 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
703 |
+
|
704 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
705 |
+
hidden_states = torch.bmm(attention_probs, value)
|
706 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
707 |
+
|
708 |
+
# linear proj
|
709 |
+
hidden_states = attn.to_out[0](hidden_states)
|
710 |
+
# dropout
|
711 |
+
hidden_states = attn.to_out[1](hidden_states)
|
712 |
+
|
713 |
+
if input_ndim == 4:
|
714 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
715 |
+
|
716 |
+
if attn.residual_connection:
|
717 |
+
hidden_states = hidden_states + residual
|
718 |
+
|
719 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
720 |
+
|
721 |
+
return hidden_states
|
722 |
+
|
723 |
+
|
724 |
+
class XFormersMVAttnProcessor:
|
725 |
+
r"""
|
726 |
+
Default processor for performing attention-related computations.
|
727 |
+
"""
|
728 |
+
|
729 |
+
def __call__(
|
730 |
+
self,
|
731 |
+
attn: Attention,
|
732 |
+
hidden_states,
|
733 |
+
encoder_hidden_states=None,
|
734 |
+
attention_mask=None,
|
735 |
+
temb=None,
|
736 |
+
num_views=1.,
|
737 |
+
multiview_attention=True,
|
738 |
+
sparse_mv_attention=False,
|
739 |
+
mvcd_attention=False,
|
740 |
+
):
|
741 |
+
residual = hidden_states
|
742 |
+
|
743 |
+
if attn.spatial_norm is not None:
|
744 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
745 |
+
|
746 |
+
input_ndim = hidden_states.ndim
|
747 |
+
|
748 |
+
if input_ndim == 4:
|
749 |
+
batch_size, channel, height, width = hidden_states.shape
|
750 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
751 |
+
|
752 |
+
batch_size, sequence_length, _ = (
|
753 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
754 |
+
)
|
755 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
756 |
+
|
757 |
+
# from yuancheng; here attention_mask is None
|
758 |
+
if attention_mask is not None:
|
759 |
+
# expand our mask's singleton query_tokens dimension:
|
760 |
+
# [batch*heads, 1, key_tokens] ->
|
761 |
+
# [batch*heads, query_tokens, key_tokens]
|
762 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
763 |
+
# [batch*heads, query_tokens, key_tokens]
|
764 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
765 |
+
_, query_tokens, _ = hidden_states.shape
|
766 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
767 |
+
|
768 |
+
if attn.group_norm is not None:
|
769 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
770 |
+
|
771 |
+
query = attn.to_q(hidden_states)
|
772 |
+
|
773 |
+
if encoder_hidden_states is None:
|
774 |
+
encoder_hidden_states = hidden_states
|
775 |
+
elif attn.norm_cross:
|
776 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
777 |
+
|
778 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
779 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
780 |
+
|
781 |
+
# multi-view self-attention
|
782 |
+
if multiview_attention:
|
783 |
+
if not sparse_mv_attention:
|
784 |
+
key = my_repeat(rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
785 |
+
value = my_repeat(rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
786 |
+
else:
|
787 |
+
key_front = my_repeat(rearrange(key_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views) # [(b t), d, c]
|
788 |
+
value_front = my_repeat(rearrange(value_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views)
|
789 |
+
key = torch.cat([key_front, key_raw], dim=1) # shape (b t) (2 d) c
|
790 |
+
value = torch.cat([value_front, value_raw], dim=1)
|
791 |
+
|
792 |
+
if mvcd_attention:
|
793 |
+
# memory efficient, cross domain attention
|
794 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
795 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
796 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
797 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
798 |
+
key = torch.cat([key, key_cross], dim=1)
|
799 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
800 |
+
else:
|
801 |
+
# print("don't use multiview attention.")
|
802 |
+
key = key_raw
|
803 |
+
value = value_raw
|
804 |
+
|
805 |
+
query = attn.head_to_batch_dim(query)
|
806 |
+
key = attn.head_to_batch_dim(key)
|
807 |
+
value = attn.head_to_batch_dim(value)
|
808 |
+
|
809 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
810 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
811 |
+
|
812 |
+
# linear proj
|
813 |
+
hidden_states = attn.to_out[0](hidden_states)
|
814 |
+
# dropout
|
815 |
+
hidden_states = attn.to_out[1](hidden_states)
|
816 |
+
|
817 |
+
if input_ndim == 4:
|
818 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
819 |
+
|
820 |
+
if attn.residual_connection:
|
821 |
+
hidden_states = hidden_states + residual
|
822 |
+
|
823 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
824 |
+
|
825 |
+
return hidden_states
|
826 |
+
|
827 |
+
|
828 |
+
|
829 |
+
class XFormersJointAttnProcessor:
|
830 |
+
r"""
|
831 |
+
Default processor for performing attention-related computations.
|
832 |
+
"""
|
833 |
+
|
834 |
+
def __call__(
|
835 |
+
self,
|
836 |
+
attn: Attention,
|
837 |
+
hidden_states,
|
838 |
+
encoder_hidden_states=None,
|
839 |
+
attention_mask=None,
|
840 |
+
temb=None,
|
841 |
+
num_tasks=2
|
842 |
+
):
|
843 |
+
|
844 |
+
residual = hidden_states
|
845 |
+
|
846 |
+
if attn.spatial_norm is not None:
|
847 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
848 |
+
|
849 |
+
input_ndim = hidden_states.ndim
|
850 |
+
|
851 |
+
if input_ndim == 4:
|
852 |
+
batch_size, channel, height, width = hidden_states.shape
|
853 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
854 |
+
|
855 |
+
batch_size, sequence_length, _ = (
|
856 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
857 |
+
)
|
858 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
859 |
+
|
860 |
+
# from yuancheng; here attention_mask is None
|
861 |
+
if attention_mask is not None:
|
862 |
+
# expand our mask's singleton query_tokens dimension:
|
863 |
+
# [batch*heads, 1, key_tokens] ->
|
864 |
+
# [batch*heads, query_tokens, key_tokens]
|
865 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
866 |
+
# [batch*heads, query_tokens, key_tokens]
|
867 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
868 |
+
_, query_tokens, _ = hidden_states.shape
|
869 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
870 |
+
|
871 |
+
if attn.group_norm is not None:
|
872 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
873 |
+
|
874 |
+
query = attn.to_q(hidden_states)
|
875 |
+
|
876 |
+
if encoder_hidden_states is None:
|
877 |
+
encoder_hidden_states = hidden_states
|
878 |
+
elif attn.norm_cross:
|
879 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
880 |
+
|
881 |
+
key = attn.to_k(encoder_hidden_states)
|
882 |
+
value = attn.to_v(encoder_hidden_states)
|
883 |
+
|
884 |
+
assert num_tasks == 2 # only support two tasks now
|
885 |
+
|
886 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
887 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
888 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
889 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
890 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
891 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
892 |
+
|
893 |
+
|
894 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
895 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
896 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
897 |
+
|
898 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
899 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
900 |
+
|
901 |
+
# linear proj
|
902 |
+
hidden_states = attn.to_out[0](hidden_states)
|
903 |
+
# dropout
|
904 |
+
hidden_states = attn.to_out[1](hidden_states)
|
905 |
+
|
906 |
+
if input_ndim == 4:
|
907 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
908 |
+
|
909 |
+
if attn.residual_connection:
|
910 |
+
hidden_states = hidden_states + residual
|
911 |
+
|
912 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
913 |
+
|
914 |
+
return hidden_states
|
915 |
+
|
916 |
+
|
917 |
+
class JointAttnProcessor:
|
918 |
+
r"""
|
919 |
+
Default processor for performing attention-related computations.
|
920 |
+
"""
|
921 |
+
|
922 |
+
def __call__(
|
923 |
+
self,
|
924 |
+
attn: Attention,
|
925 |
+
hidden_states,
|
926 |
+
encoder_hidden_states=None,
|
927 |
+
attention_mask=None,
|
928 |
+
temb=None,
|
929 |
+
num_tasks=2
|
930 |
+
):
|
931 |
+
|
932 |
+
residual = hidden_states
|
933 |
+
|
934 |
+
if attn.spatial_norm is not None:
|
935 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
936 |
+
|
937 |
+
input_ndim = hidden_states.ndim
|
938 |
+
|
939 |
+
if input_ndim == 4:
|
940 |
+
batch_size, channel, height, width = hidden_states.shape
|
941 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
942 |
+
|
943 |
+
batch_size, sequence_length, _ = (
|
944 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
945 |
+
)
|
946 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
947 |
+
|
948 |
+
|
949 |
+
if attn.group_norm is not None:
|
950 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
951 |
+
|
952 |
+
query = attn.to_q(hidden_states)
|
953 |
+
|
954 |
+
if encoder_hidden_states is None:
|
955 |
+
encoder_hidden_states = hidden_states
|
956 |
+
elif attn.norm_cross:
|
957 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
958 |
+
|
959 |
+
key = attn.to_k(encoder_hidden_states)
|
960 |
+
value = attn.to_v(encoder_hidden_states)
|
961 |
+
|
962 |
+
assert num_tasks == 2 # only support two tasks now
|
963 |
+
|
964 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
965 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
966 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
967 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
968 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
969 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
970 |
+
|
971 |
+
|
972 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
973 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
974 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
975 |
+
|
976 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
977 |
+
hidden_states = torch.bmm(attention_probs, value)
|
978 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
979 |
+
|
980 |
+
# linear proj
|
981 |
+
hidden_states = attn.to_out[0](hidden_states)
|
982 |
+
# dropout
|
983 |
+
hidden_states = attn.to_out[1](hidden_states)
|
984 |
+
|
985 |
+
if input_ndim == 4:
|
986 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
987 |
+
|
988 |
+
if attn.residual_connection:
|
989 |
+
hidden_states = hidden_states + residual
|
990 |
+
|
991 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
992 |
+
|
993 |
+
return hidden_states
|
994 |
+
|
995 |
+
|
multiview/models/transformer_mv2d_rowwise.py
ADDED
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
if is_xformers_available():
|
38 |
+
import xformers
|
39 |
+
import xformers.ops
|
40 |
+
else:
|
41 |
+
xformers = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
46 |
+
"""
|
47 |
+
The output of [`Transformer2DModel`].
|
48 |
+
|
49 |
+
Args:
|
50 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
51 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
52 |
+
distributions for the unnoised latent pixels.
|
53 |
+
"""
|
54 |
+
|
55 |
+
sample: torch.FloatTensor
|
56 |
+
|
57 |
+
|
58 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
59 |
+
"""
|
60 |
+
A 2D Transformer model for image-like data.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
64 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
65 |
+
in_channels (`int`, *optional*):
|
66 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
67 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
68 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
69 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
70 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
71 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
72 |
+
num_vector_embeds (`int`, *optional*):
|
73 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
74 |
+
Includes the class for the masked latent pixel.
|
75 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
76 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
77 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
78 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
79 |
+
added to the hidden states.
|
80 |
+
|
81 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
82 |
+
attention_bias (`bool`, *optional*):
|
83 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
@register_to_config
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
num_attention_heads: int = 16,
|
90 |
+
attention_head_dim: int = 88,
|
91 |
+
in_channels: Optional[int] = None,
|
92 |
+
out_channels: Optional[int] = None,
|
93 |
+
num_layers: int = 1,
|
94 |
+
dropout: float = 0.0,
|
95 |
+
norm_num_groups: int = 32,
|
96 |
+
cross_attention_dim: Optional[int] = None,
|
97 |
+
attention_bias: bool = False,
|
98 |
+
sample_size: Optional[int] = None,
|
99 |
+
num_vector_embeds: Optional[int] = None,
|
100 |
+
patch_size: Optional[int] = None,
|
101 |
+
activation_fn: str = "geglu",
|
102 |
+
num_embeds_ada_norm: Optional[int] = None,
|
103 |
+
use_linear_projection: bool = False,
|
104 |
+
only_cross_attention: bool = False,
|
105 |
+
upcast_attention: bool = False,
|
106 |
+
norm_type: str = "layer_norm",
|
107 |
+
norm_elementwise_affine: bool = True,
|
108 |
+
num_views: int = 1,
|
109 |
+
cd_attention_last: bool=False,
|
110 |
+
cd_attention_mid: bool=False,
|
111 |
+
multiview_attention: bool=True,
|
112 |
+
sparse_mv_attention: bool = True, # not used
|
113 |
+
mvcd_attention: bool=False
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.use_linear_projection = use_linear_projection
|
117 |
+
self.num_attention_heads = num_attention_heads
|
118 |
+
self.attention_head_dim = attention_head_dim
|
119 |
+
inner_dim = num_attention_heads * attention_head_dim
|
120 |
+
|
121 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
122 |
+
# Define whether input is continuous or discrete depending on configuration
|
123 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
124 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
125 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
126 |
+
|
127 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
128 |
+
deprecation_message = (
|
129 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
130 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
131 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
132 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
133 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
134 |
+
)
|
135 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
136 |
+
norm_type = "ada_norm"
|
137 |
+
|
138 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
139 |
+
raise ValueError(
|
140 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
141 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
142 |
+
)
|
143 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
144 |
+
raise ValueError(
|
145 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
146 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
147 |
+
)
|
148 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
149 |
+
raise ValueError(
|
150 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
151 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
152 |
+
)
|
153 |
+
|
154 |
+
# 2. Define input layers
|
155 |
+
if self.is_input_continuous:
|
156 |
+
self.in_channels = in_channels
|
157 |
+
|
158 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
159 |
+
if use_linear_projection:
|
160 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
161 |
+
else:
|
162 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
163 |
+
elif self.is_input_vectorized:
|
164 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
165 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
166 |
+
|
167 |
+
self.height = sample_size
|
168 |
+
self.width = sample_size
|
169 |
+
self.num_vector_embeds = num_vector_embeds
|
170 |
+
self.num_latent_pixels = self.height * self.width
|
171 |
+
|
172 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
173 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
174 |
+
)
|
175 |
+
elif self.is_input_patches:
|
176 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
177 |
+
|
178 |
+
self.height = sample_size
|
179 |
+
self.width = sample_size
|
180 |
+
|
181 |
+
self.patch_size = patch_size
|
182 |
+
self.pos_embed = PatchEmbed(
|
183 |
+
height=sample_size,
|
184 |
+
width=sample_size,
|
185 |
+
patch_size=patch_size,
|
186 |
+
in_channels=in_channels,
|
187 |
+
embed_dim=inner_dim,
|
188 |
+
)
|
189 |
+
|
190 |
+
# 3. Define transformers blocks
|
191 |
+
self.transformer_blocks = nn.ModuleList(
|
192 |
+
[
|
193 |
+
BasicMVTransformerBlock(
|
194 |
+
inner_dim,
|
195 |
+
num_attention_heads,
|
196 |
+
attention_head_dim,
|
197 |
+
dropout=dropout,
|
198 |
+
cross_attention_dim=cross_attention_dim,
|
199 |
+
activation_fn=activation_fn,
|
200 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
201 |
+
attention_bias=attention_bias,
|
202 |
+
only_cross_attention=only_cross_attention,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
norm_type=norm_type,
|
205 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
206 |
+
num_views=num_views,
|
207 |
+
cd_attention_last=cd_attention_last,
|
208 |
+
cd_attention_mid=cd_attention_mid,
|
209 |
+
multiview_attention=multiview_attention,
|
210 |
+
mvcd_attention=mvcd_attention
|
211 |
+
)
|
212 |
+
for d in range(num_layers)
|
213 |
+
]
|
214 |
+
)
|
215 |
+
|
216 |
+
# 4. Define output layers
|
217 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
218 |
+
if self.is_input_continuous:
|
219 |
+
# TODO: should use out_channels for continuous projections
|
220 |
+
if use_linear_projection:
|
221 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
222 |
+
else:
|
223 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
224 |
+
elif self.is_input_vectorized:
|
225 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
226 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
227 |
+
elif self.is_input_patches:
|
228 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
229 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
230 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
hidden_states: torch.Tensor,
|
235 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
236 |
+
timestep: Optional[torch.LongTensor] = None,
|
237 |
+
class_labels: Optional[torch.LongTensor] = None,
|
238 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
239 |
+
attention_mask: Optional[torch.Tensor] = None,
|
240 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
241 |
+
return_dict: bool = True,
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
The [`Transformer2DModel`] forward method.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
248 |
+
Input `hidden_states`.
|
249 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
250 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
251 |
+
self-attention.
|
252 |
+
timestep ( `torch.LongTensor`, *optional*):
|
253 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
254 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
255 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
256 |
+
`AdaLayerZeroNorm`.
|
257 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
258 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
259 |
+
|
260 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
261 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
262 |
+
|
263 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
264 |
+
above. This bias will be added to the cross-attention scores.
|
265 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
266 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
267 |
+
tuple.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
271 |
+
`tuple` where the first element is the sample tensor.
|
272 |
+
"""
|
273 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
274 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
275 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
276 |
+
# expects mask of shape:
|
277 |
+
# [batch, key_tokens]
|
278 |
+
# adds singleton query_tokens dimension:
|
279 |
+
# [batch, 1, key_tokens]
|
280 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
281 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
282 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
283 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
284 |
+
# assume that mask is expressed as:
|
285 |
+
# (1 = keep, 0 = discard)
|
286 |
+
# convert mask into a bias that can be added to attention scores:
|
287 |
+
# (keep = +0, discard = -10000.0)
|
288 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
289 |
+
attention_mask = attention_mask.unsqueeze(1)
|
290 |
+
|
291 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
292 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
293 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
294 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
295 |
+
|
296 |
+
# 1. Input
|
297 |
+
if self.is_input_continuous:
|
298 |
+
batch, _, height, width = hidden_states.shape
|
299 |
+
residual = hidden_states
|
300 |
+
|
301 |
+
hidden_states = self.norm(hidden_states)
|
302 |
+
if not self.use_linear_projection:
|
303 |
+
hidden_states = self.proj_in(hidden_states)
|
304 |
+
inner_dim = hidden_states.shape[1]
|
305 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
306 |
+
else:
|
307 |
+
inner_dim = hidden_states.shape[1]
|
308 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
309 |
+
hidden_states = self.proj_in(hidden_states)
|
310 |
+
elif self.is_input_vectorized:
|
311 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
312 |
+
elif self.is_input_patches:
|
313 |
+
hidden_states = self.pos_embed(hidden_states)
|
314 |
+
|
315 |
+
# 2. Blocks
|
316 |
+
for block in self.transformer_blocks:
|
317 |
+
hidden_states = block(
|
318 |
+
hidden_states,
|
319 |
+
attention_mask=attention_mask,
|
320 |
+
encoder_hidden_states=encoder_hidden_states,
|
321 |
+
encoder_attention_mask=encoder_attention_mask,
|
322 |
+
timestep=timestep,
|
323 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
324 |
+
class_labels=class_labels,
|
325 |
+
)
|
326 |
+
|
327 |
+
# 3. Output
|
328 |
+
if self.is_input_continuous:
|
329 |
+
if not self.use_linear_projection:
|
330 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
331 |
+
hidden_states = self.proj_out(hidden_states)
|
332 |
+
else:
|
333 |
+
hidden_states = self.proj_out(hidden_states)
|
334 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
335 |
+
|
336 |
+
output = hidden_states + residual
|
337 |
+
elif self.is_input_vectorized:
|
338 |
+
hidden_states = self.norm_out(hidden_states)
|
339 |
+
logits = self.out(hidden_states)
|
340 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
341 |
+
logits = logits.permute(0, 2, 1)
|
342 |
+
|
343 |
+
# log(p(x_0))
|
344 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
345 |
+
elif self.is_input_patches:
|
346 |
+
# TODO: cleanup!
|
347 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
348 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
349 |
+
)
|
350 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
351 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
352 |
+
hidden_states = self.proj_out_2(hidden_states)
|
353 |
+
|
354 |
+
# unpatchify
|
355 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
356 |
+
hidden_states = hidden_states.reshape(
|
357 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
358 |
+
)
|
359 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
360 |
+
output = hidden_states.reshape(
|
361 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
362 |
+
)
|
363 |
+
|
364 |
+
if not return_dict:
|
365 |
+
return (output,)
|
366 |
+
|
367 |
+
return TransformerMV2DModelOutput(sample=output)
|
368 |
+
|
369 |
+
|
370 |
+
@maybe_allow_in_graph
|
371 |
+
class BasicMVTransformerBlock(nn.Module):
|
372 |
+
r"""
|
373 |
+
A basic Transformer block.
|
374 |
+
|
375 |
+
Parameters:
|
376 |
+
dim (`int`): The number of channels in the input and output.
|
377 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
378 |
+
attention_head_dim (`int`): The number of channels in each head.
|
379 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
380 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
381 |
+
only_cross_attention (`bool`, *optional*):
|
382 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
383 |
+
double_self_attention (`bool`, *optional*):
|
384 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
385 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
386 |
+
num_embeds_ada_norm (:
|
387 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
388 |
+
attention_bias (:
|
389 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
390 |
+
"""
|
391 |
+
|
392 |
+
def __init__(
|
393 |
+
self,
|
394 |
+
dim: int,
|
395 |
+
num_attention_heads: int,
|
396 |
+
attention_head_dim: int,
|
397 |
+
dropout=0.0,
|
398 |
+
cross_attention_dim: Optional[int] = None,
|
399 |
+
activation_fn: str = "geglu",
|
400 |
+
num_embeds_ada_norm: Optional[int] = None,
|
401 |
+
attention_bias: bool = False,
|
402 |
+
only_cross_attention: bool = False,
|
403 |
+
double_self_attention: bool = False,
|
404 |
+
upcast_attention: bool = False,
|
405 |
+
norm_elementwise_affine: bool = True,
|
406 |
+
norm_type: str = "layer_norm",
|
407 |
+
final_dropout: bool = False,
|
408 |
+
num_views: int = 1,
|
409 |
+
cd_attention_last: bool = False,
|
410 |
+
cd_attention_mid: bool = False,
|
411 |
+
multiview_attention: bool = True,
|
412 |
+
mvcd_attention: bool = False,
|
413 |
+
rowwise_attention: bool = True
|
414 |
+
):
|
415 |
+
super().__init__()
|
416 |
+
self.only_cross_attention = only_cross_attention
|
417 |
+
|
418 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
419 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
420 |
+
|
421 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
422 |
+
raise ValueError(
|
423 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
424 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
425 |
+
)
|
426 |
+
|
427 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
428 |
+
# 1. Self-Attn
|
429 |
+
if self.use_ada_layer_norm:
|
430 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
431 |
+
elif self.use_ada_layer_norm_zero:
|
432 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
435 |
+
|
436 |
+
self.multiview_attention = multiview_attention
|
437 |
+
self.mvcd_attention = mvcd_attention
|
438 |
+
self.rowwise_attention = multiview_attention and rowwise_attention
|
439 |
+
|
440 |
+
# rowwise multiview attention
|
441 |
+
|
442 |
+
print('INFO: using row wise attention...')
|
443 |
+
|
444 |
+
self.attn1 = CustomAttention(
|
445 |
+
query_dim=dim,
|
446 |
+
heads=num_attention_heads,
|
447 |
+
dim_head=attention_head_dim,
|
448 |
+
dropout=dropout,
|
449 |
+
bias=attention_bias,
|
450 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
451 |
+
upcast_attention=upcast_attention,
|
452 |
+
processor=MVAttnProcessor()
|
453 |
+
)
|
454 |
+
|
455 |
+
# 2. Cross-Attn
|
456 |
+
if cross_attention_dim is not None or double_self_attention:
|
457 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
458 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
459 |
+
# the second cross attention block.
|
460 |
+
self.norm2 = (
|
461 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
462 |
+
if self.use_ada_layer_norm
|
463 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
464 |
+
)
|
465 |
+
self.attn2 = Attention(
|
466 |
+
query_dim=dim,
|
467 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
468 |
+
heads=num_attention_heads,
|
469 |
+
dim_head=attention_head_dim,
|
470 |
+
dropout=dropout,
|
471 |
+
bias=attention_bias,
|
472 |
+
upcast_attention=upcast_attention,
|
473 |
+
) # is self-attn if encoder_hidden_states is none
|
474 |
+
else:
|
475 |
+
self.norm2 = None
|
476 |
+
self.attn2 = None
|
477 |
+
|
478 |
+
# 3. Feed-forward
|
479 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
480 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
481 |
+
|
482 |
+
# let chunk size default to None
|
483 |
+
self._chunk_size = None
|
484 |
+
self._chunk_dim = 0
|
485 |
+
|
486 |
+
self.num_views = num_views
|
487 |
+
|
488 |
+
self.cd_attention_last = cd_attention_last
|
489 |
+
|
490 |
+
if self.cd_attention_last:
|
491 |
+
# Joint task -Attn
|
492 |
+
self.attn_joint = CustomJointAttention(
|
493 |
+
query_dim=dim,
|
494 |
+
heads=num_attention_heads,
|
495 |
+
dim_head=attention_head_dim,
|
496 |
+
dropout=dropout,
|
497 |
+
bias=attention_bias,
|
498 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
499 |
+
upcast_attention=upcast_attention,
|
500 |
+
processor=JointAttnProcessor()
|
501 |
+
)
|
502 |
+
nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
503 |
+
self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
504 |
+
|
505 |
+
|
506 |
+
self.cd_attention_mid = cd_attention_mid
|
507 |
+
|
508 |
+
if self.cd_attention_mid:
|
509 |
+
print("joint twice")
|
510 |
+
# Joint task -Attn
|
511 |
+
self.attn_joint_twice = CustomJointAttention(
|
512 |
+
query_dim=dim,
|
513 |
+
heads=num_attention_heads,
|
514 |
+
dim_head=attention_head_dim,
|
515 |
+
dropout=dropout,
|
516 |
+
bias=attention_bias,
|
517 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
518 |
+
upcast_attention=upcast_attention,
|
519 |
+
processor=JointAttnProcessor()
|
520 |
+
)
|
521 |
+
nn.init.zeros_(self.attn_joint_twice.to_out[0].weight.data)
|
522 |
+
self.norm_joint_twice = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
523 |
+
|
524 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
525 |
+
# Sets chunk feed-forward
|
526 |
+
self._chunk_size = chunk_size
|
527 |
+
self._chunk_dim = dim
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states: torch.FloatTensor,
|
532 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
533 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
534 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
535 |
+
timestep: Optional[torch.LongTensor] = None,
|
536 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
537 |
+
class_labels: Optional[torch.LongTensor] = None,
|
538 |
+
):
|
539 |
+
assert attention_mask is None # not supported yet
|
540 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
541 |
+
# 1. Self-Attention
|
542 |
+
if self.use_ada_layer_norm:
|
543 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
544 |
+
elif self.use_ada_layer_norm_zero:
|
545 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
546 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
547 |
+
)
|
548 |
+
else:
|
549 |
+
norm_hidden_states = self.norm1(hidden_states)
|
550 |
+
|
551 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
552 |
+
|
553 |
+
attn_output = self.attn1(
|
554 |
+
norm_hidden_states,
|
555 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
multiview_attention=self.multiview_attention,
|
558 |
+
mvcd_attention=self.mvcd_attention,
|
559 |
+
num_views=self.num_views,
|
560 |
+
**cross_attention_kwargs,
|
561 |
+
)
|
562 |
+
|
563 |
+
if self.use_ada_layer_norm_zero:
|
564 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
565 |
+
hidden_states = attn_output + hidden_states
|
566 |
+
|
567 |
+
# joint attention twice
|
568 |
+
if self.cd_attention_mid:
|
569 |
+
norm_hidden_states = (
|
570 |
+
self.norm_joint_twice(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_twice(hidden_states)
|
571 |
+
)
|
572 |
+
hidden_states = self.attn_joint_twice(norm_hidden_states) + hidden_states
|
573 |
+
|
574 |
+
# 2. Cross-Attention
|
575 |
+
if self.attn2 is not None:
|
576 |
+
norm_hidden_states = (
|
577 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
578 |
+
)
|
579 |
+
|
580 |
+
attn_output = self.attn2(
|
581 |
+
norm_hidden_states,
|
582 |
+
encoder_hidden_states=encoder_hidden_states,
|
583 |
+
attention_mask=encoder_attention_mask,
|
584 |
+
**cross_attention_kwargs,
|
585 |
+
)
|
586 |
+
hidden_states = attn_output + hidden_states
|
587 |
+
|
588 |
+
# 3. Feed-forward
|
589 |
+
norm_hidden_states = self.norm3(hidden_states)
|
590 |
+
|
591 |
+
if self.use_ada_layer_norm_zero:
|
592 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
593 |
+
|
594 |
+
if self._chunk_size is not None:
|
595 |
+
# "feed_forward_chunk_size" can be used to save memory
|
596 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
597 |
+
raise ValueError(
|
598 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
599 |
+
)
|
600 |
+
|
601 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
602 |
+
ff_output = torch.cat(
|
603 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
604 |
+
dim=self._chunk_dim,
|
605 |
+
)
|
606 |
+
else:
|
607 |
+
ff_output = self.ff(norm_hidden_states)
|
608 |
+
|
609 |
+
if self.use_ada_layer_norm_zero:
|
610 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
611 |
+
|
612 |
+
hidden_states = ff_output + hidden_states
|
613 |
+
|
614 |
+
if self.cd_attention_last:
|
615 |
+
norm_hidden_states = (
|
616 |
+
self.norm_joint(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint(hidden_states)
|
617 |
+
)
|
618 |
+
hidden_states = self.attn_joint(norm_hidden_states) + hidden_states
|
619 |
+
|
620 |
+
return hidden_states
|
621 |
+
|
622 |
+
|
623 |
+
class CustomAttention(Attention):
|
624 |
+
def set_use_memory_efficient_attention_xformers(
|
625 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
626 |
+
):
|
627 |
+
processor = XFormersMVAttnProcessor()
|
628 |
+
self.set_processor(processor)
|
629 |
+
# print("using xformers attention processor")
|
630 |
+
|
631 |
+
|
632 |
+
class CustomJointAttention(Attention):
|
633 |
+
def set_use_memory_efficient_attention_xformers(
|
634 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
635 |
+
):
|
636 |
+
processor = XFormersJointAttnProcessor()
|
637 |
+
self.set_processor(processor)
|
638 |
+
# print("using xformers attention processor")
|
639 |
+
|
640 |
+
class MVAttnProcessor:
|
641 |
+
r"""
|
642 |
+
Default processor for performing attention-related computations.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __call__(
|
646 |
+
self,
|
647 |
+
attn: Attention,
|
648 |
+
hidden_states,
|
649 |
+
encoder_hidden_states=None,
|
650 |
+
attention_mask=None,
|
651 |
+
temb=None,
|
652 |
+
num_views=1,
|
653 |
+
multiview_attention=True
|
654 |
+
):
|
655 |
+
residual = hidden_states
|
656 |
+
|
657 |
+
if attn.spatial_norm is not None:
|
658 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
659 |
+
|
660 |
+
input_ndim = hidden_states.ndim
|
661 |
+
|
662 |
+
if input_ndim == 4:
|
663 |
+
batch_size, channel, height, width = hidden_states.shape
|
664 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
665 |
+
|
666 |
+
batch_size, sequence_length, _ = (
|
667 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
668 |
+
)
|
669 |
+
height = int(math.sqrt(sequence_length))
|
670 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
671 |
+
|
672 |
+
if attn.group_norm is not None:
|
673 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
674 |
+
|
675 |
+
query = attn.to_q(hidden_states)
|
676 |
+
|
677 |
+
if encoder_hidden_states is None:
|
678 |
+
encoder_hidden_states = hidden_states
|
679 |
+
elif attn.norm_cross:
|
680 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
681 |
+
|
682 |
+
key = attn.to_k(encoder_hidden_states)
|
683 |
+
value = attn.to_v(encoder_hidden_states)
|
684 |
+
|
685 |
+
# multi-view self-attention
|
686 |
+
key = rearrange(key, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
687 |
+
value = rearrange(value, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
688 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
689 |
+
|
690 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
691 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
692 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
693 |
+
|
694 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
695 |
+
hidden_states = torch.bmm(attention_probs, value)
|
696 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
697 |
+
|
698 |
+
# linear proj
|
699 |
+
hidden_states = attn.to_out[0](hidden_states)
|
700 |
+
# dropout
|
701 |
+
hidden_states = attn.to_out[1](hidden_states)
|
702 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
703 |
+
if input_ndim == 4:
|
704 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
705 |
+
|
706 |
+
if attn.residual_connection:
|
707 |
+
hidden_states = hidden_states + residual
|
708 |
+
|
709 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
710 |
+
|
711 |
+
return hidden_states
|
712 |
+
|
713 |
+
|
714 |
+
class XFormersMVAttnProcessor:
|
715 |
+
r"""
|
716 |
+
Default processor for performing attention-related computations.
|
717 |
+
"""
|
718 |
+
|
719 |
+
def __call__(
|
720 |
+
self,
|
721 |
+
attn: Attention,
|
722 |
+
hidden_states,
|
723 |
+
encoder_hidden_states=None,
|
724 |
+
attention_mask=None,
|
725 |
+
temb=None,
|
726 |
+
num_views=1,
|
727 |
+
multiview_attention=True,
|
728 |
+
mvcd_attention=False,
|
729 |
+
):
|
730 |
+
residual = hidden_states
|
731 |
+
|
732 |
+
if attn.spatial_norm is not None:
|
733 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
734 |
+
|
735 |
+
input_ndim = hidden_states.ndim
|
736 |
+
|
737 |
+
if input_ndim == 4:
|
738 |
+
batch_size, channel, height, width = hidden_states.shape
|
739 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
740 |
+
|
741 |
+
batch_size, sequence_length, _ = (
|
742 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
743 |
+
)
|
744 |
+
height = int(math.sqrt(sequence_length))
|
745 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
746 |
+
# from yuancheng; here attention_mask is None
|
747 |
+
if attention_mask is not None:
|
748 |
+
# expand our mask's singleton query_tokens dimension:
|
749 |
+
# [batch*heads, 1, key_tokens] ->
|
750 |
+
# [batch*heads, query_tokens, key_tokens]
|
751 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
752 |
+
# [batch*heads, query_tokens, key_tokens]
|
753 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
754 |
+
_, query_tokens, _ = hidden_states.shape
|
755 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
756 |
+
|
757 |
+
if attn.group_norm is not None:
|
758 |
+
print('Warning: using group norm, pay attention to use it in row-wise attention')
|
759 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
760 |
+
|
761 |
+
query = attn.to_q(hidden_states)
|
762 |
+
|
763 |
+
if encoder_hidden_states is None:
|
764 |
+
encoder_hidden_states = hidden_states
|
765 |
+
elif attn.norm_cross:
|
766 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
767 |
+
|
768 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
769 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
770 |
+
|
771 |
+
key = rearrange(key_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
772 |
+
value = rearrange(value_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
773 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
774 |
+
if mvcd_attention:
|
775 |
+
# memory efficient, cross domain attention
|
776 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
777 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
778 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
779 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
780 |
+
key = torch.cat([key, key_cross], dim=1)
|
781 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
782 |
+
|
783 |
+
|
784 |
+
query = attn.head_to_batch_dim(query) # torch.Size([960, 384, 64])
|
785 |
+
key = attn.head_to_batch_dim(key)
|
786 |
+
value = attn.head_to_batch_dim(value)
|
787 |
+
|
788 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
789 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
790 |
+
|
791 |
+
# linear proj
|
792 |
+
hidden_states = attn.to_out[0](hidden_states)
|
793 |
+
# dropout
|
794 |
+
hidden_states = attn.to_out[1](hidden_states)
|
795 |
+
# print(hidden_states.shape)
|
796 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
797 |
+
if input_ndim == 4:
|
798 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
799 |
+
|
800 |
+
if attn.residual_connection:
|
801 |
+
hidden_states = hidden_states + residual
|
802 |
+
|
803 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
804 |
+
|
805 |
+
return hidden_states
|
806 |
+
|
807 |
+
|
808 |
+
class XFormersJointAttnProcessor:
|
809 |
+
r"""
|
810 |
+
Default processor for performing attention-related computations.
|
811 |
+
"""
|
812 |
+
|
813 |
+
def __call__(
|
814 |
+
self,
|
815 |
+
attn: Attention,
|
816 |
+
hidden_states,
|
817 |
+
encoder_hidden_states=None,
|
818 |
+
attention_mask=None,
|
819 |
+
temb=None,
|
820 |
+
num_tasks=2
|
821 |
+
):
|
822 |
+
|
823 |
+
residual = hidden_states
|
824 |
+
|
825 |
+
if attn.spatial_norm is not None:
|
826 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
827 |
+
|
828 |
+
input_ndim = hidden_states.ndim
|
829 |
+
|
830 |
+
if input_ndim == 4:
|
831 |
+
batch_size, channel, height, width = hidden_states.shape
|
832 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
833 |
+
|
834 |
+
batch_size, sequence_length, _ = (
|
835 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
836 |
+
)
|
837 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
838 |
+
|
839 |
+
# from yuancheng; here attention_mask is None
|
840 |
+
if attention_mask is not None:
|
841 |
+
# expand our mask's singleton query_tokens dimension:
|
842 |
+
# [batch*heads, 1, key_tokens] ->
|
843 |
+
# [batch*heads, query_tokens, key_tokens]
|
844 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
845 |
+
# [batch*heads, query_tokens, key_tokens]
|
846 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
847 |
+
_, query_tokens, _ = hidden_states.shape
|
848 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
849 |
+
|
850 |
+
if attn.group_norm is not None:
|
851 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
852 |
+
|
853 |
+
query = attn.to_q(hidden_states)
|
854 |
+
|
855 |
+
if encoder_hidden_states is None:
|
856 |
+
encoder_hidden_states = hidden_states
|
857 |
+
elif attn.norm_cross:
|
858 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
859 |
+
|
860 |
+
key = attn.to_k(encoder_hidden_states)
|
861 |
+
value = attn.to_v(encoder_hidden_states)
|
862 |
+
|
863 |
+
assert num_tasks == 2 # only support two tasks now
|
864 |
+
|
865 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
866 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
867 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
868 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
869 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
870 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
871 |
+
|
872 |
+
|
873 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
874 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
875 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
876 |
+
|
877 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
878 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
879 |
+
|
880 |
+
# linear proj
|
881 |
+
hidden_states = attn.to_out[0](hidden_states)
|
882 |
+
# dropout
|
883 |
+
hidden_states = attn.to_out[1](hidden_states)
|
884 |
+
|
885 |
+
if input_ndim == 4:
|
886 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
887 |
+
|
888 |
+
if attn.residual_connection:
|
889 |
+
hidden_states = hidden_states + residual
|
890 |
+
|
891 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
892 |
+
|
893 |
+
return hidden_states
|
894 |
+
|
895 |
+
|
896 |
+
class JointAttnProcessor:
|
897 |
+
r"""
|
898 |
+
Default processor for performing attention-related computations.
|
899 |
+
"""
|
900 |
+
|
901 |
+
def __call__(
|
902 |
+
self,
|
903 |
+
attn: Attention,
|
904 |
+
hidden_states,
|
905 |
+
encoder_hidden_states=None,
|
906 |
+
attention_mask=None,
|
907 |
+
temb=None,
|
908 |
+
num_tasks=2
|
909 |
+
):
|
910 |
+
|
911 |
+
residual = hidden_states
|
912 |
+
|
913 |
+
if attn.spatial_norm is not None:
|
914 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
915 |
+
|
916 |
+
input_ndim = hidden_states.ndim
|
917 |
+
|
918 |
+
if input_ndim == 4:
|
919 |
+
batch_size, channel, height, width = hidden_states.shape
|
920 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
921 |
+
|
922 |
+
batch_size, sequence_length, _ = (
|
923 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
924 |
+
)
|
925 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
926 |
+
|
927 |
+
|
928 |
+
if attn.group_norm is not None:
|
929 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
930 |
+
|
931 |
+
query = attn.to_q(hidden_states)
|
932 |
+
|
933 |
+
if encoder_hidden_states is None:
|
934 |
+
encoder_hidden_states = hidden_states
|
935 |
+
elif attn.norm_cross:
|
936 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
937 |
+
|
938 |
+
key = attn.to_k(encoder_hidden_states)
|
939 |
+
value = attn.to_v(encoder_hidden_states)
|
940 |
+
|
941 |
+
assert num_tasks == 2 # only support two tasks now
|
942 |
+
|
943 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
944 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
945 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
946 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
947 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
948 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
949 |
+
|
950 |
+
|
951 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
952 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
953 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
954 |
+
|
955 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
956 |
+
hidden_states = torch.bmm(attention_probs, value)
|
957 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
958 |
+
|
959 |
+
# linear proj
|
960 |
+
hidden_states = attn.to_out[0](hidden_states)
|
961 |
+
# dropout
|
962 |
+
hidden_states = attn.to_out[1](hidden_states)
|
963 |
+
|
964 |
+
if input_ndim == 4:
|
965 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
966 |
+
|
967 |
+
if attn.residual_connection:
|
968 |
+
hidden_states = hidden_states + residual
|
969 |
+
|
970 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
971 |
+
|
972 |
+
return hidden_states
|
multiview/models/transformer_mv2d_self_rowwise.py
ADDED
@@ -0,0 +1,1042 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
if is_xformers_available():
|
38 |
+
import xformers
|
39 |
+
import xformers.ops
|
40 |
+
else:
|
41 |
+
xformers = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
46 |
+
"""
|
47 |
+
The output of [`Transformer2DModel`].
|
48 |
+
|
49 |
+
Args:
|
50 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
51 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
52 |
+
distributions for the unnoised latent pixels.
|
53 |
+
"""
|
54 |
+
|
55 |
+
sample: torch.FloatTensor
|
56 |
+
|
57 |
+
|
58 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
59 |
+
"""
|
60 |
+
A 2D Transformer model for image-like data.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
64 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
65 |
+
in_channels (`int`, *optional*):
|
66 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
67 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
68 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
69 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
70 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
71 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
72 |
+
num_vector_embeds (`int`, *optional*):
|
73 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
74 |
+
Includes the class for the masked latent pixel.
|
75 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
76 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
77 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
78 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
79 |
+
added to the hidden states.
|
80 |
+
|
81 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
82 |
+
attention_bias (`bool`, *optional*):
|
83 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
@register_to_config
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
num_attention_heads: int = 16,
|
90 |
+
attention_head_dim: int = 88,
|
91 |
+
in_channels: Optional[int] = None,
|
92 |
+
out_channels: Optional[int] = None,
|
93 |
+
num_layers: int = 1,
|
94 |
+
dropout: float = 0.0,
|
95 |
+
norm_num_groups: int = 32,
|
96 |
+
cross_attention_dim: Optional[int] = None,
|
97 |
+
attention_bias: bool = False,
|
98 |
+
sample_size: Optional[int] = None,
|
99 |
+
num_vector_embeds: Optional[int] = None,
|
100 |
+
patch_size: Optional[int] = None,
|
101 |
+
activation_fn: str = "geglu",
|
102 |
+
num_embeds_ada_norm: Optional[int] = None,
|
103 |
+
use_linear_projection: bool = False,
|
104 |
+
only_cross_attention: bool = False,
|
105 |
+
upcast_attention: bool = False,
|
106 |
+
norm_type: str = "layer_norm",
|
107 |
+
norm_elementwise_affine: bool = True,
|
108 |
+
num_views: int = 1,
|
109 |
+
cd_attention_mid: bool=False,
|
110 |
+
cd_attention_last: bool=False,
|
111 |
+
multiview_attention: bool=True,
|
112 |
+
sparse_mv_attention: bool = True, # not used
|
113 |
+
mvcd_attention: bool=False,
|
114 |
+
use_dino: bool=False
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.use_linear_projection = use_linear_projection
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.attention_head_dim = attention_head_dim
|
120 |
+
inner_dim = num_attention_heads * attention_head_dim
|
121 |
+
|
122 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
123 |
+
# Define whether input is continuous or discrete depending on configuration
|
124 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
125 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
126 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
127 |
+
|
128 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
129 |
+
deprecation_message = (
|
130 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
131 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
132 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
133 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
134 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
135 |
+
)
|
136 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
137 |
+
norm_type = "ada_norm"
|
138 |
+
|
139 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
140 |
+
raise ValueError(
|
141 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
142 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
143 |
+
)
|
144 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
145 |
+
raise ValueError(
|
146 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
147 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
148 |
+
)
|
149 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
150 |
+
raise ValueError(
|
151 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
152 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
153 |
+
)
|
154 |
+
|
155 |
+
# 2. Define input layers
|
156 |
+
if self.is_input_continuous:
|
157 |
+
self.in_channels = in_channels
|
158 |
+
|
159 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
160 |
+
if use_linear_projection:
|
161 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
162 |
+
else:
|
163 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
164 |
+
elif self.is_input_vectorized:
|
165 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
166 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
self.num_vector_embeds = num_vector_embeds
|
171 |
+
self.num_latent_pixels = self.height * self.width
|
172 |
+
|
173 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
174 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
175 |
+
)
|
176 |
+
elif self.is_input_patches:
|
177 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
178 |
+
|
179 |
+
self.height = sample_size
|
180 |
+
self.width = sample_size
|
181 |
+
|
182 |
+
self.patch_size = patch_size
|
183 |
+
self.pos_embed = PatchEmbed(
|
184 |
+
height=sample_size,
|
185 |
+
width=sample_size,
|
186 |
+
patch_size=patch_size,
|
187 |
+
in_channels=in_channels,
|
188 |
+
embed_dim=inner_dim,
|
189 |
+
)
|
190 |
+
|
191 |
+
# 3. Define transformers blocks
|
192 |
+
self.transformer_blocks = nn.ModuleList(
|
193 |
+
[
|
194 |
+
BasicMVTransformerBlock(
|
195 |
+
inner_dim,
|
196 |
+
num_attention_heads,
|
197 |
+
attention_head_dim,
|
198 |
+
dropout=dropout,
|
199 |
+
cross_attention_dim=cross_attention_dim,
|
200 |
+
activation_fn=activation_fn,
|
201 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
202 |
+
attention_bias=attention_bias,
|
203 |
+
only_cross_attention=only_cross_attention,
|
204 |
+
upcast_attention=upcast_attention,
|
205 |
+
norm_type=norm_type,
|
206 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
207 |
+
num_views=num_views,
|
208 |
+
cd_attention_last=cd_attention_last,
|
209 |
+
cd_attention_mid=cd_attention_mid,
|
210 |
+
multiview_attention=multiview_attention,
|
211 |
+
mvcd_attention=mvcd_attention,
|
212 |
+
use_dino=use_dino
|
213 |
+
)
|
214 |
+
for d in range(num_layers)
|
215 |
+
]
|
216 |
+
)
|
217 |
+
|
218 |
+
# 4. Define output layers
|
219 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
220 |
+
if self.is_input_continuous:
|
221 |
+
# TODO: should use out_channels for continuous projections
|
222 |
+
if use_linear_projection:
|
223 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
224 |
+
else:
|
225 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
226 |
+
elif self.is_input_vectorized:
|
227 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
228 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
229 |
+
elif self.is_input_patches:
|
230 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
231 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
232 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
hidden_states: torch.Tensor,
|
237 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
238 |
+
dino_feature: Optional[torch.Tensor] = None,
|
239 |
+
timestep: Optional[torch.LongTensor] = None,
|
240 |
+
class_labels: Optional[torch.LongTensor] = None,
|
241 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
243 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
244 |
+
hw_ratio: Optional[torch.FloatTensor] = 1.5,
|
245 |
+
return_dict: bool = True,
|
246 |
+
):
|
247 |
+
"""
|
248 |
+
The [`Transformer2DModel`] forward method.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
252 |
+
Input `hidden_states`.
|
253 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
254 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
255 |
+
self-attention.
|
256 |
+
timestep ( `torch.LongTensor`, *optional*):
|
257 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
258 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
259 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
260 |
+
`AdaLayerZeroNorm`.
|
261 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
262 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
263 |
+
|
264 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
265 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
266 |
+
|
267 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
268 |
+
above. This bias will be added to the cross-attention scores.
|
269 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
270 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
271 |
+
tuple.
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
275 |
+
`tuple` where the first element is the sample tensor.
|
276 |
+
"""
|
277 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
278 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
279 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
280 |
+
# expects mask of shape:
|
281 |
+
# [batch, key_tokens]
|
282 |
+
# adds singleton query_tokens dimension:
|
283 |
+
# [batch, 1, key_tokens]
|
284 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
285 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
286 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
287 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
288 |
+
# assume that mask is expressed as:
|
289 |
+
# (1 = keep, 0 = discard)
|
290 |
+
# convert mask into a bias that can be added to attention scores:
|
291 |
+
# (keep = +0, discard = -10000.0)
|
292 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
293 |
+
attention_mask = attention_mask.unsqueeze(1)
|
294 |
+
|
295 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
296 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
297 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
298 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
299 |
+
|
300 |
+
# 1. Input
|
301 |
+
if self.is_input_continuous:
|
302 |
+
batch, _, height, width = hidden_states.shape
|
303 |
+
residual = hidden_states
|
304 |
+
|
305 |
+
hidden_states = self.norm(hidden_states)
|
306 |
+
if not self.use_linear_projection:
|
307 |
+
hidden_states = self.proj_in(hidden_states)
|
308 |
+
inner_dim = hidden_states.shape[1]
|
309 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
310 |
+
else:
|
311 |
+
inner_dim = hidden_states.shape[1]
|
312 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
313 |
+
hidden_states = self.proj_in(hidden_states)
|
314 |
+
elif self.is_input_vectorized:
|
315 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
316 |
+
elif self.is_input_patches:
|
317 |
+
hidden_states = self.pos_embed(hidden_states)
|
318 |
+
|
319 |
+
# 2. Blocks
|
320 |
+
for block in self.transformer_blocks:
|
321 |
+
hidden_states = block(
|
322 |
+
hidden_states,
|
323 |
+
attention_mask=attention_mask,
|
324 |
+
encoder_hidden_states=encoder_hidden_states,
|
325 |
+
dino_feature=dino_feature,
|
326 |
+
encoder_attention_mask=encoder_attention_mask,
|
327 |
+
timestep=timestep,
|
328 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
329 |
+
class_labels=class_labels,
|
330 |
+
hw_ratio=hw_ratio,
|
331 |
+
)
|
332 |
+
|
333 |
+
# 3. Output
|
334 |
+
if self.is_input_continuous:
|
335 |
+
if not self.use_linear_projection:
|
336 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
337 |
+
hidden_states = self.proj_out(hidden_states)
|
338 |
+
else:
|
339 |
+
hidden_states = self.proj_out(hidden_states)
|
340 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
341 |
+
|
342 |
+
output = hidden_states + residual
|
343 |
+
elif self.is_input_vectorized:
|
344 |
+
hidden_states = self.norm_out(hidden_states)
|
345 |
+
logits = self.out(hidden_states)
|
346 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
347 |
+
logits = logits.permute(0, 2, 1)
|
348 |
+
|
349 |
+
# log(p(x_0))
|
350 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
351 |
+
elif self.is_input_patches:
|
352 |
+
# TODO: cleanup!
|
353 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
354 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
355 |
+
)
|
356 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
357 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
358 |
+
hidden_states = self.proj_out_2(hidden_states)
|
359 |
+
|
360 |
+
# unpatchify
|
361 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
362 |
+
hidden_states = hidden_states.reshape(
|
363 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
364 |
+
)
|
365 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
366 |
+
output = hidden_states.reshape(
|
367 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
368 |
+
)
|
369 |
+
|
370 |
+
if not return_dict:
|
371 |
+
return (output,)
|
372 |
+
|
373 |
+
return TransformerMV2DModelOutput(sample=output)
|
374 |
+
|
375 |
+
|
376 |
+
@maybe_allow_in_graph
|
377 |
+
class BasicMVTransformerBlock(nn.Module):
|
378 |
+
r"""
|
379 |
+
A basic Transformer block.
|
380 |
+
|
381 |
+
Parameters:
|
382 |
+
dim (`int`): The number of channels in the input and output.
|
383 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
384 |
+
attention_head_dim (`int`): The number of channels in each head.
|
385 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
386 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
387 |
+
only_cross_attention (`bool`, *optional*):
|
388 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
389 |
+
double_self_attention (`bool`, *optional*):
|
390 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
391 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
392 |
+
num_embeds_ada_norm (:
|
393 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
394 |
+
attention_bias (:
|
395 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
396 |
+
"""
|
397 |
+
|
398 |
+
def __init__(
|
399 |
+
self,
|
400 |
+
dim: int,
|
401 |
+
num_attention_heads: int,
|
402 |
+
attention_head_dim: int,
|
403 |
+
dropout=0.0,
|
404 |
+
cross_attention_dim: Optional[int] = None,
|
405 |
+
activation_fn: str = "geglu",
|
406 |
+
num_embeds_ada_norm: Optional[int] = None,
|
407 |
+
attention_bias: bool = False,
|
408 |
+
only_cross_attention: bool = False,
|
409 |
+
double_self_attention: bool = False,
|
410 |
+
upcast_attention: bool = False,
|
411 |
+
norm_elementwise_affine: bool = True,
|
412 |
+
norm_type: str = "layer_norm",
|
413 |
+
final_dropout: bool = False,
|
414 |
+
num_views: int = 1,
|
415 |
+
cd_attention_last: bool = False,
|
416 |
+
cd_attention_mid: bool = False,
|
417 |
+
multiview_attention: bool = True,
|
418 |
+
mvcd_attention: bool = False,
|
419 |
+
rowwise_attention: bool = True,
|
420 |
+
use_dino: bool = False
|
421 |
+
):
|
422 |
+
super().__init__()
|
423 |
+
self.only_cross_attention = only_cross_attention
|
424 |
+
|
425 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
426 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
427 |
+
|
428 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
429 |
+
raise ValueError(
|
430 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
431 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
432 |
+
)
|
433 |
+
|
434 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
435 |
+
# 1. Self-Attn
|
436 |
+
if self.use_ada_layer_norm:
|
437 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
438 |
+
elif self.use_ada_layer_norm_zero:
|
439 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
440 |
+
else:
|
441 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
442 |
+
|
443 |
+
self.multiview_attention = multiview_attention
|
444 |
+
self.mvcd_attention = mvcd_attention
|
445 |
+
self.cd_attention_mid = cd_attention_mid
|
446 |
+
self.rowwise_attention = multiview_attention and rowwise_attention
|
447 |
+
|
448 |
+
if mvcd_attention and (not cd_attention_mid):
|
449 |
+
# add cross domain attn to self attn
|
450 |
+
self.attn1 = CustomJointAttention(
|
451 |
+
query_dim=dim,
|
452 |
+
heads=num_attention_heads,
|
453 |
+
dim_head=attention_head_dim,
|
454 |
+
dropout=dropout,
|
455 |
+
bias=attention_bias,
|
456 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
457 |
+
upcast_attention=upcast_attention,
|
458 |
+
processor=JointAttnProcessor()
|
459 |
+
)
|
460 |
+
else:
|
461 |
+
self.attn1 = Attention(
|
462 |
+
query_dim=dim,
|
463 |
+
heads=num_attention_heads,
|
464 |
+
dim_head=attention_head_dim,
|
465 |
+
dropout=dropout,
|
466 |
+
bias=attention_bias,
|
467 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
468 |
+
upcast_attention=upcast_attention
|
469 |
+
)
|
470 |
+
# 1.1 rowwise multiview attention
|
471 |
+
if self.rowwise_attention:
|
472 |
+
# print('INFO: using self+row_wise mv attention...')
|
473 |
+
self.norm_mv = (
|
474 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
475 |
+
if self.use_ada_layer_norm
|
476 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
477 |
+
)
|
478 |
+
self.attn_mv = CustomAttention(
|
479 |
+
query_dim=dim,
|
480 |
+
heads=num_attention_heads,
|
481 |
+
dim_head=attention_head_dim,
|
482 |
+
dropout=dropout,
|
483 |
+
bias=attention_bias,
|
484 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
485 |
+
upcast_attention=upcast_attention,
|
486 |
+
processor=MVAttnProcessor()
|
487 |
+
)
|
488 |
+
nn.init.zeros_(self.attn_mv.to_out[0].weight.data)
|
489 |
+
else:
|
490 |
+
self.norm_mv = None
|
491 |
+
self.attn_mv = None
|
492 |
+
|
493 |
+
# # 1.2 rowwise cross-domain attn
|
494 |
+
# if mvcd_attention:
|
495 |
+
# self.attn_joint = CustomJointAttention(
|
496 |
+
# query_dim=dim,
|
497 |
+
# heads=num_attention_heads,
|
498 |
+
# dim_head=attention_head_dim,
|
499 |
+
# dropout=dropout,
|
500 |
+
# bias=attention_bias,
|
501 |
+
# cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
502 |
+
# upcast_attention=upcast_attention,
|
503 |
+
# processor=JointAttnProcessor()
|
504 |
+
# )
|
505 |
+
# nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
506 |
+
# self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
507 |
+
# else:
|
508 |
+
# self.attn_joint = None
|
509 |
+
# self.norm_joint = None
|
510 |
+
|
511 |
+
# 2. Cross-Attn
|
512 |
+
if cross_attention_dim is not None or double_self_attention:
|
513 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
514 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
515 |
+
# the second cross attention block.
|
516 |
+
self.norm2 = (
|
517 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
518 |
+
if self.use_ada_layer_norm
|
519 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
520 |
+
)
|
521 |
+
self.attn2 = Attention(
|
522 |
+
query_dim=dim,
|
523 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
524 |
+
heads=num_attention_heads,
|
525 |
+
dim_head=attention_head_dim,
|
526 |
+
dropout=dropout,
|
527 |
+
bias=attention_bias,
|
528 |
+
upcast_attention=upcast_attention,
|
529 |
+
) # is self-attn if encoder_hidden_states is none
|
530 |
+
else:
|
531 |
+
self.norm2 = None
|
532 |
+
self.attn2 = None
|
533 |
+
|
534 |
+
# 3. Feed-forward
|
535 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
536 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
537 |
+
|
538 |
+
# let chunk size default to None
|
539 |
+
self._chunk_size = None
|
540 |
+
self._chunk_dim = 0
|
541 |
+
|
542 |
+
self.num_views = num_views
|
543 |
+
|
544 |
+
|
545 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
546 |
+
# Sets chunk feed-forward
|
547 |
+
self._chunk_size = chunk_size
|
548 |
+
self._chunk_dim = dim
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
hidden_states: torch.FloatTensor,
|
553 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
554 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
555 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
556 |
+
timestep: Optional[torch.LongTensor] = None,
|
557 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
558 |
+
class_labels: Optional[torch.LongTensor] = None,
|
559 |
+
dino_feature: Optional[torch.FloatTensor] = None,
|
560 |
+
hw_ratio: Optional[torch.FloatTensor] = 1.5,
|
561 |
+
):
|
562 |
+
assert attention_mask is None # not supported yet
|
563 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
564 |
+
# 1. Self-Attention
|
565 |
+
if self.use_ada_layer_norm:
|
566 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
567 |
+
elif self.use_ada_layer_norm_zero:
|
568 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
569 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
norm_hidden_states = self.norm1(hidden_states)
|
573 |
+
|
574 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
575 |
+
|
576 |
+
attn_output = self.attn1(
|
577 |
+
norm_hidden_states,
|
578 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
579 |
+
attention_mask=attention_mask,
|
580 |
+
# multiview_attention=self.multiview_attention,
|
581 |
+
# mvcd_attention=self.mvcd_attention,
|
582 |
+
**cross_attention_kwargs,
|
583 |
+
)
|
584 |
+
|
585 |
+
if self.use_ada_layer_norm_zero:
|
586 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
587 |
+
hidden_states = attn_output + hidden_states
|
588 |
+
|
589 |
+
# import pdb;pdb.set_trace()
|
590 |
+
# 1.1 row wise multiview attention
|
591 |
+
if self.rowwise_attention:
|
592 |
+
norm_hidden_states = (
|
593 |
+
self.norm_mv(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_mv(hidden_states)
|
594 |
+
)
|
595 |
+
attn_output = self.attn_mv(
|
596 |
+
norm_hidden_states,
|
597 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
598 |
+
attention_mask=attention_mask,
|
599 |
+
num_views=self.num_views,
|
600 |
+
multiview_attention=self.multiview_attention,
|
601 |
+
cd_attention_mid=self.cd_attention_mid,
|
602 |
+
hw_ratio=hw_ratio,
|
603 |
+
**cross_attention_kwargs,
|
604 |
+
)
|
605 |
+
hidden_states = attn_output + hidden_states
|
606 |
+
|
607 |
+
|
608 |
+
# 2. Cross-Attention
|
609 |
+
if self.attn2 is not None:
|
610 |
+
norm_hidden_states = (
|
611 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
612 |
+
)
|
613 |
+
|
614 |
+
attn_output = self.attn2(
|
615 |
+
norm_hidden_states,
|
616 |
+
encoder_hidden_states=encoder_hidden_states,
|
617 |
+
attention_mask=encoder_attention_mask,
|
618 |
+
**cross_attention_kwargs,
|
619 |
+
)
|
620 |
+
hidden_states = attn_output + hidden_states
|
621 |
+
|
622 |
+
# 3. Feed-forward
|
623 |
+
norm_hidden_states = self.norm3(hidden_states)
|
624 |
+
|
625 |
+
if self.use_ada_layer_norm_zero:
|
626 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
627 |
+
|
628 |
+
if self._chunk_size is not None:
|
629 |
+
# "feed_forward_chunk_size" can be used to save memory
|
630 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
631 |
+
raise ValueError(
|
632 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
633 |
+
)
|
634 |
+
|
635 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
636 |
+
ff_output = torch.cat(
|
637 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
638 |
+
dim=self._chunk_dim,
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
ff_output = self.ff(norm_hidden_states)
|
642 |
+
|
643 |
+
if self.use_ada_layer_norm_zero:
|
644 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
645 |
+
|
646 |
+
hidden_states = ff_output + hidden_states
|
647 |
+
|
648 |
+
return hidden_states
|
649 |
+
|
650 |
+
|
651 |
+
class CustomAttention(Attention):
|
652 |
+
def set_use_memory_efficient_attention_xformers(
|
653 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
654 |
+
):
|
655 |
+
processor = XFormersMVAttnProcessor()
|
656 |
+
self.set_processor(processor)
|
657 |
+
# print("using xformers attention processor")
|
658 |
+
|
659 |
+
|
660 |
+
class CustomJointAttention(Attention):
|
661 |
+
def set_use_memory_efficient_attention_xformers(
|
662 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
663 |
+
):
|
664 |
+
processor = XFormersJointAttnProcessor()
|
665 |
+
self.set_processor(processor)
|
666 |
+
# print("using xformers attention processor")
|
667 |
+
|
668 |
+
class MVAttnProcessor:
|
669 |
+
r"""
|
670 |
+
Default processor for performing attention-related computations.
|
671 |
+
"""
|
672 |
+
|
673 |
+
def __call__(
|
674 |
+
self,
|
675 |
+
attn: Attention,
|
676 |
+
hidden_states,
|
677 |
+
encoder_hidden_states=None,
|
678 |
+
attention_mask=None,
|
679 |
+
temb=None,
|
680 |
+
num_views=1,
|
681 |
+
cd_attention_mid=False
|
682 |
+
):
|
683 |
+
residual = hidden_states
|
684 |
+
|
685 |
+
if attn.spatial_norm is not None:
|
686 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
687 |
+
|
688 |
+
input_ndim = hidden_states.ndim
|
689 |
+
|
690 |
+
if input_ndim == 4:
|
691 |
+
batch_size, channel, height, width = hidden_states.shape
|
692 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
693 |
+
|
694 |
+
batch_size, sequence_length, _ = (
|
695 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
696 |
+
)
|
697 |
+
height = int(math.sqrt(sequence_length))
|
698 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
699 |
+
|
700 |
+
if attn.group_norm is not None:
|
701 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
702 |
+
|
703 |
+
query = attn.to_q(hidden_states)
|
704 |
+
|
705 |
+
if encoder_hidden_states is None:
|
706 |
+
encoder_hidden_states = hidden_states
|
707 |
+
elif attn.norm_cross:
|
708 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
709 |
+
|
710 |
+
key = attn.to_k(encoder_hidden_states)
|
711 |
+
value = attn.to_v(encoder_hidden_states)
|
712 |
+
|
713 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
714 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
715 |
+
# pdb.set_trace()
|
716 |
+
# multi-view self-attention
|
717 |
+
def transpose(tensor):
|
718 |
+
tensor = rearrange(tensor, "(b v) (h w) c -> b v h w c", v=num_views, h=height)
|
719 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # b v h w c
|
720 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=3) # b v h 2w c
|
721 |
+
tensor = rearrange(tensor, "b v h w c -> (b h) (v w) c", v=num_views, h=height)
|
722 |
+
return tensor
|
723 |
+
|
724 |
+
if cd_attention_mid:
|
725 |
+
key = transpose(key)
|
726 |
+
value = transpose(value)
|
727 |
+
query = transpose(query)
|
728 |
+
else:
|
729 |
+
key = rearrange(key, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
730 |
+
value = rearrange(value, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
731 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
732 |
+
|
733 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
734 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
735 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
736 |
+
|
737 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
738 |
+
hidden_states = torch.bmm(attention_probs, value)
|
739 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
740 |
+
|
741 |
+
# linear proj
|
742 |
+
hidden_states = attn.to_out[0](hidden_states)
|
743 |
+
# dropout
|
744 |
+
hidden_states = attn.to_out[1](hidden_states)
|
745 |
+
if cd_attention_mid:
|
746 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> b v h w c", v=num_views, h=height)
|
747 |
+
hidden_states_0, hidden_states_1 = torch.chunk(hidden_states, dim=3, chunks=2) # b v h w c
|
748 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) # 2b v h w c
|
749 |
+
hidden_states = rearrange(hidden_states, "b v h w c -> (b v) (h w) c", v=num_views, h=height)
|
750 |
+
else:
|
751 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
752 |
+
if input_ndim == 4:
|
753 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
754 |
+
|
755 |
+
if attn.residual_connection:
|
756 |
+
hidden_states = hidden_states + residual
|
757 |
+
|
758 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
759 |
+
|
760 |
+
return hidden_states
|
761 |
+
|
762 |
+
|
763 |
+
class XFormersMVAttnProcessor:
|
764 |
+
r"""
|
765 |
+
Default processor for performing attention-related computations.
|
766 |
+
"""
|
767 |
+
|
768 |
+
def __call__(
|
769 |
+
self,
|
770 |
+
attn: Attention,
|
771 |
+
hidden_states,
|
772 |
+
encoder_hidden_states=None,
|
773 |
+
attention_mask=None,
|
774 |
+
temb=None,
|
775 |
+
num_views=1,
|
776 |
+
multiview_attention=True,
|
777 |
+
cd_attention_mid=False,
|
778 |
+
hw_ratio=1.5
|
779 |
+
):
|
780 |
+
# print(num_views)
|
781 |
+
residual = hidden_states
|
782 |
+
|
783 |
+
if attn.spatial_norm is not None:
|
784 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
785 |
+
|
786 |
+
input_ndim = hidden_states.ndim
|
787 |
+
|
788 |
+
if input_ndim == 4:
|
789 |
+
batch_size, channel, height, width = hidden_states.shape
|
790 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
791 |
+
|
792 |
+
batch_size, sequence_length, _ = (
|
793 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
794 |
+
)
|
795 |
+
height = int(math.sqrt(sequence_length*hw_ratio))
|
796 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
797 |
+
# from yuancheng; here attention_mask is None
|
798 |
+
if attention_mask is not None:
|
799 |
+
# expand our mask's singleton query_tokens dimension:
|
800 |
+
# [batch*heads, 1, key_tokens] ->
|
801 |
+
# [batch*heads, query_tokens, key_tokens]
|
802 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
803 |
+
# [batch*heads, query_tokens, key_tokens]
|
804 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
805 |
+
_, query_tokens, _ = hidden_states.shape
|
806 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
807 |
+
|
808 |
+
if attn.group_norm is not None:
|
809 |
+
print('Warning: using group norm, pay attention to use it in row-wise attention')
|
810 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
811 |
+
|
812 |
+
query = attn.to_q(hidden_states)
|
813 |
+
|
814 |
+
if encoder_hidden_states is None:
|
815 |
+
encoder_hidden_states = hidden_states
|
816 |
+
elif attn.norm_cross:
|
817 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
818 |
+
|
819 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
820 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
821 |
+
|
822 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
823 |
+
# pdb.set_trace()
|
824 |
+
def transpose(tensor):
|
825 |
+
tensor = rearrange(tensor, "(b v) (h w) c -> b v h w c", v=num_views, h=height)
|
826 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # b v h w c
|
827 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=3) # b v h 2w c
|
828 |
+
tensor = rearrange(tensor, "b v h w c -> (b h) (v w) c", v=num_views, h=height)
|
829 |
+
return tensor
|
830 |
+
# print(mvcd_attention)
|
831 |
+
# import pdb;pdb.set_trace()
|
832 |
+
if cd_attention_mid:
|
833 |
+
key = transpose(key_raw)
|
834 |
+
value = transpose(value_raw)
|
835 |
+
query = transpose(query)
|
836 |
+
else:
|
837 |
+
key = rearrange(key_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
838 |
+
value = rearrange(value_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
839 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
840 |
+
|
841 |
+
|
842 |
+
query = attn.head_to_batch_dim(query) # torch.Size([960, 384, 64])
|
843 |
+
key = attn.head_to_batch_dim(key)
|
844 |
+
value = attn.head_to_batch_dim(value)
|
845 |
+
|
846 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
847 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
848 |
+
|
849 |
+
# linear proj
|
850 |
+
hidden_states = attn.to_out[0](hidden_states)
|
851 |
+
# dropout
|
852 |
+
hidden_states = attn.to_out[1](hidden_states)
|
853 |
+
|
854 |
+
if cd_attention_mid:
|
855 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> b v h w c", v=num_views, h=height)
|
856 |
+
hidden_states_0, hidden_states_1 = torch.chunk(hidden_states, dim=3, chunks=2) # b v h w c
|
857 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) # 2b v h w c
|
858 |
+
hidden_states = rearrange(hidden_states, "b v h w c -> (b v) (h w) c", v=num_views, h=height)
|
859 |
+
else:
|
860 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
861 |
+
if input_ndim == 4:
|
862 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
863 |
+
|
864 |
+
if attn.residual_connection:
|
865 |
+
hidden_states = hidden_states + residual
|
866 |
+
|
867 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
868 |
+
|
869 |
+
return hidden_states
|
870 |
+
|
871 |
+
|
872 |
+
class XFormersJointAttnProcessor:
|
873 |
+
r"""
|
874 |
+
Default processor for performing attention-related computations.
|
875 |
+
"""
|
876 |
+
|
877 |
+
def __call__(
|
878 |
+
self,
|
879 |
+
attn: Attention,
|
880 |
+
hidden_states,
|
881 |
+
encoder_hidden_states=None,
|
882 |
+
attention_mask=None,
|
883 |
+
temb=None,
|
884 |
+
num_tasks=2
|
885 |
+
):
|
886 |
+
residual = hidden_states
|
887 |
+
|
888 |
+
if attn.spatial_norm is not None:
|
889 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
890 |
+
|
891 |
+
input_ndim = hidden_states.ndim
|
892 |
+
|
893 |
+
if input_ndim == 4:
|
894 |
+
batch_size, channel, height, width = hidden_states.shape
|
895 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
896 |
+
|
897 |
+
batch_size, sequence_length, _ = (
|
898 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
899 |
+
)
|
900 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
901 |
+
|
902 |
+
# from yuancheng; here attention_mask is None
|
903 |
+
if attention_mask is not None:
|
904 |
+
# expand our mask's singleton query_tokens dimension:
|
905 |
+
# [batch*heads, 1, key_tokens] ->
|
906 |
+
# [batch*heads, query_tokens, key_tokens]
|
907 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
908 |
+
# [batch*heads, query_tokens, key_tokens]
|
909 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
910 |
+
_, query_tokens, _ = hidden_states.shape
|
911 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
912 |
+
|
913 |
+
if attn.group_norm is not None:
|
914 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
915 |
+
|
916 |
+
query = attn.to_q(hidden_states)
|
917 |
+
|
918 |
+
if encoder_hidden_states is None:
|
919 |
+
encoder_hidden_states = hidden_states
|
920 |
+
elif attn.norm_cross:
|
921 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
922 |
+
|
923 |
+
key = attn.to_k(encoder_hidden_states)
|
924 |
+
value = attn.to_v(encoder_hidden_states)
|
925 |
+
|
926 |
+
assert num_tasks == 2 # only support two tasks now
|
927 |
+
|
928 |
+
def transpose(tensor):
|
929 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # bv hw c
|
930 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=1) # bv 2hw c
|
931 |
+
return tensor
|
932 |
+
key = transpose(key)
|
933 |
+
value = transpose(value)
|
934 |
+
query = transpose(query)
|
935 |
+
# from icecream import ic
|
936 |
+
# ic(key.shape, value.shape, query.shape)
|
937 |
+
# import pdb;pdb.set_trace()
|
938 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
939 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
940 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
941 |
+
|
942 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
943 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
944 |
+
|
945 |
+
# linear proj
|
946 |
+
hidden_states = attn.to_out[0](hidden_states)
|
947 |
+
# dropout
|
948 |
+
hidden_states = attn.to_out[1](hidden_states)
|
949 |
+
hidden_states_normal, hidden_states_color = torch.chunk(hidden_states, dim=1, chunks=2)
|
950 |
+
hidden_states = torch.cat([hidden_states_normal, hidden_states_color], dim=0) # 2bv hw c
|
951 |
+
|
952 |
+
if input_ndim == 4:
|
953 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
954 |
+
|
955 |
+
if attn.residual_connection:
|
956 |
+
hidden_states = hidden_states + residual
|
957 |
+
|
958 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
959 |
+
|
960 |
+
return hidden_states
|
961 |
+
|
962 |
+
|
963 |
+
class JointAttnProcessor:
|
964 |
+
r"""
|
965 |
+
Default processor for performing attention-related computations.
|
966 |
+
"""
|
967 |
+
|
968 |
+
def __call__(
|
969 |
+
self,
|
970 |
+
attn: Attention,
|
971 |
+
hidden_states,
|
972 |
+
encoder_hidden_states=None,
|
973 |
+
attention_mask=None,
|
974 |
+
temb=None,
|
975 |
+
num_tasks=2
|
976 |
+
):
|
977 |
+
|
978 |
+
residual = hidden_states
|
979 |
+
|
980 |
+
if attn.spatial_norm is not None:
|
981 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
982 |
+
|
983 |
+
input_ndim = hidden_states.ndim
|
984 |
+
|
985 |
+
if input_ndim == 4:
|
986 |
+
batch_size, channel, height, width = hidden_states.shape
|
987 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
988 |
+
|
989 |
+
batch_size, sequence_length, _ = (
|
990 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
991 |
+
)
|
992 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
993 |
+
|
994 |
+
|
995 |
+
if attn.group_norm is not None:
|
996 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
997 |
+
|
998 |
+
query = attn.to_q(hidden_states)
|
999 |
+
|
1000 |
+
if encoder_hidden_states is None:
|
1001 |
+
encoder_hidden_states = hidden_states
|
1002 |
+
elif attn.norm_cross:
|
1003 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1004 |
+
|
1005 |
+
key = attn.to_k(encoder_hidden_states)
|
1006 |
+
value = attn.to_v(encoder_hidden_states)
|
1007 |
+
|
1008 |
+
assert num_tasks == 2 # only support two tasks now
|
1009 |
+
|
1010 |
+
def transpose(tensor):
|
1011 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # bv hw c
|
1012 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=1) # bv 2hw c
|
1013 |
+
return tensor
|
1014 |
+
key = transpose(key)
|
1015 |
+
value = transpose(value)
|
1016 |
+
query = transpose(query)
|
1017 |
+
|
1018 |
+
|
1019 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1020 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1021 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1022 |
+
|
1023 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1024 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1025 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1026 |
+
|
1027 |
+
|
1028 |
+
# linear proj
|
1029 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1030 |
+
# dropout
|
1031 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1032 |
+
|
1033 |
+
hidden_states = torch.cat([hidden_states[:, 0], hidden_states[:, 1]], dim=0) # 2bv hw c
|
1034 |
+
if input_ndim == 4:
|
1035 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1036 |
+
|
1037 |
+
if attn.residual_connection:
|
1038 |
+
hidden_states = hidden_states + residual
|
1039 |
+
|
1040 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1041 |
+
|
1042 |
+
return hidden_states
|
multiview/models/unet_mv2d_blocks.py
ADDED
@@ -0,0 +1,980 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import is_torch_version, logging
|
22 |
+
from diffusers.models.normalization import AdaGroupNorm
|
23 |
+
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
24 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
26 |
+
|
27 |
+
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
28 |
+
from diffusers.models.unets.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
def get_down_block(
|
35 |
+
down_block_type,
|
36 |
+
num_layers,
|
37 |
+
in_channels,
|
38 |
+
out_channels,
|
39 |
+
temb_channels,
|
40 |
+
add_downsample,
|
41 |
+
resnet_eps,
|
42 |
+
resnet_act_fn,
|
43 |
+
transformer_layers_per_block=1,
|
44 |
+
num_attention_heads=None,
|
45 |
+
resnet_groups=None,
|
46 |
+
cross_attention_dim=None,
|
47 |
+
downsample_padding=None,
|
48 |
+
dual_cross_attention=False,
|
49 |
+
use_linear_projection=False,
|
50 |
+
only_cross_attention=False,
|
51 |
+
upcast_attention=False,
|
52 |
+
resnet_time_scale_shift="default",
|
53 |
+
resnet_skip_time_act=False,
|
54 |
+
resnet_out_scale_factor=1.0,
|
55 |
+
cross_attention_norm=None,
|
56 |
+
attention_head_dim=None,
|
57 |
+
downsample_type=None,
|
58 |
+
num_views=1,
|
59 |
+
cd_attention_last: bool = False,
|
60 |
+
cd_attention_mid: bool = False,
|
61 |
+
multiview_attention: bool = True,
|
62 |
+
sparse_mv_attention: bool = False,
|
63 |
+
selfattn_block: str = "custom",
|
64 |
+
mvcd_attention: bool=False,
|
65 |
+
use_dino: bool = False
|
66 |
+
):
|
67 |
+
# If attn head dim is not defined, we default it to the number of heads
|
68 |
+
if attention_head_dim is None:
|
69 |
+
logger.warn(
|
70 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
71 |
+
)
|
72 |
+
attention_head_dim = num_attention_heads
|
73 |
+
|
74 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
75 |
+
if down_block_type == "DownBlock2D":
|
76 |
+
return DownBlock2D(
|
77 |
+
num_layers=num_layers,
|
78 |
+
in_channels=in_channels,
|
79 |
+
out_channels=out_channels,
|
80 |
+
temb_channels=temb_channels,
|
81 |
+
add_downsample=add_downsample,
|
82 |
+
resnet_eps=resnet_eps,
|
83 |
+
resnet_act_fn=resnet_act_fn,
|
84 |
+
resnet_groups=resnet_groups,
|
85 |
+
downsample_padding=downsample_padding,
|
86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
87 |
+
)
|
88 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
89 |
+
return ResnetDownsampleBlock2D(
|
90 |
+
num_layers=num_layers,
|
91 |
+
in_channels=in_channels,
|
92 |
+
out_channels=out_channels,
|
93 |
+
temb_channels=temb_channels,
|
94 |
+
add_downsample=add_downsample,
|
95 |
+
resnet_eps=resnet_eps,
|
96 |
+
resnet_act_fn=resnet_act_fn,
|
97 |
+
resnet_groups=resnet_groups,
|
98 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
+
skip_time_act=resnet_skip_time_act,
|
100 |
+
output_scale_factor=resnet_out_scale_factor,
|
101 |
+
)
|
102 |
+
elif down_block_type == "AttnDownBlock2D":
|
103 |
+
if add_downsample is False:
|
104 |
+
downsample_type = None
|
105 |
+
else:
|
106 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
107 |
+
return AttnDownBlock2D(
|
108 |
+
num_layers=num_layers,
|
109 |
+
in_channels=in_channels,
|
110 |
+
out_channels=out_channels,
|
111 |
+
temb_channels=temb_channels,
|
112 |
+
resnet_eps=resnet_eps,
|
113 |
+
resnet_act_fn=resnet_act_fn,
|
114 |
+
resnet_groups=resnet_groups,
|
115 |
+
downsample_padding=downsample_padding,
|
116 |
+
attention_head_dim=attention_head_dim,
|
117 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
118 |
+
downsample_type=downsample_type,
|
119 |
+
)
|
120 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
121 |
+
if cross_attention_dim is None:
|
122 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
123 |
+
return CrossAttnDownBlock2D(
|
124 |
+
num_layers=num_layers,
|
125 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
126 |
+
in_channels=in_channels,
|
127 |
+
out_channels=out_channels,
|
128 |
+
temb_channels=temb_channels,
|
129 |
+
add_downsample=add_downsample,
|
130 |
+
resnet_eps=resnet_eps,
|
131 |
+
resnet_act_fn=resnet_act_fn,
|
132 |
+
resnet_groups=resnet_groups,
|
133 |
+
downsample_padding=downsample_padding,
|
134 |
+
cross_attention_dim=cross_attention_dim,
|
135 |
+
num_attention_heads=num_attention_heads,
|
136 |
+
dual_cross_attention=dual_cross_attention,
|
137 |
+
use_linear_projection=use_linear_projection,
|
138 |
+
only_cross_attention=only_cross_attention,
|
139 |
+
upcast_attention=upcast_attention,
|
140 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
141 |
+
)
|
142 |
+
# custom MV2D attention block
|
143 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
144 |
+
if cross_attention_dim is None:
|
145 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
146 |
+
return CrossAttnDownBlockMV2D(
|
147 |
+
num_layers=num_layers,
|
148 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
149 |
+
in_channels=in_channels,
|
150 |
+
out_channels=out_channels,
|
151 |
+
temb_channels=temb_channels,
|
152 |
+
add_downsample=add_downsample,
|
153 |
+
resnet_eps=resnet_eps,
|
154 |
+
resnet_act_fn=resnet_act_fn,
|
155 |
+
resnet_groups=resnet_groups,
|
156 |
+
downsample_padding=downsample_padding,
|
157 |
+
cross_attention_dim=cross_attention_dim,
|
158 |
+
num_attention_heads=num_attention_heads,
|
159 |
+
dual_cross_attention=dual_cross_attention,
|
160 |
+
use_linear_projection=use_linear_projection,
|
161 |
+
only_cross_attention=only_cross_attention,
|
162 |
+
upcast_attention=upcast_attention,
|
163 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
164 |
+
num_views=num_views,
|
165 |
+
cd_attention_last=cd_attention_last,
|
166 |
+
cd_attention_mid=cd_attention_mid,
|
167 |
+
multiview_attention=multiview_attention,
|
168 |
+
sparse_mv_attention=sparse_mv_attention,
|
169 |
+
selfattn_block=selfattn_block,
|
170 |
+
mvcd_attention=mvcd_attention,
|
171 |
+
use_dino=use_dino
|
172 |
+
)
|
173 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
174 |
+
if cross_attention_dim is None:
|
175 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
176 |
+
return SimpleCrossAttnDownBlock2D(
|
177 |
+
num_layers=num_layers,
|
178 |
+
in_channels=in_channels,
|
179 |
+
out_channels=out_channels,
|
180 |
+
temb_channels=temb_channels,
|
181 |
+
add_downsample=add_downsample,
|
182 |
+
resnet_eps=resnet_eps,
|
183 |
+
resnet_act_fn=resnet_act_fn,
|
184 |
+
resnet_groups=resnet_groups,
|
185 |
+
cross_attention_dim=cross_attention_dim,
|
186 |
+
attention_head_dim=attention_head_dim,
|
187 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
188 |
+
skip_time_act=resnet_skip_time_act,
|
189 |
+
output_scale_factor=resnet_out_scale_factor,
|
190 |
+
only_cross_attention=only_cross_attention,
|
191 |
+
cross_attention_norm=cross_attention_norm,
|
192 |
+
)
|
193 |
+
elif down_block_type == "SkipDownBlock2D":
|
194 |
+
return SkipDownBlock2D(
|
195 |
+
num_layers=num_layers,
|
196 |
+
in_channels=in_channels,
|
197 |
+
out_channels=out_channels,
|
198 |
+
temb_channels=temb_channels,
|
199 |
+
add_downsample=add_downsample,
|
200 |
+
resnet_eps=resnet_eps,
|
201 |
+
resnet_act_fn=resnet_act_fn,
|
202 |
+
downsample_padding=downsample_padding,
|
203 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
204 |
+
)
|
205 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
206 |
+
return AttnSkipDownBlock2D(
|
207 |
+
num_layers=num_layers,
|
208 |
+
in_channels=in_channels,
|
209 |
+
out_channels=out_channels,
|
210 |
+
temb_channels=temb_channels,
|
211 |
+
add_downsample=add_downsample,
|
212 |
+
resnet_eps=resnet_eps,
|
213 |
+
resnet_act_fn=resnet_act_fn,
|
214 |
+
attention_head_dim=attention_head_dim,
|
215 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
216 |
+
)
|
217 |
+
elif down_block_type == "DownEncoderBlock2D":
|
218 |
+
return DownEncoderBlock2D(
|
219 |
+
num_layers=num_layers,
|
220 |
+
in_channels=in_channels,
|
221 |
+
out_channels=out_channels,
|
222 |
+
add_downsample=add_downsample,
|
223 |
+
resnet_eps=resnet_eps,
|
224 |
+
resnet_act_fn=resnet_act_fn,
|
225 |
+
resnet_groups=resnet_groups,
|
226 |
+
downsample_padding=downsample_padding,
|
227 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
228 |
+
)
|
229 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
230 |
+
return AttnDownEncoderBlock2D(
|
231 |
+
num_layers=num_layers,
|
232 |
+
in_channels=in_channels,
|
233 |
+
out_channels=out_channels,
|
234 |
+
add_downsample=add_downsample,
|
235 |
+
resnet_eps=resnet_eps,
|
236 |
+
resnet_act_fn=resnet_act_fn,
|
237 |
+
resnet_groups=resnet_groups,
|
238 |
+
downsample_padding=downsample_padding,
|
239 |
+
attention_head_dim=attention_head_dim,
|
240 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
241 |
+
)
|
242 |
+
elif down_block_type == "KDownBlock2D":
|
243 |
+
return KDownBlock2D(
|
244 |
+
num_layers=num_layers,
|
245 |
+
in_channels=in_channels,
|
246 |
+
out_channels=out_channels,
|
247 |
+
temb_channels=temb_channels,
|
248 |
+
add_downsample=add_downsample,
|
249 |
+
resnet_eps=resnet_eps,
|
250 |
+
resnet_act_fn=resnet_act_fn,
|
251 |
+
)
|
252 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
253 |
+
return KCrossAttnDownBlock2D(
|
254 |
+
num_layers=num_layers,
|
255 |
+
in_channels=in_channels,
|
256 |
+
out_channels=out_channels,
|
257 |
+
temb_channels=temb_channels,
|
258 |
+
add_downsample=add_downsample,
|
259 |
+
resnet_eps=resnet_eps,
|
260 |
+
resnet_act_fn=resnet_act_fn,
|
261 |
+
cross_attention_dim=cross_attention_dim,
|
262 |
+
attention_head_dim=attention_head_dim,
|
263 |
+
add_self_attention=True if not add_downsample else False,
|
264 |
+
)
|
265 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
266 |
+
|
267 |
+
|
268 |
+
def get_up_block(
|
269 |
+
up_block_type,
|
270 |
+
num_layers,
|
271 |
+
in_channels,
|
272 |
+
out_channels,
|
273 |
+
prev_output_channel,
|
274 |
+
temb_channels,
|
275 |
+
add_upsample,
|
276 |
+
resnet_eps,
|
277 |
+
resnet_act_fn,
|
278 |
+
transformer_layers_per_block=1,
|
279 |
+
num_attention_heads=None,
|
280 |
+
resnet_groups=None,
|
281 |
+
cross_attention_dim=None,
|
282 |
+
dual_cross_attention=False,
|
283 |
+
use_linear_projection=False,
|
284 |
+
only_cross_attention=False,
|
285 |
+
upcast_attention=False,
|
286 |
+
resnet_time_scale_shift="default",
|
287 |
+
resnet_skip_time_act=False,
|
288 |
+
resnet_out_scale_factor=1.0,
|
289 |
+
cross_attention_norm=None,
|
290 |
+
attention_head_dim=None,
|
291 |
+
upsample_type=None,
|
292 |
+
num_views=1,
|
293 |
+
cd_attention_last: bool = False,
|
294 |
+
cd_attention_mid: bool = False,
|
295 |
+
multiview_attention: bool = True,
|
296 |
+
sparse_mv_attention: bool = False,
|
297 |
+
selfattn_block: str = "custom",
|
298 |
+
mvcd_attention: bool=False,
|
299 |
+
use_dino: bool = False
|
300 |
+
):
|
301 |
+
# If attn head dim is not defined, we default it to the number of heads
|
302 |
+
if attention_head_dim is None:
|
303 |
+
logger.warn(
|
304 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
305 |
+
)
|
306 |
+
attention_head_dim = num_attention_heads
|
307 |
+
|
308 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
309 |
+
if up_block_type == "UpBlock2D":
|
310 |
+
return UpBlock2D(
|
311 |
+
num_layers=num_layers,
|
312 |
+
in_channels=in_channels,
|
313 |
+
out_channels=out_channels,
|
314 |
+
prev_output_channel=prev_output_channel,
|
315 |
+
temb_channels=temb_channels,
|
316 |
+
add_upsample=add_upsample,
|
317 |
+
resnet_eps=resnet_eps,
|
318 |
+
resnet_act_fn=resnet_act_fn,
|
319 |
+
resnet_groups=resnet_groups,
|
320 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
321 |
+
)
|
322 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
323 |
+
return ResnetUpsampleBlock2D(
|
324 |
+
num_layers=num_layers,
|
325 |
+
in_channels=in_channels,
|
326 |
+
out_channels=out_channels,
|
327 |
+
prev_output_channel=prev_output_channel,
|
328 |
+
temb_channels=temb_channels,
|
329 |
+
add_upsample=add_upsample,
|
330 |
+
resnet_eps=resnet_eps,
|
331 |
+
resnet_act_fn=resnet_act_fn,
|
332 |
+
resnet_groups=resnet_groups,
|
333 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
334 |
+
skip_time_act=resnet_skip_time_act,
|
335 |
+
output_scale_factor=resnet_out_scale_factor,
|
336 |
+
)
|
337 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
338 |
+
if cross_attention_dim is None:
|
339 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
340 |
+
return CrossAttnUpBlock2D(
|
341 |
+
num_layers=num_layers,
|
342 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
343 |
+
in_channels=in_channels,
|
344 |
+
out_channels=out_channels,
|
345 |
+
prev_output_channel=prev_output_channel,
|
346 |
+
temb_channels=temb_channels,
|
347 |
+
add_upsample=add_upsample,
|
348 |
+
resnet_eps=resnet_eps,
|
349 |
+
resnet_act_fn=resnet_act_fn,
|
350 |
+
resnet_groups=resnet_groups,
|
351 |
+
cross_attention_dim=cross_attention_dim,
|
352 |
+
num_attention_heads=num_attention_heads,
|
353 |
+
dual_cross_attention=dual_cross_attention,
|
354 |
+
use_linear_projection=use_linear_projection,
|
355 |
+
only_cross_attention=only_cross_attention,
|
356 |
+
upcast_attention=upcast_attention,
|
357 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
358 |
+
)
|
359 |
+
# custom MV2D attention block
|
360 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
361 |
+
if cross_attention_dim is None:
|
362 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
363 |
+
return CrossAttnUpBlockMV2D(
|
364 |
+
num_layers=num_layers,
|
365 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
366 |
+
in_channels=in_channels,
|
367 |
+
out_channels=out_channels,
|
368 |
+
prev_output_channel=prev_output_channel,
|
369 |
+
temb_channels=temb_channels,
|
370 |
+
add_upsample=add_upsample,
|
371 |
+
resnet_eps=resnet_eps,
|
372 |
+
resnet_act_fn=resnet_act_fn,
|
373 |
+
resnet_groups=resnet_groups,
|
374 |
+
cross_attention_dim=cross_attention_dim,
|
375 |
+
num_attention_heads=num_attention_heads,
|
376 |
+
dual_cross_attention=dual_cross_attention,
|
377 |
+
use_linear_projection=use_linear_projection,
|
378 |
+
only_cross_attention=only_cross_attention,
|
379 |
+
upcast_attention=upcast_attention,
|
380 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
381 |
+
num_views=num_views,
|
382 |
+
cd_attention_last=cd_attention_last,
|
383 |
+
cd_attention_mid=cd_attention_mid,
|
384 |
+
multiview_attention=multiview_attention,
|
385 |
+
sparse_mv_attention=sparse_mv_attention,
|
386 |
+
selfattn_block=selfattn_block,
|
387 |
+
mvcd_attention=mvcd_attention,
|
388 |
+
use_dino=use_dino
|
389 |
+
)
|
390 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
391 |
+
if cross_attention_dim is None:
|
392 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
393 |
+
return SimpleCrossAttnUpBlock2D(
|
394 |
+
num_layers=num_layers,
|
395 |
+
in_channels=in_channels,
|
396 |
+
out_channels=out_channels,
|
397 |
+
prev_output_channel=prev_output_channel,
|
398 |
+
temb_channels=temb_channels,
|
399 |
+
add_upsample=add_upsample,
|
400 |
+
resnet_eps=resnet_eps,
|
401 |
+
resnet_act_fn=resnet_act_fn,
|
402 |
+
resnet_groups=resnet_groups,
|
403 |
+
cross_attention_dim=cross_attention_dim,
|
404 |
+
attention_head_dim=attention_head_dim,
|
405 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
406 |
+
skip_time_act=resnet_skip_time_act,
|
407 |
+
output_scale_factor=resnet_out_scale_factor,
|
408 |
+
only_cross_attention=only_cross_attention,
|
409 |
+
cross_attention_norm=cross_attention_norm,
|
410 |
+
)
|
411 |
+
elif up_block_type == "AttnUpBlock2D":
|
412 |
+
if add_upsample is False:
|
413 |
+
upsample_type = None
|
414 |
+
else:
|
415 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
416 |
+
|
417 |
+
return AttnUpBlock2D(
|
418 |
+
num_layers=num_layers,
|
419 |
+
in_channels=in_channels,
|
420 |
+
out_channels=out_channels,
|
421 |
+
prev_output_channel=prev_output_channel,
|
422 |
+
temb_channels=temb_channels,
|
423 |
+
resnet_eps=resnet_eps,
|
424 |
+
resnet_act_fn=resnet_act_fn,
|
425 |
+
resnet_groups=resnet_groups,
|
426 |
+
attention_head_dim=attention_head_dim,
|
427 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
428 |
+
upsample_type=upsample_type,
|
429 |
+
)
|
430 |
+
elif up_block_type == "SkipUpBlock2D":
|
431 |
+
return SkipUpBlock2D(
|
432 |
+
num_layers=num_layers,
|
433 |
+
in_channels=in_channels,
|
434 |
+
out_channels=out_channels,
|
435 |
+
prev_output_channel=prev_output_channel,
|
436 |
+
temb_channels=temb_channels,
|
437 |
+
add_upsample=add_upsample,
|
438 |
+
resnet_eps=resnet_eps,
|
439 |
+
resnet_act_fn=resnet_act_fn,
|
440 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
441 |
+
)
|
442 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
443 |
+
return AttnSkipUpBlock2D(
|
444 |
+
num_layers=num_layers,
|
445 |
+
in_channels=in_channels,
|
446 |
+
out_channels=out_channels,
|
447 |
+
prev_output_channel=prev_output_channel,
|
448 |
+
temb_channels=temb_channels,
|
449 |
+
add_upsample=add_upsample,
|
450 |
+
resnet_eps=resnet_eps,
|
451 |
+
resnet_act_fn=resnet_act_fn,
|
452 |
+
attention_head_dim=attention_head_dim,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
)
|
455 |
+
elif up_block_type == "UpDecoderBlock2D":
|
456 |
+
return UpDecoderBlock2D(
|
457 |
+
num_layers=num_layers,
|
458 |
+
in_channels=in_channels,
|
459 |
+
out_channels=out_channels,
|
460 |
+
add_upsample=add_upsample,
|
461 |
+
resnet_eps=resnet_eps,
|
462 |
+
resnet_act_fn=resnet_act_fn,
|
463 |
+
resnet_groups=resnet_groups,
|
464 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
465 |
+
temb_channels=temb_channels,
|
466 |
+
)
|
467 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
468 |
+
return AttnUpDecoderBlock2D(
|
469 |
+
num_layers=num_layers,
|
470 |
+
in_channels=in_channels,
|
471 |
+
out_channels=out_channels,
|
472 |
+
add_upsample=add_upsample,
|
473 |
+
resnet_eps=resnet_eps,
|
474 |
+
resnet_act_fn=resnet_act_fn,
|
475 |
+
resnet_groups=resnet_groups,
|
476 |
+
attention_head_dim=attention_head_dim,
|
477 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
478 |
+
temb_channels=temb_channels,
|
479 |
+
)
|
480 |
+
elif up_block_type == "KUpBlock2D":
|
481 |
+
return KUpBlock2D(
|
482 |
+
num_layers=num_layers,
|
483 |
+
in_channels=in_channels,
|
484 |
+
out_channels=out_channels,
|
485 |
+
temb_channels=temb_channels,
|
486 |
+
add_upsample=add_upsample,
|
487 |
+
resnet_eps=resnet_eps,
|
488 |
+
resnet_act_fn=resnet_act_fn,
|
489 |
+
)
|
490 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
491 |
+
return KCrossAttnUpBlock2D(
|
492 |
+
num_layers=num_layers,
|
493 |
+
in_channels=in_channels,
|
494 |
+
out_channels=out_channels,
|
495 |
+
temb_channels=temb_channels,
|
496 |
+
add_upsample=add_upsample,
|
497 |
+
resnet_eps=resnet_eps,
|
498 |
+
resnet_act_fn=resnet_act_fn,
|
499 |
+
cross_attention_dim=cross_attention_dim,
|
500 |
+
attention_head_dim=attention_head_dim,
|
501 |
+
)
|
502 |
+
|
503 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
504 |
+
|
505 |
+
|
506 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
507 |
+
def __init__(
|
508 |
+
self,
|
509 |
+
in_channels: int,
|
510 |
+
temb_channels: int,
|
511 |
+
dropout: float = 0.0,
|
512 |
+
num_layers: int = 1,
|
513 |
+
transformer_layers_per_block: int = 1,
|
514 |
+
resnet_eps: float = 1e-6,
|
515 |
+
resnet_time_scale_shift: str = "default",
|
516 |
+
resnet_act_fn: str = "swish",
|
517 |
+
resnet_groups: int = 32,
|
518 |
+
resnet_pre_norm: bool = True,
|
519 |
+
num_attention_heads=1,
|
520 |
+
output_scale_factor=1.0,
|
521 |
+
cross_attention_dim=1280,
|
522 |
+
dual_cross_attention=False,
|
523 |
+
use_linear_projection=False,
|
524 |
+
upcast_attention=False,
|
525 |
+
num_views: int = 1,
|
526 |
+
cd_attention_last: bool = False,
|
527 |
+
cd_attention_mid: bool = False,
|
528 |
+
multiview_attention: bool = True,
|
529 |
+
sparse_mv_attention: bool = False,
|
530 |
+
selfattn_block: str = "custom",
|
531 |
+
mvcd_attention: bool=False,
|
532 |
+
use_dino: bool = False
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
|
536 |
+
self.has_cross_attention = True
|
537 |
+
self.num_attention_heads = num_attention_heads
|
538 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
539 |
+
if selfattn_block == "custom":
|
540 |
+
from .transformer_mv2d import TransformerMV2DModel
|
541 |
+
elif selfattn_block == "rowwise":
|
542 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
543 |
+
elif selfattn_block == "self_rowwise":
|
544 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
545 |
+
else:
|
546 |
+
raise NotImplementedError
|
547 |
+
|
548 |
+
# there is always at least one resnet
|
549 |
+
resnets = [
|
550 |
+
ResnetBlock2D(
|
551 |
+
in_channels=in_channels,
|
552 |
+
out_channels=in_channels,
|
553 |
+
temb_channels=temb_channels,
|
554 |
+
eps=resnet_eps,
|
555 |
+
groups=resnet_groups,
|
556 |
+
dropout=dropout,
|
557 |
+
time_embedding_norm=resnet_time_scale_shift,
|
558 |
+
non_linearity=resnet_act_fn,
|
559 |
+
output_scale_factor=output_scale_factor,
|
560 |
+
pre_norm=resnet_pre_norm,
|
561 |
+
)
|
562 |
+
]
|
563 |
+
attentions = []
|
564 |
+
|
565 |
+
for _ in range(num_layers):
|
566 |
+
if not dual_cross_attention:
|
567 |
+
attentions.append(
|
568 |
+
TransformerMV2DModel(
|
569 |
+
num_attention_heads,
|
570 |
+
in_channels // num_attention_heads,
|
571 |
+
in_channels=in_channels,
|
572 |
+
num_layers=transformer_layers_per_block,
|
573 |
+
cross_attention_dim=cross_attention_dim,
|
574 |
+
norm_num_groups=resnet_groups,
|
575 |
+
use_linear_projection=use_linear_projection,
|
576 |
+
upcast_attention=upcast_attention,
|
577 |
+
num_views=num_views,
|
578 |
+
cd_attention_last=cd_attention_last,
|
579 |
+
cd_attention_mid=cd_attention_mid,
|
580 |
+
multiview_attention=multiview_attention,
|
581 |
+
sparse_mv_attention=sparse_mv_attention,
|
582 |
+
mvcd_attention=mvcd_attention,
|
583 |
+
use_dino=use_dino
|
584 |
+
)
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
raise NotImplementedError
|
588 |
+
resnets.append(
|
589 |
+
ResnetBlock2D(
|
590 |
+
in_channels=in_channels,
|
591 |
+
out_channels=in_channels,
|
592 |
+
temb_channels=temb_channels,
|
593 |
+
eps=resnet_eps,
|
594 |
+
groups=resnet_groups,
|
595 |
+
dropout=dropout,
|
596 |
+
time_embedding_norm=resnet_time_scale_shift,
|
597 |
+
non_linearity=resnet_act_fn,
|
598 |
+
output_scale_factor=output_scale_factor,
|
599 |
+
pre_norm=resnet_pre_norm,
|
600 |
+
)
|
601 |
+
)
|
602 |
+
|
603 |
+
self.attentions = nn.ModuleList(attentions)
|
604 |
+
self.resnets = nn.ModuleList(resnets)
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self,
|
608 |
+
hidden_states: torch.FloatTensor,
|
609 |
+
temb: Optional[torch.FloatTensor] = None,
|
610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
614 |
+
dino_feature: Optional[torch.FloatTensor] = None
|
615 |
+
) -> torch.FloatTensor:
|
616 |
+
hw_ratio = hidden_states.size(2) / hidden_states.size(3)
|
617 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
618 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
619 |
+
hidden_states = attn(
|
620 |
+
hidden_states,
|
621 |
+
encoder_hidden_states=encoder_hidden_states,
|
622 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
623 |
+
attention_mask=attention_mask,
|
624 |
+
encoder_attention_mask=encoder_attention_mask,
|
625 |
+
dino_feature=dino_feature,
|
626 |
+
return_dict=False,
|
627 |
+
hw_ratio=hw_ratio,
|
628 |
+
)[0]
|
629 |
+
hidden_states = resnet(hidden_states, temb)
|
630 |
+
|
631 |
+
return hidden_states
|
632 |
+
|
633 |
+
|
634 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
635 |
+
def __init__(
|
636 |
+
self,
|
637 |
+
in_channels: int,
|
638 |
+
out_channels: int,
|
639 |
+
prev_output_channel: int,
|
640 |
+
temb_channels: int,
|
641 |
+
dropout: float = 0.0,
|
642 |
+
num_layers: int = 1,
|
643 |
+
transformer_layers_per_block: int = 1,
|
644 |
+
resnet_eps: float = 1e-6,
|
645 |
+
resnet_time_scale_shift: str = "default",
|
646 |
+
resnet_act_fn: str = "swish",
|
647 |
+
resnet_groups: int = 32,
|
648 |
+
resnet_pre_norm: bool = True,
|
649 |
+
num_attention_heads=1,
|
650 |
+
cross_attention_dim=1280,
|
651 |
+
output_scale_factor=1.0,
|
652 |
+
add_upsample=True,
|
653 |
+
dual_cross_attention=False,
|
654 |
+
use_linear_projection=False,
|
655 |
+
only_cross_attention=False,
|
656 |
+
upcast_attention=False,
|
657 |
+
num_views: int = 1,
|
658 |
+
cd_attention_last: bool = False,
|
659 |
+
cd_attention_mid: bool = False,
|
660 |
+
multiview_attention: bool = True,
|
661 |
+
sparse_mv_attention: bool = False,
|
662 |
+
selfattn_block: str = "custom",
|
663 |
+
mvcd_attention: bool=False,
|
664 |
+
use_dino: bool = False
|
665 |
+
):
|
666 |
+
super().__init__()
|
667 |
+
resnets = []
|
668 |
+
attentions = []
|
669 |
+
|
670 |
+
self.has_cross_attention = True
|
671 |
+
self.num_attention_heads = num_attention_heads
|
672 |
+
|
673 |
+
if selfattn_block == "custom":
|
674 |
+
from .transformer_mv2d import TransformerMV2DModel
|
675 |
+
elif selfattn_block == "rowwise":
|
676 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
677 |
+
elif selfattn_block == "self_rowwise":
|
678 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
679 |
+
else:
|
680 |
+
raise NotImplementedError
|
681 |
+
|
682 |
+
for i in range(num_layers):
|
683 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
684 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
685 |
+
|
686 |
+
resnets.append(
|
687 |
+
ResnetBlock2D(
|
688 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
689 |
+
out_channels=out_channels,
|
690 |
+
temb_channels=temb_channels,
|
691 |
+
eps=resnet_eps,
|
692 |
+
groups=resnet_groups,
|
693 |
+
dropout=dropout,
|
694 |
+
time_embedding_norm=resnet_time_scale_shift,
|
695 |
+
non_linearity=resnet_act_fn,
|
696 |
+
output_scale_factor=output_scale_factor,
|
697 |
+
pre_norm=resnet_pre_norm,
|
698 |
+
)
|
699 |
+
)
|
700 |
+
if not dual_cross_attention:
|
701 |
+
attentions.append(
|
702 |
+
TransformerMV2DModel(
|
703 |
+
num_attention_heads,
|
704 |
+
out_channels // num_attention_heads,
|
705 |
+
in_channels=out_channels,
|
706 |
+
num_layers=transformer_layers_per_block,
|
707 |
+
cross_attention_dim=cross_attention_dim,
|
708 |
+
norm_num_groups=resnet_groups,
|
709 |
+
use_linear_projection=use_linear_projection,
|
710 |
+
only_cross_attention=only_cross_attention,
|
711 |
+
upcast_attention=upcast_attention,
|
712 |
+
num_views=num_views,
|
713 |
+
cd_attention_last=cd_attention_last,
|
714 |
+
cd_attention_mid=cd_attention_mid,
|
715 |
+
multiview_attention=multiview_attention,
|
716 |
+
sparse_mv_attention=sparse_mv_attention,
|
717 |
+
mvcd_attention=mvcd_attention,
|
718 |
+
use_dino=use_dino
|
719 |
+
)
|
720 |
+
)
|
721 |
+
else:
|
722 |
+
raise NotImplementedError
|
723 |
+
self.attentions = nn.ModuleList(attentions)
|
724 |
+
self.resnets = nn.ModuleList(resnets)
|
725 |
+
|
726 |
+
if add_upsample:
|
727 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
728 |
+
else:
|
729 |
+
self.upsamplers = None
|
730 |
+
|
731 |
+
self.gradient_checkpointing = False
|
732 |
+
|
733 |
+
def forward(
|
734 |
+
self,
|
735 |
+
hidden_states: torch.FloatTensor,
|
736 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
737 |
+
temb: Optional[torch.FloatTensor] = None,
|
738 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
739 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
740 |
+
upsample_size: Optional[int] = None,
|
741 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
742 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
743 |
+
dino_feature: Optional[torch.FloatTensor] = None
|
744 |
+
):
|
745 |
+
hw_ratio = hidden_states.size(2) / hidden_states.size(3)
|
746 |
+
|
747 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
748 |
+
# pop res hidden states
|
749 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
750 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
751 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
752 |
+
|
753 |
+
if self.training and self.gradient_checkpointing:
|
754 |
+
|
755 |
+
def create_custom_forward(module, return_dict=None):
|
756 |
+
def custom_forward(*inputs):
|
757 |
+
if return_dict is not None:
|
758 |
+
return module(*inputs, return_dict=return_dict)
|
759 |
+
else:
|
760 |
+
return module(*inputs)
|
761 |
+
|
762 |
+
return custom_forward
|
763 |
+
|
764 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
765 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
766 |
+
create_custom_forward(resnet),
|
767 |
+
hidden_states,
|
768 |
+
temb,
|
769 |
+
**ckpt_kwargs,
|
770 |
+
)
|
771 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
772 |
+
create_custom_forward(attn, return_dict=False),
|
773 |
+
hidden_states,
|
774 |
+
encoder_hidden_states,
|
775 |
+
dino_feature,
|
776 |
+
None, # timestep
|
777 |
+
None, # class_labels
|
778 |
+
cross_attention_kwargs,
|
779 |
+
attention_mask,
|
780 |
+
encoder_attention_mask,
|
781 |
+
hw_ratio,
|
782 |
+
**ckpt_kwargs,
|
783 |
+
)[0]
|
784 |
+
else:
|
785 |
+
hidden_states = resnet(hidden_states, temb)
|
786 |
+
hidden_states = attn(
|
787 |
+
hidden_states,
|
788 |
+
encoder_hidden_states=encoder_hidden_states,
|
789 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
790 |
+
attention_mask=attention_mask,
|
791 |
+
encoder_attention_mask=encoder_attention_mask,
|
792 |
+
dino_feature=dino_feature,
|
793 |
+
hw_ratio=hw_ratio,
|
794 |
+
return_dict=False,
|
795 |
+
)[0]
|
796 |
+
|
797 |
+
if self.upsamplers is not None:
|
798 |
+
for upsampler in self.upsamplers:
|
799 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
800 |
+
|
801 |
+
return hidden_states
|
802 |
+
|
803 |
+
|
804 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
805 |
+
def __init__(
|
806 |
+
self,
|
807 |
+
in_channels: int,
|
808 |
+
out_channels: int,
|
809 |
+
temb_channels: int,
|
810 |
+
dropout: float = 0.0,
|
811 |
+
num_layers: int = 1,
|
812 |
+
transformer_layers_per_block: int = 1,
|
813 |
+
resnet_eps: float = 1e-6,
|
814 |
+
resnet_time_scale_shift: str = "default",
|
815 |
+
resnet_act_fn: str = "swish",
|
816 |
+
resnet_groups: int = 32,
|
817 |
+
resnet_pre_norm: bool = True,
|
818 |
+
num_attention_heads=1,
|
819 |
+
cross_attention_dim=1280,
|
820 |
+
output_scale_factor=1.0,
|
821 |
+
downsample_padding=1,
|
822 |
+
add_downsample=True,
|
823 |
+
dual_cross_attention=False,
|
824 |
+
use_linear_projection=False,
|
825 |
+
only_cross_attention=False,
|
826 |
+
upcast_attention=False,
|
827 |
+
num_views: int = 1,
|
828 |
+
cd_attention_last: bool = False,
|
829 |
+
cd_attention_mid: bool = False,
|
830 |
+
multiview_attention: bool = True,
|
831 |
+
sparse_mv_attention: bool = False,
|
832 |
+
selfattn_block: str = "custom",
|
833 |
+
mvcd_attention: bool=False,
|
834 |
+
use_dino: bool = False
|
835 |
+
):
|
836 |
+
super().__init__()
|
837 |
+
resnets = []
|
838 |
+
attentions = []
|
839 |
+
|
840 |
+
self.has_cross_attention = True
|
841 |
+
self.num_attention_heads = num_attention_heads
|
842 |
+
if selfattn_block == "custom":
|
843 |
+
from .transformer_mv2d import TransformerMV2DModel
|
844 |
+
elif selfattn_block == "rowwise":
|
845 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
846 |
+
elif selfattn_block == "self_rowwise":
|
847 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
848 |
+
else:
|
849 |
+
raise NotImplementedError
|
850 |
+
|
851 |
+
for i in range(num_layers):
|
852 |
+
in_channels = in_channels if i == 0 else out_channels
|
853 |
+
resnets.append(
|
854 |
+
ResnetBlock2D(
|
855 |
+
in_channels=in_channels,
|
856 |
+
out_channels=out_channels,
|
857 |
+
temb_channels=temb_channels,
|
858 |
+
eps=resnet_eps,
|
859 |
+
groups=resnet_groups,
|
860 |
+
dropout=dropout,
|
861 |
+
time_embedding_norm=resnet_time_scale_shift,
|
862 |
+
non_linearity=resnet_act_fn,
|
863 |
+
output_scale_factor=output_scale_factor,
|
864 |
+
pre_norm=resnet_pre_norm,
|
865 |
+
)
|
866 |
+
)
|
867 |
+
if not dual_cross_attention:
|
868 |
+
attentions.append(
|
869 |
+
TransformerMV2DModel(
|
870 |
+
num_attention_heads,
|
871 |
+
out_channels // num_attention_heads,
|
872 |
+
in_channels=out_channels,
|
873 |
+
num_layers=transformer_layers_per_block,
|
874 |
+
cross_attention_dim=cross_attention_dim,
|
875 |
+
norm_num_groups=resnet_groups,
|
876 |
+
use_linear_projection=use_linear_projection,
|
877 |
+
only_cross_attention=only_cross_attention,
|
878 |
+
upcast_attention=upcast_attention,
|
879 |
+
num_views=num_views,
|
880 |
+
cd_attention_last=cd_attention_last,
|
881 |
+
cd_attention_mid=cd_attention_mid,
|
882 |
+
multiview_attention=multiview_attention,
|
883 |
+
sparse_mv_attention=sparse_mv_attention,
|
884 |
+
mvcd_attention=mvcd_attention,
|
885 |
+
use_dino=use_dino
|
886 |
+
)
|
887 |
+
)
|
888 |
+
else:
|
889 |
+
raise NotImplementedError
|
890 |
+
self.attentions = nn.ModuleList(attentions)
|
891 |
+
self.resnets = nn.ModuleList(resnets)
|
892 |
+
|
893 |
+
if add_downsample:
|
894 |
+
self.downsamplers = nn.ModuleList(
|
895 |
+
[
|
896 |
+
Downsample2D(
|
897 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
898 |
+
)
|
899 |
+
]
|
900 |
+
)
|
901 |
+
else:
|
902 |
+
self.downsamplers = None
|
903 |
+
|
904 |
+
self.gradient_checkpointing = False
|
905 |
+
|
906 |
+
def forward(
|
907 |
+
self,
|
908 |
+
hidden_states: torch.FloatTensor,
|
909 |
+
temb: Optional[torch.FloatTensor] = None,
|
910 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
911 |
+
dino_feature: Optional[torch.FloatTensor] = None,
|
912 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
913 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
914 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
915 |
+
additional_residuals=None,
|
916 |
+
):
|
917 |
+
output_states = ()
|
918 |
+
|
919 |
+
hw_ratio = hidden_states.size(2) / hidden_states.size(3)
|
920 |
+
blocks = list(zip(self.resnets, self.attentions))
|
921 |
+
|
922 |
+
for i, (resnet, attn) in enumerate(blocks):
|
923 |
+
if self.training and self.gradient_checkpointing:
|
924 |
+
|
925 |
+
def create_custom_forward(module, return_dict=None):
|
926 |
+
def custom_forward(*inputs):
|
927 |
+
if return_dict is not None:
|
928 |
+
return module(*inputs, return_dict=return_dict)
|
929 |
+
else:
|
930 |
+
return module(*inputs)
|
931 |
+
|
932 |
+
return custom_forward
|
933 |
+
|
934 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
935 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
936 |
+
create_custom_forward(resnet),
|
937 |
+
hidden_states,
|
938 |
+
temb,
|
939 |
+
**ckpt_kwargs,
|
940 |
+
)
|
941 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
942 |
+
create_custom_forward(attn, return_dict=False),
|
943 |
+
hidden_states,
|
944 |
+
encoder_hidden_states,
|
945 |
+
dino_feature,
|
946 |
+
None, # timestep
|
947 |
+
None, # class_labels
|
948 |
+
cross_attention_kwargs,
|
949 |
+
attention_mask,
|
950 |
+
encoder_attention_mask,
|
951 |
+
hw_ratio,
|
952 |
+
**ckpt_kwargs,
|
953 |
+
)[0]
|
954 |
+
else:
|
955 |
+
hidden_states = resnet(hidden_states, temb)
|
956 |
+
hidden_states = attn(
|
957 |
+
hidden_states,
|
958 |
+
encoder_hidden_states=encoder_hidden_states,
|
959 |
+
dino_feature=dino_feature,
|
960 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
961 |
+
attention_mask=attention_mask,
|
962 |
+
encoder_attention_mask=encoder_attention_mask,
|
963 |
+
hw_ratio=hw_ratio,
|
964 |
+
return_dict=False,
|
965 |
+
)[0]
|
966 |
+
|
967 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
968 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
969 |
+
hidden_states = hidden_states + additional_residuals
|
970 |
+
|
971 |
+
output_states = output_states + (hidden_states,)
|
972 |
+
|
973 |
+
if self.downsamplers is not None:
|
974 |
+
for downsampler in self.downsamplers:
|
975 |
+
hidden_states = downsampler(hidden_states)
|
976 |
+
|
977 |
+
output_states = output_states + (hidden_states,)
|
978 |
+
|
979 |
+
return hidden_states, output_states
|
980 |
+
|
multiview/models/unet_mv2d_condition.py
ADDED
@@ -0,0 +1,1685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.utils import BaseOutput, logging
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
27 |
+
from diffusers.models.embeddings import (
|
28 |
+
GaussianFourierProjection,
|
29 |
+
ImageHintTimeEmbedding,
|
30 |
+
ImageProjection,
|
31 |
+
ImageTimeEmbedding,
|
32 |
+
TextImageProjection,
|
33 |
+
TextImageTimeEmbedding,
|
34 |
+
TextTimeEmbedding,
|
35 |
+
TimestepEmbedding,
|
36 |
+
Timesteps,
|
37 |
+
)
|
38 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
39 |
+
from diffusers.models.unet_2d_blocks import (
|
40 |
+
CrossAttnDownBlock2D,
|
41 |
+
CrossAttnUpBlock2D,
|
42 |
+
DownBlock2D,
|
43 |
+
UNetMidBlock2DCrossAttn,
|
44 |
+
UNetMidBlock2DSimpleCrossAttn,
|
45 |
+
UpBlock2D,
|
46 |
+
)
|
47 |
+
from diffusers.utils import (
|
48 |
+
CONFIG_NAME,
|
49 |
+
FLAX_WEIGHTS_NAME,
|
50 |
+
SAFETENSORS_WEIGHTS_NAME,
|
51 |
+
WEIGHTS_NAME,
|
52 |
+
_add_variant,
|
53 |
+
_get_model_file,
|
54 |
+
deprecate,
|
55 |
+
is_torch_version,
|
56 |
+
logging,
|
57 |
+
)
|
58 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
59 |
+
from diffusers.utils.hub_utils import HF_HUB_OFFLINE
|
60 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
61 |
+
DIFFUSERS_CACHE = HUGGINGFACE_HUB_CACHE
|
62 |
+
|
63 |
+
from diffusers import __version__
|
64 |
+
from .unet_mv2d_blocks import (
|
65 |
+
CrossAttnDownBlockMV2D,
|
66 |
+
CrossAttnUpBlockMV2D,
|
67 |
+
UNetMidBlockMV2DCrossAttn,
|
68 |
+
get_down_block,
|
69 |
+
get_up_block,
|
70 |
+
)
|
71 |
+
from einops import rearrange, repeat
|
72 |
+
|
73 |
+
from diffusers import __version__
|
74 |
+
from .unet_mv2d_blocks import (
|
75 |
+
CrossAttnDownBlockMV2D,
|
76 |
+
CrossAttnUpBlockMV2D,
|
77 |
+
UNetMidBlockMV2DCrossAttn,
|
78 |
+
get_down_block,
|
79 |
+
get_up_block,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
84 |
+
|
85 |
+
|
86 |
+
@dataclass
|
87 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
88 |
+
"""
|
89 |
+
The output of [`UNet2DConditionModel`].
|
90 |
+
|
91 |
+
Args:
|
92 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
93 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
94 |
+
"""
|
95 |
+
|
96 |
+
sample: torch.FloatTensor = None
|
97 |
+
|
98 |
+
|
99 |
+
class ResidualBlock(nn.Module):
|
100 |
+
def __init__(self, dim):
|
101 |
+
super(ResidualBlock, self).__init__()
|
102 |
+
self.linear1 = nn.Linear(dim, dim)
|
103 |
+
self.activation = nn.SiLU()
|
104 |
+
self.linear2 = nn.Linear(dim, dim)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
identity = x
|
108 |
+
out = self.linear1(x)
|
109 |
+
out = self.activation(out)
|
110 |
+
out = self.linear2(out)
|
111 |
+
out += identity
|
112 |
+
out = self.activation(out)
|
113 |
+
return out
|
114 |
+
|
115 |
+
class ResidualLiner(nn.Module):
|
116 |
+
def __init__(self, in_features, out_features, dim, act=None, num_block=1):
|
117 |
+
super(ResidualLiner, self).__init__()
|
118 |
+
self.linear_in = nn.Sequential(nn.Linear(in_features, dim), nn.SiLU())
|
119 |
+
|
120 |
+
blocks = nn.ModuleList()
|
121 |
+
for _ in range(num_block):
|
122 |
+
blocks.append(ResidualBlock(dim))
|
123 |
+
self.blocks = blocks
|
124 |
+
|
125 |
+
self.linear_out = nn.Linear(dim, out_features)
|
126 |
+
self.act = act
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
out = self.linear_in(x)
|
130 |
+
for block in self.blocks:
|
131 |
+
out = block(out)
|
132 |
+
out = self.linear_out(out)
|
133 |
+
if self.act is not None:
|
134 |
+
out = self.act(out)
|
135 |
+
return out
|
136 |
+
|
137 |
+
class BasicConvBlock(nn.Module):
|
138 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
139 |
+
super(BasicConvBlock, self).__init__()
|
140 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
141 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
142 |
+
self.act = nn.SiLU()
|
143 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
144 |
+
self.norm2 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
145 |
+
self.downsample = nn.Sequential()
|
146 |
+
if stride != 1 or in_channels != out_channels:
|
147 |
+
self.downsample = nn.Sequential(
|
148 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
149 |
+
nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
150 |
+
)
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
identity = x
|
154 |
+
out = self.conv1(x)
|
155 |
+
out = self.norm1(out)
|
156 |
+
out = self.act(out)
|
157 |
+
out = self.conv2(out)
|
158 |
+
out = self.norm2(out)
|
159 |
+
out += self.downsample(identity)
|
160 |
+
out = self.act(out)
|
161 |
+
return out
|
162 |
+
|
163 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
164 |
+
r"""
|
165 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
166 |
+
shaped output.
|
167 |
+
|
168 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
169 |
+
for all models (such as downloading or saving).
|
170 |
+
|
171 |
+
Parameters:
|
172 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
173 |
+
Height and width of input/output sample.
|
174 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
175 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
176 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
177 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
178 |
+
Whether to flip the sin to cos in the time embedding.
|
179 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
180 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
181 |
+
The tuple of downsample blocks to use.
|
182 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
183 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
184 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
185 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
186 |
+
The tuple of upsample blocks to use.
|
187 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
188 |
+
Whether to include self-attention in the basic transformer blocks, see
|
189 |
+
[`~models.attention.BasicTransformerBlock`].
|
190 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
191 |
+
The tuple of output channels for each block.
|
192 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
193 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
194 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
195 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
196 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
197 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
198 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
199 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
200 |
+
The dimension of the cross attention features.
|
201 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
202 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
203 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
204 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
205 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
206 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
207 |
+
dimension to `cross_attention_dim`.
|
208 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
209 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
210 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
211 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
212 |
+
num_attention_heads (`int`, *optional*):
|
213 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
214 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
215 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
216 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
217 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
218 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
219 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
220 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
221 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
222 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
223 |
+
Dimension for the timestep embeddings.
|
224 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
225 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
226 |
+
class conditioning with `class_embed_type` equal to `None`.
|
227 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
228 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
229 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
230 |
+
An optional override for the dimension of the projected time embedding.
|
231 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
232 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
233 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
234 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
235 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
236 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
237 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
238 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
239 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
240 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
241 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
242 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
243 |
+
embeddings with the class embeddings.
|
244 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
245 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
246 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
247 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
248 |
+
otherwise.
|
249 |
+
"""
|
250 |
+
|
251 |
+
_supports_gradient_checkpointing = True
|
252 |
+
|
253 |
+
@register_to_config
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
sample_size: Optional[int] = None,
|
257 |
+
in_channels: int = 4,
|
258 |
+
out_channels: int = 4,
|
259 |
+
center_input_sample: bool = False,
|
260 |
+
flip_sin_to_cos: bool = True,
|
261 |
+
freq_shift: int = 0,
|
262 |
+
down_block_types: Tuple[str] = (
|
263 |
+
"CrossAttnDownBlockMV2D",
|
264 |
+
"CrossAttnDownBlockMV2D",
|
265 |
+
"CrossAttnDownBlockMV2D",
|
266 |
+
"DownBlock2D",
|
267 |
+
),
|
268 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
269 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
270 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
271 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
272 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
273 |
+
downsample_padding: int = 1,
|
274 |
+
mid_block_scale_factor: float = 1,
|
275 |
+
act_fn: str = "silu",
|
276 |
+
norm_num_groups: Optional[int] = 32,
|
277 |
+
norm_eps: float = 1e-5,
|
278 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
279 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
280 |
+
encoder_hid_dim: Optional[int] = None,
|
281 |
+
encoder_hid_dim_type: Optional[str] = None,
|
282 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
283 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
284 |
+
dual_cross_attention: bool = False,
|
285 |
+
use_linear_projection: bool = False,
|
286 |
+
class_embed_type: Optional[str] = None,
|
287 |
+
addition_embed_type: Optional[str] = None,
|
288 |
+
addition_time_embed_dim: Optional[int] = None,
|
289 |
+
num_class_embeds: Optional[int] = None,
|
290 |
+
upcast_attention: bool = False,
|
291 |
+
resnet_time_scale_shift: str = "default",
|
292 |
+
resnet_skip_time_act: bool = False,
|
293 |
+
resnet_out_scale_factor: int = 1.0,
|
294 |
+
time_embedding_type: str = "positional",
|
295 |
+
time_embedding_dim: Optional[int] = None,
|
296 |
+
time_embedding_act_fn: Optional[str] = None,
|
297 |
+
timestep_post_act: Optional[str] = None,
|
298 |
+
time_cond_proj_dim: Optional[int] = None,
|
299 |
+
conv_in_kernel: int = 3,
|
300 |
+
conv_out_kernel: int = 3,
|
301 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
302 |
+
projection_camera_embeddings_input_dim: Optional[int] = None,
|
303 |
+
class_embeddings_concat: bool = False,
|
304 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
305 |
+
cross_attention_norm: Optional[str] = None,
|
306 |
+
addition_embed_type_num_heads=64,
|
307 |
+
num_views: int = 1,
|
308 |
+
cd_attention_last: bool = False,
|
309 |
+
cd_attention_mid: bool = False,
|
310 |
+
multiview_attention: bool = True,
|
311 |
+
sparse_mv_attention: bool = False,
|
312 |
+
selfattn_block: str = "custom",
|
313 |
+
mvcd_attention: bool = False,
|
314 |
+
regress_elevation: bool = False,
|
315 |
+
regress_focal_length: bool = False,
|
316 |
+
num_regress_blocks: int = 4,
|
317 |
+
use_dino: bool = False,
|
318 |
+
addition_downsample: bool = False,
|
319 |
+
addition_channels: Optional[Tuple[int]] = (1280, 1280, 1280),
|
320 |
+
):
|
321 |
+
super().__init__()
|
322 |
+
|
323 |
+
self.sample_size = sample_size
|
324 |
+
self.num_views = num_views
|
325 |
+
self.mvcd_attention = mvcd_attention
|
326 |
+
if num_attention_heads is not None:
|
327 |
+
raise ValueError(
|
328 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
329 |
+
)
|
330 |
+
|
331 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
332 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
333 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
334 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
335 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
336 |
+
# which is why we correct for the naming here.
|
337 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
338 |
+
|
339 |
+
# Check inputs
|
340 |
+
if len(down_block_types) != len(up_block_types):
|
341 |
+
raise ValueError(
|
342 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
343 |
+
)
|
344 |
+
|
345 |
+
if len(block_out_channels) != len(down_block_types):
|
346 |
+
raise ValueError(
|
347 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
348 |
+
)
|
349 |
+
|
350 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
351 |
+
raise ValueError(
|
352 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
353 |
+
)
|
354 |
+
|
355 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
356 |
+
raise ValueError(
|
357 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
358 |
+
)
|
359 |
+
|
360 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
361 |
+
raise ValueError(
|
362 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
363 |
+
)
|
364 |
+
|
365 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
366 |
+
raise ValueError(
|
367 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
368 |
+
)
|
369 |
+
|
370 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
371 |
+
raise ValueError(
|
372 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
373 |
+
)
|
374 |
+
|
375 |
+
# input
|
376 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
377 |
+
self.conv_in = nn.Conv2d(
|
378 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
379 |
+
)
|
380 |
+
|
381 |
+
# time
|
382 |
+
if time_embedding_type == "fourier":
|
383 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
384 |
+
if time_embed_dim % 2 != 0:
|
385 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
386 |
+
self.time_proj = GaussianFourierProjection(
|
387 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
388 |
+
)
|
389 |
+
timestep_input_dim = time_embed_dim
|
390 |
+
elif time_embedding_type == "positional":
|
391 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
392 |
+
|
393 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
394 |
+
timestep_input_dim = block_out_channels[0]
|
395 |
+
else:
|
396 |
+
raise ValueError(
|
397 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
398 |
+
)
|
399 |
+
|
400 |
+
self.time_embedding = TimestepEmbedding(
|
401 |
+
timestep_input_dim,
|
402 |
+
time_embed_dim,
|
403 |
+
act_fn=act_fn,
|
404 |
+
post_act_fn=timestep_post_act,
|
405 |
+
cond_proj_dim=time_cond_proj_dim,
|
406 |
+
)
|
407 |
+
|
408 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
409 |
+
encoder_hid_dim_type = "text_proj"
|
410 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
411 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
412 |
+
|
413 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
414 |
+
raise ValueError(
|
415 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
416 |
+
)
|
417 |
+
|
418 |
+
if encoder_hid_dim_type == "text_proj":
|
419 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
420 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
421 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
422 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
423 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
424 |
+
self.encoder_hid_proj = TextImageProjection(
|
425 |
+
text_embed_dim=encoder_hid_dim,
|
426 |
+
image_embed_dim=cross_attention_dim,
|
427 |
+
cross_attention_dim=cross_attention_dim,
|
428 |
+
)
|
429 |
+
elif encoder_hid_dim_type == "image_proj":
|
430 |
+
# Kandinsky 2.2
|
431 |
+
self.encoder_hid_proj = ImageProjection(
|
432 |
+
image_embed_dim=encoder_hid_dim,
|
433 |
+
cross_attention_dim=cross_attention_dim,
|
434 |
+
)
|
435 |
+
elif encoder_hid_dim_type is not None:
|
436 |
+
raise ValueError(
|
437 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
self.encoder_hid_proj = None
|
441 |
+
|
442 |
+
# class embedding
|
443 |
+
if class_embed_type is None and num_class_embeds is not None:
|
444 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
445 |
+
elif class_embed_type == "timestep":
|
446 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
447 |
+
elif class_embed_type == "identity":
|
448 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
449 |
+
elif class_embed_type == "projection":
|
450 |
+
if projection_class_embeddings_input_dim is None:
|
451 |
+
raise ValueError(
|
452 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
453 |
+
)
|
454 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
455 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
456 |
+
# 2. it projects from an arbitrary input dimension.
|
457 |
+
#
|
458 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
459 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
460 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
461 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
462 |
+
elif class_embed_type == "simple_projection":
|
463 |
+
if projection_class_embeddings_input_dim is None:
|
464 |
+
raise ValueError(
|
465 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
466 |
+
)
|
467 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
468 |
+
else:
|
469 |
+
self.class_embedding = None
|
470 |
+
|
471 |
+
if addition_embed_type == "text":
|
472 |
+
if encoder_hid_dim is not None:
|
473 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
474 |
+
else:
|
475 |
+
text_time_embedding_from_dim = cross_attention_dim
|
476 |
+
|
477 |
+
self.add_embedding = TextTimeEmbedding(
|
478 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
479 |
+
)
|
480 |
+
elif addition_embed_type == "text_image":
|
481 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
482 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
483 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
484 |
+
self.add_embedding = TextImageTimeEmbedding(
|
485 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
486 |
+
)
|
487 |
+
elif addition_embed_type == "text_time":
|
488 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
489 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
490 |
+
elif addition_embed_type == "image":
|
491 |
+
# Kandinsky 2.2
|
492 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
493 |
+
elif addition_embed_type == "image_hint":
|
494 |
+
# Kandinsky 2.2 ControlNet
|
495 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
496 |
+
elif addition_embed_type is not None:
|
497 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
498 |
+
|
499 |
+
if time_embedding_act_fn is None:
|
500 |
+
self.time_embed_act = None
|
501 |
+
else:
|
502 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
503 |
+
|
504 |
+
self.down_blocks = nn.ModuleList([])
|
505 |
+
self.up_blocks = nn.ModuleList([])
|
506 |
+
|
507 |
+
if isinstance(only_cross_attention, bool):
|
508 |
+
if mid_block_only_cross_attention is None:
|
509 |
+
mid_block_only_cross_attention = only_cross_attention
|
510 |
+
|
511 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
512 |
+
|
513 |
+
if mid_block_only_cross_attention is None:
|
514 |
+
mid_block_only_cross_attention = False
|
515 |
+
|
516 |
+
if isinstance(num_attention_heads, int):
|
517 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
518 |
+
|
519 |
+
if isinstance(attention_head_dim, int):
|
520 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
521 |
+
|
522 |
+
if isinstance(cross_attention_dim, int):
|
523 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
524 |
+
|
525 |
+
if isinstance(layers_per_block, int):
|
526 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
527 |
+
|
528 |
+
if isinstance(transformer_layers_per_block, int):
|
529 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
530 |
+
|
531 |
+
if class_embeddings_concat:
|
532 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
533 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
534 |
+
# regular time embeddings
|
535 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
536 |
+
else:
|
537 |
+
blocks_time_embed_dim = time_embed_dim
|
538 |
+
|
539 |
+
# down
|
540 |
+
output_channel = block_out_channels[0]
|
541 |
+
for i, down_block_type in enumerate(down_block_types):
|
542 |
+
input_channel = output_channel
|
543 |
+
output_channel = block_out_channels[i]
|
544 |
+
is_final_block = i == len(block_out_channels) - 1
|
545 |
+
|
546 |
+
down_block = get_down_block(
|
547 |
+
down_block_type,
|
548 |
+
num_layers=layers_per_block[i],
|
549 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
550 |
+
in_channels=input_channel,
|
551 |
+
out_channels=output_channel,
|
552 |
+
temb_channels=blocks_time_embed_dim,
|
553 |
+
add_downsample=not is_final_block,
|
554 |
+
resnet_eps=norm_eps,
|
555 |
+
resnet_act_fn=act_fn,
|
556 |
+
resnet_groups=norm_num_groups,
|
557 |
+
cross_attention_dim=cross_attention_dim[i],
|
558 |
+
num_attention_heads=num_attention_heads[i],
|
559 |
+
downsample_padding=downsample_padding,
|
560 |
+
dual_cross_attention=dual_cross_attention,
|
561 |
+
use_linear_projection=use_linear_projection,
|
562 |
+
only_cross_attention=only_cross_attention[i],
|
563 |
+
upcast_attention=upcast_attention,
|
564 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
565 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
566 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
567 |
+
cross_attention_norm=cross_attention_norm,
|
568 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
569 |
+
num_views=num_views,
|
570 |
+
cd_attention_last=cd_attention_last,
|
571 |
+
cd_attention_mid=cd_attention_mid,
|
572 |
+
multiview_attention=multiview_attention,
|
573 |
+
sparse_mv_attention=sparse_mv_attention,
|
574 |
+
selfattn_block=selfattn_block,
|
575 |
+
mvcd_attention=mvcd_attention,
|
576 |
+
use_dino=use_dino
|
577 |
+
)
|
578 |
+
self.down_blocks.append(down_block)
|
579 |
+
|
580 |
+
# mid
|
581 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
582 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
583 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
584 |
+
in_channels=block_out_channels[-1],
|
585 |
+
temb_channels=blocks_time_embed_dim,
|
586 |
+
resnet_eps=norm_eps,
|
587 |
+
resnet_act_fn=act_fn,
|
588 |
+
output_scale_factor=mid_block_scale_factor,
|
589 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
590 |
+
cross_attention_dim=cross_attention_dim[-1],
|
591 |
+
num_attention_heads=num_attention_heads[-1],
|
592 |
+
resnet_groups=norm_num_groups,
|
593 |
+
dual_cross_attention=dual_cross_attention,
|
594 |
+
use_linear_projection=use_linear_projection,
|
595 |
+
upcast_attention=upcast_attention,
|
596 |
+
)
|
597 |
+
# custom MV2D attention block
|
598 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
599 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
600 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
601 |
+
in_channels=block_out_channels[-1],
|
602 |
+
temb_channels=blocks_time_embed_dim,
|
603 |
+
resnet_eps=norm_eps,
|
604 |
+
resnet_act_fn=act_fn,
|
605 |
+
output_scale_factor=mid_block_scale_factor,
|
606 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
607 |
+
cross_attention_dim=cross_attention_dim[-1],
|
608 |
+
num_attention_heads=num_attention_heads[-1],
|
609 |
+
resnet_groups=norm_num_groups,
|
610 |
+
dual_cross_attention=dual_cross_attention,
|
611 |
+
use_linear_projection=use_linear_projection,
|
612 |
+
upcast_attention=upcast_attention,
|
613 |
+
num_views=num_views,
|
614 |
+
cd_attention_last=cd_attention_last,
|
615 |
+
cd_attention_mid=cd_attention_mid,
|
616 |
+
multiview_attention=multiview_attention,
|
617 |
+
sparse_mv_attention=sparse_mv_attention,
|
618 |
+
selfattn_block=selfattn_block,
|
619 |
+
mvcd_attention=mvcd_attention,
|
620 |
+
use_dino=use_dino
|
621 |
+
)
|
622 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
623 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
624 |
+
in_channels=block_out_channels[-1],
|
625 |
+
temb_channels=blocks_time_embed_dim,
|
626 |
+
resnet_eps=norm_eps,
|
627 |
+
resnet_act_fn=act_fn,
|
628 |
+
output_scale_factor=mid_block_scale_factor,
|
629 |
+
cross_attention_dim=cross_attention_dim[-1],
|
630 |
+
attention_head_dim=attention_head_dim[-1],
|
631 |
+
resnet_groups=norm_num_groups,
|
632 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
633 |
+
skip_time_act=resnet_skip_time_act,
|
634 |
+
only_cross_attention=mid_block_only_cross_attention,
|
635 |
+
cross_attention_norm=cross_attention_norm,
|
636 |
+
)
|
637 |
+
elif mid_block_type is None:
|
638 |
+
self.mid_block = None
|
639 |
+
else:
|
640 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
641 |
+
|
642 |
+
self.addition_downsample = addition_downsample
|
643 |
+
if self.addition_downsample:
|
644 |
+
inc = block_out_channels[-1]
|
645 |
+
self.downsample = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
646 |
+
self.conv_block = nn.ModuleList()
|
647 |
+
self.conv_block.append(BasicConvBlock(inc, addition_channels[0], stride=1))
|
648 |
+
for dim_ in addition_channels[1:-1]:
|
649 |
+
self.conv_block.append(BasicConvBlock(dim_, dim_, stride=1))
|
650 |
+
self.conv_block.append(BasicConvBlock(dim_, inc))
|
651 |
+
self.addition_conv_out = nn.Conv2d(inc, inc, kernel_size=1, bias=False)
|
652 |
+
nn.init.zeros_(self.addition_conv_out.weight.data)
|
653 |
+
self.addition_act_out = nn.SiLU()
|
654 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
655 |
+
|
656 |
+
self.regress_elevation = regress_elevation
|
657 |
+
self.regress_focal_length = regress_focal_length
|
658 |
+
if regress_elevation or regress_focal_length:
|
659 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
660 |
+
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim)
|
661 |
+
|
662 |
+
regress_in_dim = block_out_channels[-1]*2 if mvcd_attention else block_out_channels
|
663 |
+
|
664 |
+
if regress_elevation:
|
665 |
+
self.elevation_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks)
|
666 |
+
if regress_focal_length:
|
667 |
+
self.focal_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks)
|
668 |
+
'''
|
669 |
+
self.regress_elevation = regress_elevation
|
670 |
+
self.regress_focal_length = regress_focal_length
|
671 |
+
if regress_elevation and (not regress_focal_length):
|
672 |
+
print("Regressing elevation")
|
673 |
+
cam_dim = 1
|
674 |
+
elif regress_focal_length and (not regress_elevation):
|
675 |
+
print("Regressing focal length")
|
676 |
+
cam_dim = 6
|
677 |
+
elif regress_elevation and regress_focal_length:
|
678 |
+
print("Regressing both elevation and focal length")
|
679 |
+
cam_dim = 7
|
680 |
+
else:
|
681 |
+
cam_dim = 0
|
682 |
+
assert projection_camera_embeddings_input_dim == 2*cam_dim, "projection_camera_embeddings_input_dim should be 2*cam_dim"
|
683 |
+
if regress_elevation or regress_focal_length:
|
684 |
+
self.elevation_regressor = nn.ModuleList([
|
685 |
+
nn.Linear(block_out_channels[-1], 1280),
|
686 |
+
nn.SiLU(),
|
687 |
+
nn.Linear(1280, 1280),
|
688 |
+
nn.SiLU(),
|
689 |
+
nn.Linear(1280, cam_dim)
|
690 |
+
])
|
691 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
692 |
+
self.focal_act = nn.Softmax(dim=-1)
|
693 |
+
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim)
|
694 |
+
'''
|
695 |
+
|
696 |
+
# count how many layers upsample the images
|
697 |
+
self.num_upsamplers = 0
|
698 |
+
|
699 |
+
# up
|
700 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
701 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
702 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
703 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
704 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
705 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
706 |
+
|
707 |
+
output_channel = reversed_block_out_channels[0]
|
708 |
+
for i, up_block_type in enumerate(up_block_types):
|
709 |
+
is_final_block = i == len(block_out_channels) - 1
|
710 |
+
|
711 |
+
prev_output_channel = output_channel
|
712 |
+
output_channel = reversed_block_out_channels[i]
|
713 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
714 |
+
|
715 |
+
# add upsample block for all BUT final layer
|
716 |
+
if not is_final_block:
|
717 |
+
add_upsample = True
|
718 |
+
self.num_upsamplers += 1
|
719 |
+
else:
|
720 |
+
add_upsample = False
|
721 |
+
|
722 |
+
up_block = get_up_block(
|
723 |
+
up_block_type,
|
724 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
725 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
726 |
+
in_channels=input_channel,
|
727 |
+
out_channels=output_channel,
|
728 |
+
prev_output_channel=prev_output_channel,
|
729 |
+
temb_channels=blocks_time_embed_dim,
|
730 |
+
add_upsample=add_upsample,
|
731 |
+
resnet_eps=norm_eps,
|
732 |
+
resnet_act_fn=act_fn,
|
733 |
+
resnet_groups=norm_num_groups,
|
734 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
735 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
736 |
+
dual_cross_attention=dual_cross_attention,
|
737 |
+
use_linear_projection=use_linear_projection,
|
738 |
+
only_cross_attention=only_cross_attention[i],
|
739 |
+
upcast_attention=upcast_attention,
|
740 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
741 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
742 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
743 |
+
cross_attention_norm=cross_attention_norm,
|
744 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
745 |
+
num_views=num_views,
|
746 |
+
cd_attention_last=cd_attention_last,
|
747 |
+
cd_attention_mid=cd_attention_mid,
|
748 |
+
multiview_attention=multiview_attention,
|
749 |
+
sparse_mv_attention=sparse_mv_attention,
|
750 |
+
selfattn_block=selfattn_block,
|
751 |
+
mvcd_attention=mvcd_attention,
|
752 |
+
use_dino=use_dino
|
753 |
+
)
|
754 |
+
self.up_blocks.append(up_block)
|
755 |
+
prev_output_channel = output_channel
|
756 |
+
|
757 |
+
# out
|
758 |
+
if norm_num_groups is not None:
|
759 |
+
self.conv_norm_out = nn.GroupNorm(
|
760 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
761 |
+
)
|
762 |
+
|
763 |
+
self.conv_act = get_activation(act_fn)
|
764 |
+
|
765 |
+
else:
|
766 |
+
self.conv_norm_out = None
|
767 |
+
self.conv_act = None
|
768 |
+
|
769 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
770 |
+
self.conv_out = nn.Conv2d(
|
771 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
772 |
+
)
|
773 |
+
|
774 |
+
@property
|
775 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
776 |
+
r"""
|
777 |
+
Returns:
|
778 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
779 |
+
indexed by its weight name.
|
780 |
+
"""
|
781 |
+
# set recursively
|
782 |
+
processors = {}
|
783 |
+
|
784 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
785 |
+
if hasattr(module, "set_processor"):
|
786 |
+
processors[f"{name}.processor"] = module.processor
|
787 |
+
|
788 |
+
for sub_name, child in module.named_children():
|
789 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
790 |
+
|
791 |
+
return processors
|
792 |
+
|
793 |
+
for name, module in self.named_children():
|
794 |
+
fn_recursive_add_processors(name, module, processors)
|
795 |
+
|
796 |
+
return processors
|
797 |
+
|
798 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
799 |
+
r"""
|
800 |
+
Sets the attention processor to use to compute attention.
|
801 |
+
|
802 |
+
Parameters:
|
803 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
804 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
805 |
+
for **all** `Attention` layers.
|
806 |
+
|
807 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
808 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
809 |
+
|
810 |
+
"""
|
811 |
+
count = len(self.attn_processors.keys())
|
812 |
+
|
813 |
+
if isinstance(processor, dict) and len(processor) != count:
|
814 |
+
raise ValueError(
|
815 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
816 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
817 |
+
)
|
818 |
+
|
819 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
820 |
+
if hasattr(module, "set_processor"):
|
821 |
+
if not isinstance(processor, dict):
|
822 |
+
module.set_processor(processor)
|
823 |
+
else:
|
824 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
825 |
+
|
826 |
+
for sub_name, child in module.named_children():
|
827 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
828 |
+
|
829 |
+
for name, module in self.named_children():
|
830 |
+
fn_recursive_attn_processor(name, module, processor)
|
831 |
+
|
832 |
+
def set_default_attn_processor(self):
|
833 |
+
"""
|
834 |
+
Disables custom attention processors and sets the default attention implementation.
|
835 |
+
"""
|
836 |
+
self.set_attn_processor(AttnProcessor())
|
837 |
+
|
838 |
+
def set_attention_slice(self, slice_size):
|
839 |
+
r"""
|
840 |
+
Enable sliced attention computation.
|
841 |
+
|
842 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
843 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
844 |
+
|
845 |
+
Args:
|
846 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
847 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
848 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
849 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
850 |
+
must be a multiple of `slice_size`.
|
851 |
+
"""
|
852 |
+
sliceable_head_dims = []
|
853 |
+
|
854 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
855 |
+
if hasattr(module, "set_attention_slice"):
|
856 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
857 |
+
|
858 |
+
for child in module.children():
|
859 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
860 |
+
|
861 |
+
# retrieve number of attention layers
|
862 |
+
for module in self.children():
|
863 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
864 |
+
|
865 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
866 |
+
|
867 |
+
if slice_size == "auto":
|
868 |
+
# half the attention head size is usually a good trade-off between
|
869 |
+
# speed and memory
|
870 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
871 |
+
elif slice_size == "max":
|
872 |
+
# make smallest slice possible
|
873 |
+
slice_size = num_sliceable_layers * [1]
|
874 |
+
|
875 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
876 |
+
|
877 |
+
if len(slice_size) != len(sliceable_head_dims):
|
878 |
+
raise ValueError(
|
879 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
880 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
881 |
+
)
|
882 |
+
|
883 |
+
for i in range(len(slice_size)):
|
884 |
+
size = slice_size[i]
|
885 |
+
dim = sliceable_head_dims[i]
|
886 |
+
if size is not None and size > dim:
|
887 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
888 |
+
|
889 |
+
# Recursively walk through all the children.
|
890 |
+
# Any children which exposes the set_attention_slice method
|
891 |
+
# gets the message
|
892 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
893 |
+
if hasattr(module, "set_attention_slice"):
|
894 |
+
module.set_attention_slice(slice_size.pop())
|
895 |
+
|
896 |
+
for child in module.children():
|
897 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
898 |
+
|
899 |
+
reversed_slice_size = list(reversed(slice_size))
|
900 |
+
for module in self.children():
|
901 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
902 |
+
|
903 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
904 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
905 |
+
module.gradient_checkpointing = value
|
906 |
+
|
907 |
+
def forward(
|
908 |
+
self,
|
909 |
+
sample: torch.FloatTensor,
|
910 |
+
timestep: Union[torch.Tensor, float, int],
|
911 |
+
encoder_hidden_states: torch.Tensor,
|
912 |
+
class_labels: Optional[torch.Tensor] = None,
|
913 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
914 |
+
attention_mask: Optional[torch.Tensor] = None,
|
915 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
916 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
917 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
918 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
919 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
920 |
+
dino_feature: Optional[torch.Tensor] = None,
|
921 |
+
return_dict: bool = True,
|
922 |
+
vis_max_min: bool = False,
|
923 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
924 |
+
r"""
|
925 |
+
The [`UNet2DConditionModel`] forward method.
|
926 |
+
|
927 |
+
Args:
|
928 |
+
sample (`torch.FloatTensor`):
|
929 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
930 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
931 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
932 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
933 |
+
encoder_attention_mask (`torch.Tensor`):
|
934 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
935 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
936 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
937 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
938 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
939 |
+
tuple.
|
940 |
+
cross_attention_kwargs (`dict`, *optional*):
|
941 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
942 |
+
added_cond_kwargs: (`dict`, *optional*):
|
943 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
944 |
+
are passed along to the UNet blocks.
|
945 |
+
|
946 |
+
Returns:
|
947 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
948 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
949 |
+
a `tuple` is returned where the first element is the sample tensor.
|
950 |
+
"""
|
951 |
+
record_max_min = {}
|
952 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
953 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
954 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
955 |
+
# on the fly if necessary.
|
956 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
957 |
+
|
958 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
959 |
+
forward_upsample_size = False
|
960 |
+
upsample_size = None
|
961 |
+
|
962 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
963 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
964 |
+
forward_upsample_size = True
|
965 |
+
|
966 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
967 |
+
# expects mask of shape:
|
968 |
+
# [batch, key_tokens]
|
969 |
+
# adds singleton query_tokens dimension:
|
970 |
+
# [batch, 1, key_tokens]
|
971 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
972 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
973 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
974 |
+
if attention_mask is not None:
|
975 |
+
# assume that mask is expressed as:
|
976 |
+
# (1 = keep, 0 = discard)
|
977 |
+
# convert mask into a bias that can be added to attention scores:
|
978 |
+
# (keep = +0, discard = -10000.0)
|
979 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
980 |
+
attention_mask = attention_mask.unsqueeze(1)
|
981 |
+
|
982 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
983 |
+
if encoder_attention_mask is not None:
|
984 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
985 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
986 |
+
|
987 |
+
# 0. center input if necessary
|
988 |
+
if self.config.center_input_sample:
|
989 |
+
sample = 2 * sample - 1.0
|
990 |
+
# 1. time
|
991 |
+
timesteps = timestep
|
992 |
+
if not torch.is_tensor(timesteps):
|
993 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
994 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
995 |
+
is_mps = sample.device.type == "mps"
|
996 |
+
if isinstance(timestep, float):
|
997 |
+
dtype = torch.float32 if is_mps else torch.float64
|
998 |
+
else:
|
999 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1000 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1001 |
+
elif len(timesteps.shape) == 0:
|
1002 |
+
timesteps = timesteps[None].to(sample.device)
|
1003 |
+
|
1004 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1005 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1006 |
+
|
1007 |
+
t_emb = self.time_proj(timesteps)
|
1008 |
+
|
1009 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1010 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1011 |
+
# there might be better ways to encapsulate this.
|
1012 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1013 |
+
|
1014 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1015 |
+
aug_emb = None
|
1016 |
+
if self.class_embedding is not None:
|
1017 |
+
if class_labels is None:
|
1018 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1019 |
+
|
1020 |
+
if self.config.class_embed_type == "timestep":
|
1021 |
+
class_labels = self.time_proj(class_labels)
|
1022 |
+
|
1023 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1024 |
+
# there might be better ways to encapsulate this.
|
1025 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1026 |
+
|
1027 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1028 |
+
if self.config.class_embeddings_concat:
|
1029 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1030 |
+
else:
|
1031 |
+
emb = emb + class_emb
|
1032 |
+
|
1033 |
+
if self.config.addition_embed_type == "text":
|
1034 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1035 |
+
elif self.config.addition_embed_type == "text_image":
|
1036 |
+
# Kandinsky 2.1 - style
|
1037 |
+
if "image_embeds" not in added_cond_kwargs:
|
1038 |
+
raise ValueError(
|
1039 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1043 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1044 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1045 |
+
elif self.config.addition_embed_type == "text_time":
|
1046 |
+
# SDXL - style
|
1047 |
+
if "text_embeds" not in added_cond_kwargs:
|
1048 |
+
raise ValueError(
|
1049 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1050 |
+
)
|
1051 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1052 |
+
if "time_ids" not in added_cond_kwargs:
|
1053 |
+
raise ValueError(
|
1054 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1055 |
+
)
|
1056 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1057 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1058 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1059 |
+
|
1060 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1061 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1062 |
+
aug_emb = self.add_embedding(add_embeds)
|
1063 |
+
elif self.config.addition_embed_type == "image":
|
1064 |
+
# Kandinsky 2.2 - style
|
1065 |
+
if "image_embeds" not in added_cond_kwargs:
|
1066 |
+
raise ValueError(
|
1067 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1068 |
+
)
|
1069 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1070 |
+
aug_emb = self.add_embedding(image_embs)
|
1071 |
+
elif self.config.addition_embed_type == "image_hint":
|
1072 |
+
# Kandinsky 2.2 - style
|
1073 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1074 |
+
raise ValueError(
|
1075 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1076 |
+
)
|
1077 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1078 |
+
hint = added_cond_kwargs.get("hint")
|
1079 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1080 |
+
sample = torch.cat([sample, hint], dim=1)
|
1081 |
+
|
1082 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1083 |
+
emb_pre_act = emb
|
1084 |
+
if self.time_embed_act is not None:
|
1085 |
+
emb = self.time_embed_act(emb)
|
1086 |
+
|
1087 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1088 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1089 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1090 |
+
# Kadinsky 2.1 - style
|
1091 |
+
if "image_embeds" not in added_cond_kwargs:
|
1092 |
+
raise ValueError(
|
1093 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1097 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1098 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1099 |
+
# Kandinsky 2.2 - style
|
1100 |
+
if "image_embeds" not in added_cond_kwargs:
|
1101 |
+
raise ValueError(
|
1102 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1103 |
+
)
|
1104 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1105 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1106 |
+
# 2. pre-process
|
1107 |
+
sample = self.conv_in(sample)
|
1108 |
+
# 3. down
|
1109 |
+
|
1110 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1111 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
1112 |
+
|
1113 |
+
down_block_res_samples = (sample,)
|
1114 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
1115 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1116 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1117 |
+
additional_residuals = {}
|
1118 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1119 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
1120 |
+
|
1121 |
+
sample, res_samples = downsample_block(
|
1122 |
+
hidden_states=sample,
|
1123 |
+
temb=emb,
|
1124 |
+
encoder_hidden_states=encoder_hidden_states,
|
1125 |
+
dino_feature=dino_feature,
|
1126 |
+
attention_mask=attention_mask,
|
1127 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1128 |
+
encoder_attention_mask=encoder_attention_mask,
|
1129 |
+
**additional_residuals,
|
1130 |
+
)
|
1131 |
+
else:
|
1132 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1133 |
+
|
1134 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1135 |
+
sample += down_block_additional_residuals.pop(0)
|
1136 |
+
|
1137 |
+
down_block_res_samples += res_samples
|
1138 |
+
|
1139 |
+
if is_controlnet:
|
1140 |
+
new_down_block_res_samples = ()
|
1141 |
+
|
1142 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1143 |
+
down_block_res_samples, down_block_additional_residuals
|
1144 |
+
):
|
1145 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1146 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1147 |
+
|
1148 |
+
down_block_res_samples = new_down_block_res_samples
|
1149 |
+
|
1150 |
+
if self.addition_downsample:
|
1151 |
+
global_sample = sample
|
1152 |
+
global_sample = self.downsample(global_sample)
|
1153 |
+
for layer in self.conv_block:
|
1154 |
+
global_sample = layer(global_sample)
|
1155 |
+
global_sample = self.addition_act_out(self.addition_conv_out(global_sample))
|
1156 |
+
global_sample = self.upsample(global_sample)
|
1157 |
+
# 4. mid
|
1158 |
+
if self.mid_block is not None:
|
1159 |
+
sample = self.mid_block(
|
1160 |
+
sample,
|
1161 |
+
emb,
|
1162 |
+
encoder_hidden_states=encoder_hidden_states,
|
1163 |
+
dino_feature=dino_feature,
|
1164 |
+
attention_mask=attention_mask,
|
1165 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1166 |
+
encoder_attention_mask=encoder_attention_mask,
|
1167 |
+
)
|
1168 |
+
# 4.1 regress elevation and focal length
|
1169 |
+
# # predict elevation -> embed -> projection -> add to time emb
|
1170 |
+
if self.regress_elevation or self.regress_focal_length:
|
1171 |
+
pool_embeds = self.pool(sample.detach()).squeeze(-1).squeeze(-1) # (2B, C)
|
1172 |
+
if self.mvcd_attention:
|
1173 |
+
pool_embeds_normal, pool_embeds_color = torch.chunk(pool_embeds, 2, dim=0)
|
1174 |
+
pool_embeds = torch.cat([pool_embeds_normal, pool_embeds_color], dim=-1) # (B, 2C)
|
1175 |
+
pose_pred = []
|
1176 |
+
if self.regress_elevation:
|
1177 |
+
ele_pred = self.elevation_regressor(pool_embeds)
|
1178 |
+
ele_pred = rearrange(ele_pred, '(b v) c -> b v c', v=self.num_views)
|
1179 |
+
ele_pred = torch.mean(ele_pred, dim=1)
|
1180 |
+
pose_pred.append(ele_pred) # b, c
|
1181 |
+
|
1182 |
+
if self.regress_focal_length:
|
1183 |
+
focal_pred = self.focal_regressor(pool_embeds)
|
1184 |
+
focal_pred = rearrange(focal_pred, '(b v) c -> b v c', v=self.num_views)
|
1185 |
+
focal_pred = torch.mean(focal_pred, dim=1)
|
1186 |
+
pose_pred.append(focal_pred)
|
1187 |
+
pose_pred = torch.cat(pose_pred, dim=-1)
|
1188 |
+
# 'e_de_da_sincos', (B, 2)
|
1189 |
+
pose_embeds = torch.cat([
|
1190 |
+
torch.sin(pose_pred),
|
1191 |
+
torch.cos(pose_pred)
|
1192 |
+
], dim=-1)
|
1193 |
+
pose_embeds = self.camera_embedding(pose_embeds)
|
1194 |
+
pose_embeds = torch.repeat_interleave(pose_embeds, self.num_views, 0)
|
1195 |
+
if self.mvcd_attention:
|
1196 |
+
pose_embeds = torch.cat([pose_embeds,] * 2, dim=0)
|
1197 |
+
|
1198 |
+
emb = pose_embeds + emb_pre_act
|
1199 |
+
if self.time_embed_act is not None:
|
1200 |
+
emb = self.time_embed_act(emb)
|
1201 |
+
|
1202 |
+
if is_controlnet:
|
1203 |
+
sample = sample + mid_block_additional_residual
|
1204 |
+
|
1205 |
+
if self.addition_downsample:
|
1206 |
+
sample = sample + global_sample
|
1207 |
+
|
1208 |
+
# 5. up
|
1209 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1210 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1211 |
+
|
1212 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1213 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1214 |
+
|
1215 |
+
# if we have not reached the final block and need to forward the
|
1216 |
+
# upsample size, we do it here
|
1217 |
+
if not is_final_block and forward_upsample_size:
|
1218 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1219 |
+
|
1220 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1221 |
+
sample = upsample_block(
|
1222 |
+
hidden_states=sample,
|
1223 |
+
temb=emb,
|
1224 |
+
res_hidden_states_tuple=res_samples,
|
1225 |
+
encoder_hidden_states=encoder_hidden_states,
|
1226 |
+
dino_feature=dino_feature,
|
1227 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1228 |
+
upsample_size=upsample_size,
|
1229 |
+
attention_mask=attention_mask,
|
1230 |
+
encoder_attention_mask=encoder_attention_mask,
|
1231 |
+
)
|
1232 |
+
else:
|
1233 |
+
sample = upsample_block(
|
1234 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1235 |
+
)
|
1236 |
+
if torch.isnan(sample).any() or torch.isinf(sample).any():
|
1237 |
+
print("NAN in sample, stop training.")
|
1238 |
+
exit()
|
1239 |
+
# 6. post-process
|
1240 |
+
if self.conv_norm_out:
|
1241 |
+
sample = self.conv_norm_out(sample)
|
1242 |
+
sample = self.conv_act(sample)
|
1243 |
+
sample = self.conv_out(sample)
|
1244 |
+
if not return_dict:
|
1245 |
+
return (sample, pose_pred)
|
1246 |
+
if self.regress_elevation or self.regress_focal_length:
|
1247 |
+
return UNetMV2DConditionOutput(sample=sample), pose_pred
|
1248 |
+
else:
|
1249 |
+
return UNetMV2DConditionOutput(sample=sample)
|
1250 |
+
|
1251 |
+
|
1252 |
+
@classmethod
|
1253 |
+
def from_pretrained_2d(
|
1254 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1255 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1256 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1257 |
+
projection_camera_embeddings_input_dim: int=2,
|
1258 |
+
cd_attention_last: bool = False, num_regress_blocks: int = 4,
|
1259 |
+
cd_attention_mid: bool = False, multiview_attention: bool = True,
|
1260 |
+
sparse_mv_attention: bool = False, selfattn_block: str = 'custom', mvcd_attention: bool = False,
|
1261 |
+
in_channels: int = 8, out_channels: int = 4, unclip: bool = False, regress_elevation: bool = False, regress_focal_length: bool = False,
|
1262 |
+
init_mvattn_with_selfattn: bool= False, use_dino: bool = False, addition_downsample: bool = False,
|
1263 |
+
**kwargs
|
1264 |
+
):
|
1265 |
+
r"""
|
1266 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1267 |
+
|
1268 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1269 |
+
train the model, set it back in training mode with `model.train()`.
|
1270 |
+
|
1271 |
+
Parameters:
|
1272 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1273 |
+
Can be either:
|
1274 |
+
|
1275 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1276 |
+
the Hub.
|
1277 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1278 |
+
with [`~ModelMixin.save_pretrained`].
|
1279 |
+
|
1280 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1281 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1282 |
+
is not used.
|
1283 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1284 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1285 |
+
dtype is automatically derived from the model's weights.
|
1286 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1287 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1288 |
+
cached versions if they exist.
|
1289 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1290 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1291 |
+
incompletely downloaded files are deleted.
|
1292 |
+
proxies (`Dict[str, str]`, *optional*):
|
1293 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1294 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1295 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1296 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1297 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1298 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1299 |
+
won't be downloaded from the Hub.
|
1300 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1301 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1302 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1303 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1304 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1305 |
+
allowed by Git.
|
1306 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1307 |
+
Load the model weights from a Flax checkpoint save file.
|
1308 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1309 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1310 |
+
mirror (`str`, *optional*):
|
1311 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1312 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1313 |
+
information.
|
1314 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1315 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1316 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1317 |
+
same device.
|
1318 |
+
|
1319 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1320 |
+
more information about each option see [designing a device
|
1321 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1322 |
+
max_memory (`Dict`, *optional*):
|
1323 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1324 |
+
each GPU and the available CPU RAM if unset.
|
1325 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1326 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1327 |
+
offload_state_dict (`bool`, *optional*):
|
1328 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1329 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1330 |
+
when there is some disk offload.
|
1331 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1332 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1333 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1334 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1335 |
+
argument to `True` will raise an error.
|
1336 |
+
variant (`str`, *optional*):
|
1337 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1338 |
+
loading `from_flax`.
|
1339 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1340 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1341 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1342 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1343 |
+
|
1344 |
+
<Tip>
|
1345 |
+
|
1346 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1347 |
+
`huggingface-cli login`. You can also activate the special
|
1348 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1349 |
+
firewalled environment.
|
1350 |
+
|
1351 |
+
</Tip>
|
1352 |
+
|
1353 |
+
Example:
|
1354 |
+
|
1355 |
+
```py
|
1356 |
+
from diffusers import UNet2DConditionModel
|
1357 |
+
|
1358 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1359 |
+
```
|
1360 |
+
|
1361 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1362 |
+
|
1363 |
+
```bash
|
1364 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1365 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1366 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1367 |
+
```
|
1368 |
+
"""
|
1369 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1370 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1371 |
+
force_download = kwargs.pop("force_download", False)
|
1372 |
+
from_flax = kwargs.pop("from_flax", False)
|
1373 |
+
resume_download = kwargs.pop("resume_download", False)
|
1374 |
+
proxies = kwargs.pop("proxies", None)
|
1375 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1376 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1377 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1378 |
+
revision = kwargs.pop("revision", None)
|
1379 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1380 |
+
subfolder = kwargs.pop("subfolder", None)
|
1381 |
+
device_map = kwargs.pop("device_map", None)
|
1382 |
+
max_memory = kwargs.pop("max_memory", None)
|
1383 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1384 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1385 |
+
variant = kwargs.pop("variant", None)
|
1386 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1387 |
+
|
1388 |
+
if use_safetensors:
|
1389 |
+
raise ValueError(
|
1390 |
+
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
allow_pickle = False
|
1394 |
+
if use_safetensors is None:
|
1395 |
+
use_safetensors = True
|
1396 |
+
allow_pickle = True
|
1397 |
+
|
1398 |
+
if device_map is not None and not is_accelerate_available():
|
1399 |
+
raise NotImplementedError(
|
1400 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1401 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
# Check if we can handle device_map and dispatching the weights
|
1405 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1406 |
+
raise NotImplementedError(
|
1407 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1408 |
+
" `device_map=None`."
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
# Load config if we don't provide a configuration
|
1412 |
+
config_path = pretrained_model_name_or_path
|
1413 |
+
|
1414 |
+
user_agent = {
|
1415 |
+
"diffusers": __version__,
|
1416 |
+
"file_type": "model",
|
1417 |
+
"framework": "pytorch",
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
# load config
|
1421 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1422 |
+
config_path,
|
1423 |
+
cache_dir=cache_dir,
|
1424 |
+
return_unused_kwargs=True,
|
1425 |
+
return_commit_hash=True,
|
1426 |
+
force_download=force_download,
|
1427 |
+
resume_download=resume_download,
|
1428 |
+
proxies=proxies,
|
1429 |
+
local_files_only=local_files_only,
|
1430 |
+
use_auth_token=use_auth_token,
|
1431 |
+
revision=revision,
|
1432 |
+
subfolder=subfolder,
|
1433 |
+
device_map=device_map,
|
1434 |
+
max_memory=max_memory,
|
1435 |
+
offload_folder=offload_folder,
|
1436 |
+
offload_state_dict=offload_state_dict,
|
1437 |
+
user_agent=user_agent,
|
1438 |
+
**kwargs,
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
# modify config
|
1442 |
+
config["_class_name"] = cls.__name__
|
1443 |
+
config['in_channels'] = in_channels
|
1444 |
+
config['out_channels'] = out_channels
|
1445 |
+
config['sample_size'] = sample_size # training resolution
|
1446 |
+
config['num_views'] = num_views
|
1447 |
+
config['cd_attention_last'] = cd_attention_last
|
1448 |
+
config['cd_attention_mid'] = cd_attention_mid
|
1449 |
+
config['multiview_attention'] = multiview_attention
|
1450 |
+
config['sparse_mv_attention'] = sparse_mv_attention
|
1451 |
+
config['selfattn_block'] = selfattn_block
|
1452 |
+
config['mvcd_attention'] = mvcd_attention
|
1453 |
+
config["down_block_types"] = [
|
1454 |
+
"CrossAttnDownBlockMV2D",
|
1455 |
+
"CrossAttnDownBlockMV2D",
|
1456 |
+
"CrossAttnDownBlockMV2D",
|
1457 |
+
"DownBlock2D"
|
1458 |
+
]
|
1459 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1460 |
+
config["up_block_types"] = [
|
1461 |
+
"UpBlock2D",
|
1462 |
+
"CrossAttnUpBlockMV2D",
|
1463 |
+
"CrossAttnUpBlockMV2D",
|
1464 |
+
"CrossAttnUpBlockMV2D"
|
1465 |
+
]
|
1466 |
+
|
1467 |
+
|
1468 |
+
config['regress_elevation'] = regress_elevation # true
|
1469 |
+
config['regress_focal_length'] = regress_focal_length # true
|
1470 |
+
config['projection_camera_embeddings_input_dim'] = projection_camera_embeddings_input_dim # 2 for elevation and 10 for focal_length
|
1471 |
+
config['use_dino'] = use_dino
|
1472 |
+
config['num_regress_blocks'] = num_regress_blocks
|
1473 |
+
config['addition_downsample'] = addition_downsample
|
1474 |
+
# load model
|
1475 |
+
model_file = None
|
1476 |
+
if from_flax:
|
1477 |
+
raise NotImplementedError
|
1478 |
+
else:
|
1479 |
+
if use_safetensors:
|
1480 |
+
try:
|
1481 |
+
model_file = _get_model_file(
|
1482 |
+
pretrained_model_name_or_path,
|
1483 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1484 |
+
cache_dir=cache_dir,
|
1485 |
+
force_download=force_download,
|
1486 |
+
resume_download=resume_download,
|
1487 |
+
proxies=proxies,
|
1488 |
+
local_files_only=local_files_only,
|
1489 |
+
use_auth_token=use_auth_token,
|
1490 |
+
revision=revision,
|
1491 |
+
subfolder=subfolder,
|
1492 |
+
user_agent=user_agent,
|
1493 |
+
commit_hash=commit_hash,
|
1494 |
+
)
|
1495 |
+
except IOError as e:
|
1496 |
+
if not allow_pickle:
|
1497 |
+
raise e
|
1498 |
+
pass
|
1499 |
+
if model_file is None:
|
1500 |
+
model_file = _get_model_file(
|
1501 |
+
pretrained_model_name_or_path,
|
1502 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1503 |
+
cache_dir=cache_dir,
|
1504 |
+
force_download=force_download,
|
1505 |
+
resume_download=resume_download,
|
1506 |
+
proxies=proxies,
|
1507 |
+
local_files_only=local_files_only,
|
1508 |
+
use_auth_token=use_auth_token,
|
1509 |
+
revision=revision,
|
1510 |
+
subfolder=subfolder,
|
1511 |
+
user_agent=user_agent,
|
1512 |
+
commit_hash=commit_hash,
|
1513 |
+
)
|
1514 |
+
|
1515 |
+
model = cls.from_config(config, **unused_kwargs)
|
1516 |
+
import copy
|
1517 |
+
state_dict_pretrain = load_state_dict(model_file, variant=variant)
|
1518 |
+
state_dict = copy.deepcopy(state_dict_pretrain)
|
1519 |
+
|
1520 |
+
if init_mvattn_with_selfattn:
|
1521 |
+
for key in state_dict_pretrain:
|
1522 |
+
if 'attn1' in key:
|
1523 |
+
key_mv = key.replace('attn1', 'attn_mv')
|
1524 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
1525 |
+
if 'to_out.0.weight' in key:
|
1526 |
+
nn.init.zeros_(state_dict[key_mv].data)
|
1527 |
+
if 'transformer_blocks' in key and 'norm1' in key: # in case that initialize the norm layer in resnet block
|
1528 |
+
key_mv = key.replace('norm1', 'norm_mv')
|
1529 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
1530 |
+
# del state_dict_pretrain
|
1531 |
+
|
1532 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1533 |
+
|
1534 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1535 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1536 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1537 |
+
model,
|
1538 |
+
state_dict,
|
1539 |
+
model_file,
|
1540 |
+
pretrained_model_name_or_path,
|
1541 |
+
ignore_mismatched_sizes=True,
|
1542 |
+
)
|
1543 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1544 |
+
# initialize from the original SD structure
|
1545 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1546 |
+
|
1547 |
+
# whether to place all zero to new layers?
|
1548 |
+
if zero_init_conv_in:
|
1549 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1550 |
+
|
1551 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1552 |
+
# initialize from the original SD structure
|
1553 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1554 |
+
if out_channels == 8: # copy for the last 4 channels
|
1555 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1556 |
+
|
1557 |
+
if zero_init_camera_projection: # true
|
1558 |
+
params = [p for p in model.camera_embedding.parameters()]
|
1559 |
+
torch.nn.init.zeros_(params[-1].data)
|
1560 |
+
|
1561 |
+
loading_info = {
|
1562 |
+
"missing_keys": missing_keys,
|
1563 |
+
"unexpected_keys": unexpected_keys,
|
1564 |
+
"mismatched_keys": mismatched_keys,
|
1565 |
+
"error_msgs": error_msgs,
|
1566 |
+
}
|
1567 |
+
|
1568 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1569 |
+
raise ValueError(
|
1570 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1571 |
+
)
|
1572 |
+
elif torch_dtype is not None:
|
1573 |
+
model = model.to(torch_dtype)
|
1574 |
+
|
1575 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1576 |
+
|
1577 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1578 |
+
model.eval()
|
1579 |
+
if output_loading_info:
|
1580 |
+
return model, loading_info
|
1581 |
+
return model
|
1582 |
+
|
1583 |
+
@classmethod
|
1584 |
+
def _load_pretrained_model_2d(
|
1585 |
+
cls,
|
1586 |
+
model,
|
1587 |
+
state_dict,
|
1588 |
+
resolved_archive_file,
|
1589 |
+
pretrained_model_name_or_path,
|
1590 |
+
ignore_mismatched_sizes=False,
|
1591 |
+
):
|
1592 |
+
# Retrieve missing & unexpected_keys
|
1593 |
+
model_state_dict = model.state_dict()
|
1594 |
+
loaded_keys = list(state_dict.keys())
|
1595 |
+
|
1596 |
+
expected_keys = list(model_state_dict.keys())
|
1597 |
+
|
1598 |
+
original_loaded_keys = loaded_keys
|
1599 |
+
|
1600 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1601 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1602 |
+
|
1603 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1604 |
+
model_to_load = model
|
1605 |
+
|
1606 |
+
def _find_mismatched_keys(
|
1607 |
+
state_dict,
|
1608 |
+
model_state_dict,
|
1609 |
+
loaded_keys,
|
1610 |
+
ignore_mismatched_sizes,
|
1611 |
+
):
|
1612 |
+
mismatched_keys = []
|
1613 |
+
if ignore_mismatched_sizes:
|
1614 |
+
for checkpoint_key in loaded_keys:
|
1615 |
+
model_key = checkpoint_key
|
1616 |
+
|
1617 |
+
if (
|
1618 |
+
model_key in model_state_dict
|
1619 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1620 |
+
):
|
1621 |
+
mismatched_keys.append(
|
1622 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1623 |
+
)
|
1624 |
+
del state_dict[checkpoint_key]
|
1625 |
+
return mismatched_keys
|
1626 |
+
|
1627 |
+
if state_dict is not None:
|
1628 |
+
# Whole checkpoint
|
1629 |
+
mismatched_keys = _find_mismatched_keys(
|
1630 |
+
state_dict,
|
1631 |
+
model_state_dict,
|
1632 |
+
original_loaded_keys,
|
1633 |
+
ignore_mismatched_sizes,
|
1634 |
+
)
|
1635 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1636 |
+
|
1637 |
+
if len(error_msgs) > 0:
|
1638 |
+
error_msg = "\n\t".join(error_msgs)
|
1639 |
+
if "size mismatch" in error_msg:
|
1640 |
+
error_msg += (
|
1641 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1642 |
+
)
|
1643 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1644 |
+
|
1645 |
+
if len(unexpected_keys) > 0:
|
1646 |
+
logger.warning(
|
1647 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1648 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1649 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1650 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1651 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1652 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1653 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1654 |
+
" BertForSequenceClassification model)."
|
1655 |
+
)
|
1656 |
+
else:
|
1657 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1658 |
+
if len(missing_keys) > 0:
|
1659 |
+
logger.warning(
|
1660 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1661 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1662 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1663 |
+
)
|
1664 |
+
elif len(mismatched_keys) == 0:
|
1665 |
+
logger.info(
|
1666 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1667 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1668 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1669 |
+
" without further training."
|
1670 |
+
)
|
1671 |
+
if len(mismatched_keys) > 0:
|
1672 |
+
mismatched_warning = "\n".join(
|
1673 |
+
[
|
1674 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1675 |
+
for key, shape1, shape2 in mismatched_keys
|
1676 |
+
]
|
1677 |
+
)
|
1678 |
+
logger.warning(
|
1679 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1680 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1681 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1682 |
+
" able to use it for predictions and inference."
|
1683 |
+
)
|
1684 |
+
|
1685 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
multiview/pipeline_multiclass.py
ADDED
@@ -0,0 +1,656 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import warnings
|
3 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
4 |
+
import PIL
|
5 |
+
import torch
|
6 |
+
import kornia
|
7 |
+
from packaging import version
|
8 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTextModel
|
9 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.image_processor import VaeImageProcessor
|
12 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
13 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
14 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
15 |
+
from diffusers.utils import deprecate, logging
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
18 |
+
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
|
19 |
+
import os
|
20 |
+
import torchvision.transforms.functional as TF
|
21 |
+
from einops import rearrange
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def CLIP_preprocess(x):
|
26 |
+
dtype = x.dtype
|
27 |
+
# following openai's implementation
|
28 |
+
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741
|
29 |
+
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608
|
30 |
+
if isinstance(x, torch.Tensor):
|
31 |
+
if x.min() < -1.0 or x.max() > 1.0:
|
32 |
+
raise ValueError("Expected input tensor to have values in the range [-1, 1]")
|
33 |
+
x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype)
|
34 |
+
x = (x + 1.) / 2.
|
35 |
+
# renormalize according to clip
|
36 |
+
x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]),
|
37 |
+
torch.Tensor([0.26862954, 0.26130258, 0.27577711]))
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline):
|
42 |
+
"""
|
43 |
+
Pipeline for text-guided image to image generation using stable unCLIP.
|
44 |
+
|
45 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
46 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
47 |
+
|
48 |
+
Args:
|
49 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
50 |
+
Feature extractor for image pre-processing before being encoded.
|
51 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
52 |
+
CLIP vision model for encoding images.
|
53 |
+
image_normalizer ([`StableUnCLIPImageNormalizer`]):
|
54 |
+
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image
|
55 |
+
embeddings after the noise has been applied.
|
56 |
+
image_noising_scheduler ([`KarrasDiffusionSchedulers`]):
|
57 |
+
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined
|
58 |
+
by `noise_level` in `StableUnCLIPPipeline.__call__`.
|
59 |
+
text_encoder ([`CLIPTextModel`]):
|
60 |
+
Frozen text-encoder.
|
61 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
62 |
+
scheduler ([`KarrasDiffusionSchedulers`]):
|
63 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
64 |
+
vae ([`AutoencoderKL`]):
|
65 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
66 |
+
"""
|
67 |
+
# image encoding components
|
68 |
+
feature_extractor: CLIPFeatureExtractor
|
69 |
+
image_encoder: CLIPVisionModelWithProjection
|
70 |
+
# image noising components
|
71 |
+
image_normalizer: StableUnCLIPImageNormalizer
|
72 |
+
image_noising_scheduler: KarrasDiffusionSchedulers
|
73 |
+
# regular denoising components
|
74 |
+
text_encoder: CLIPTextModel
|
75 |
+
unet: UNet2DConditionModel
|
76 |
+
scheduler: KarrasDiffusionSchedulers
|
77 |
+
vae: AutoencoderKL
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
# image encoding components
|
82 |
+
feature_extractor: CLIPFeatureExtractor,
|
83 |
+
image_encoder: CLIPVisionModelWithProjection,
|
84 |
+
# image noising components
|
85 |
+
image_normalizer: StableUnCLIPImageNormalizer,
|
86 |
+
image_noising_scheduler: KarrasDiffusionSchedulers,
|
87 |
+
# regular denoising components
|
88 |
+
text_encoder: CLIPTextModel,
|
89 |
+
unet: UNet2DConditionModel,
|
90 |
+
scheduler: KarrasDiffusionSchedulers,
|
91 |
+
# vae
|
92 |
+
vae: AutoencoderKL,
|
93 |
+
num_views: int = 4,
|
94 |
+
):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
self.register_modules(
|
98 |
+
feature_extractor=feature_extractor,
|
99 |
+
image_encoder=image_encoder,
|
100 |
+
image_normalizer=image_normalizer,
|
101 |
+
image_noising_scheduler=image_noising_scheduler,
|
102 |
+
text_encoder=text_encoder,
|
103 |
+
unet=unet,
|
104 |
+
scheduler=scheduler,
|
105 |
+
vae=vae,
|
106 |
+
)
|
107 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
108 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
109 |
+
self.num_views: int = num_views
|
110 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
111 |
+
def enable_vae_slicing(self):
|
112 |
+
r"""
|
113 |
+
Enable sliced VAE decoding.
|
114 |
+
|
115 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
116 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
117 |
+
"""
|
118 |
+
self.vae.enable_slicing()
|
119 |
+
|
120 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
121 |
+
def disable_vae_slicing(self):
|
122 |
+
r"""
|
123 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
124 |
+
computing decoding in one step.
|
125 |
+
"""
|
126 |
+
self.vae.disable_slicing()
|
127 |
+
|
128 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
129 |
+
r"""
|
130 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
131 |
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
132 |
+
when their specific submodule has its `forward` method called.
|
133 |
+
"""
|
134 |
+
if is_accelerate_available():
|
135 |
+
from accelerate import cpu_offload
|
136 |
+
else:
|
137 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
138 |
+
|
139 |
+
device = torch.device(f"cuda:{gpu_id}")
|
140 |
+
|
141 |
+
# TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list
|
142 |
+
models = [
|
143 |
+
self.image_encoder,
|
144 |
+
self.text_encoder,
|
145 |
+
self.unet,
|
146 |
+
self.vae,
|
147 |
+
]
|
148 |
+
for cpu_offloaded_model in models:
|
149 |
+
if cpu_offloaded_model is not None:
|
150 |
+
cpu_offload(cpu_offloaded_model, device)
|
151 |
+
|
152 |
+
@property
|
153 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
154 |
+
def _execution_device(self):
|
155 |
+
r"""
|
156 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
157 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
158 |
+
hooks.
|
159 |
+
"""
|
160 |
+
if not hasattr(self.unet, "_hf_hook"):
|
161 |
+
return self.device
|
162 |
+
for module in self.unet.modules():
|
163 |
+
if (
|
164 |
+
hasattr(module, "_hf_hook")
|
165 |
+
and hasattr(module._hf_hook, "execution_device")
|
166 |
+
and module._hf_hook.execution_device is not None
|
167 |
+
):
|
168 |
+
return torch.device(module._hf_hook.execution_device)
|
169 |
+
return self.device
|
170 |
+
|
171 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
172 |
+
def _encode_prompt(
|
173 |
+
self,
|
174 |
+
prompt,
|
175 |
+
device,
|
176 |
+
num_images_per_prompt,
|
177 |
+
do_classifier_free_guidance,
|
178 |
+
negative_prompt=None,
|
179 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
180 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
181 |
+
lora_scale: Optional[float] = None,
|
182 |
+
):
|
183 |
+
r"""
|
184 |
+
Encodes the prompt into text encoder hidden states.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
prompt (`str` or `List[str]`, *optional*):
|
188 |
+
prompt to be encoded
|
189 |
+
device: (`torch.device`):
|
190 |
+
torch device
|
191 |
+
num_images_per_prompt (`int`):
|
192 |
+
number of images that should be generated per prompt
|
193 |
+
do_classifier_free_guidance (`bool`):
|
194 |
+
whether to use classifier free guidance or not
|
195 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
196 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
197 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
198 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
199 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
200 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
201 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
202 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
203 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
204 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
205 |
+
argument.
|
206 |
+
"""
|
207 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
208 |
+
|
209 |
+
if do_classifier_free_guidance:
|
210 |
+
# For classifier free guidance, we need to do two forward passes.
|
211 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
212 |
+
# to avoid doing two forward passes
|
213 |
+
normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0)
|
214 |
+
|
215 |
+
prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0)
|
216 |
+
|
217 |
+
return prompt_embeds
|
218 |
+
|
219 |
+
def _encode_image(
|
220 |
+
self,
|
221 |
+
# image_pil,
|
222 |
+
image,
|
223 |
+
device,
|
224 |
+
num_images_per_prompt,
|
225 |
+
do_classifier_free_guidance,
|
226 |
+
noise_level: int=0,
|
227 |
+
class_targets: list=None,
|
228 |
+
generator: Optional[torch.Generator] = None
|
229 |
+
):
|
230 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
231 |
+
# ______________________________clip image embedding______________________________
|
232 |
+
image_ = CLIP_preprocess(image)
|
233 |
+
image_embeds = self.image_encoder(image_).image_embeds
|
234 |
+
|
235 |
+
image_embeds_ls = []
|
236 |
+
|
237 |
+
for class_target in class_targets:
|
238 |
+
image_embeds_ls.append(self.noise_image_embeddings(
|
239 |
+
image_embeds=image_embeds,
|
240 |
+
noise_level=noise_level,
|
241 |
+
class_target=class_target,
|
242 |
+
generator=generator,
|
243 |
+
).repeat(num_images_per_prompt, 1))
|
244 |
+
|
245 |
+
if do_classifier_free_guidance:
|
246 |
+
for idx in range(len(image_embeds_ls)):
|
247 |
+
normal_image_embeds, color_image_embeds = torch.chunk(image_embeds_ls[idx], 2, dim=0)
|
248 |
+
negative_prompt_embeds = torch.zeros_like(normal_image_embeds)
|
249 |
+
|
250 |
+
# For classifier free guidance, we need to do two forward passes.
|
251 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
252 |
+
# to avoid doing two forward passes
|
253 |
+
image_embeds_ls[idx] = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0)
|
254 |
+
|
255 |
+
# _____________________________vae input latents__________________________________________________
|
256 |
+
image_latents = self.vae.encode(image.to(self.vae.dtype)).latent_dist.mode() * self.vae.config.scaling_factor
|
257 |
+
# Note: repeat differently from official pipelines
|
258 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
259 |
+
|
260 |
+
if do_classifier_free_guidance:
|
261 |
+
normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0)
|
262 |
+
image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents,
|
263 |
+
torch.zeros_like(color_image_latents), color_image_latents], 0)
|
264 |
+
|
265 |
+
return image_embeds_ls, image_latents
|
266 |
+
|
267 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
268 |
+
def decode_latents(self, latents):
|
269 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
270 |
+
image = self.vae.decode(latents).sample
|
271 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
272 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
273 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
274 |
+
return image
|
275 |
+
|
276 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
277 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
278 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
279 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
280 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
281 |
+
# and should be between [0, 1]
|
282 |
+
|
283 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
284 |
+
extra_step_kwargs = {}
|
285 |
+
if accepts_eta:
|
286 |
+
extra_step_kwargs["eta"] = eta
|
287 |
+
|
288 |
+
# check if the scheduler accepts generator
|
289 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
290 |
+
if accepts_generator:
|
291 |
+
extra_step_kwargs["generator"] = generator
|
292 |
+
return extra_step_kwargs
|
293 |
+
|
294 |
+
def check_inputs(
|
295 |
+
self,
|
296 |
+
prompt,
|
297 |
+
image,
|
298 |
+
height,
|
299 |
+
width,
|
300 |
+
callback_steps,
|
301 |
+
noise_level,
|
302 |
+
):
|
303 |
+
if height % 8 != 0 or width % 8 != 0:
|
304 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
305 |
+
|
306 |
+
if (callback_steps is None) or (
|
307 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
308 |
+
):
|
309 |
+
raise ValueError(
|
310 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
311 |
+
f" {type(callback_steps)}."
|
312 |
+
)
|
313 |
+
|
314 |
+
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
315 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
316 |
+
|
317 |
+
|
318 |
+
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
|
319 |
+
raise ValueError(
|
320 |
+
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
|
321 |
+
)
|
322 |
+
|
323 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
324 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
325 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
326 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
327 |
+
raise ValueError(
|
328 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
329 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
330 |
+
)
|
331 |
+
|
332 |
+
if latents is None:
|
333 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
334 |
+
latents = noise.clone()
|
335 |
+
else:
|
336 |
+
latents = latents.to(device)
|
337 |
+
|
338 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
339 |
+
latents = latents * self.scheduler.init_noise_sigma
|
340 |
+
return latents, noise
|
341 |
+
|
342 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings
|
343 |
+
def noise_image_embeddings(
|
344 |
+
self,
|
345 |
+
image_embeds: torch.Tensor,
|
346 |
+
noise_level: int,
|
347 |
+
class_target: torch.Tensor,
|
348 |
+
noise: Optional[torch.FloatTensor] = None,
|
349 |
+
generator: Optional[torch.Generator] = None,
|
350 |
+
):
|
351 |
+
"""
|
352 |
+
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
|
353 |
+
`noise_level` increases the variance in the final un-noised images.
|
354 |
+
|
355 |
+
The noise is applied in two ways
|
356 |
+
1. A noise schedule is applied directly to the embeddings
|
357 |
+
2. A vector of sinusoidal time embeddings are appended to the output.
|
358 |
+
|
359 |
+
In both cases, the amount of noise is controlled by the same `noise_level`.
|
360 |
+
|
361 |
+
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
|
362 |
+
"""
|
363 |
+
if noise is None:
|
364 |
+
noise = randn_tensor(
|
365 |
+
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
|
366 |
+
)
|
367 |
+
|
368 |
+
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)
|
369 |
+
|
370 |
+
dtype = image_embeds.dtype
|
371 |
+
|
372 |
+
image_embeds = self.image_normalizer.scale(image_embeds)
|
373 |
+
|
374 |
+
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)
|
375 |
+
|
376 |
+
image_embeds = self.image_normalizer.unscale(image_embeds)
|
377 |
+
|
378 |
+
noise_level = get_timestep_embedding(
|
379 |
+
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
|
380 |
+
)
|
381 |
+
|
382 |
+
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
|
383 |
+
# but we might actually be running in fp16. so we need to cast here.
|
384 |
+
# there might be better ways to encapsulate this.
|
385 |
+
image_embeds = image_embeds.to(dtype=dtype)
|
386 |
+
noise_level = noise_level.to(image_embeds.dtype)
|
387 |
+
|
388 |
+
image_embeds = torch.cat((image_embeds, class_target.repeat(image_embeds.shape[0] // class_target.shape[0], 1)), 1)
|
389 |
+
|
390 |
+
return image_embeds
|
391 |
+
|
392 |
+
|
393 |
+
@torch.no_grad()
|
394 |
+
def __call__(
|
395 |
+
self,
|
396 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
397 |
+
prompt: Union[str, List[str]],
|
398 |
+
prompt_embeds: torch.FloatTensor = None,
|
399 |
+
dino_feature: torch.FloatTensor = None,
|
400 |
+
height: Optional[int] = None,
|
401 |
+
width: Optional[int] = None,
|
402 |
+
num_inference_steps: int = 20,
|
403 |
+
guidance_scale: float = 10,
|
404 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
405 |
+
num_images_per_prompt: Optional[int] = 1,
|
406 |
+
eta: float = 0.0,
|
407 |
+
generator: Optional[torch.Generator] = None,
|
408 |
+
latents: Optional[torch.FloatTensor] = None,
|
409 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
410 |
+
output_type: Optional[str] = "pil",
|
411 |
+
return_dict: bool = True,
|
412 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
413 |
+
callback_steps: int = 1,
|
414 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
415 |
+
noise_level: int = 0,
|
416 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
417 |
+
return_elevation_focal: Optional[bool] = False,
|
418 |
+
gt_img_in: Optional[torch.FloatTensor] = None,
|
419 |
+
num_levels: Optional[int] = 3,
|
420 |
+
):
|
421 |
+
r"""
|
422 |
+
Function invoked when calling the pipeline for generation.
|
423 |
+
|
424 |
+
Args:
|
425 |
+
prompt (`str` or `List[str]`, *optional*):
|
426 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
427 |
+
instead.
|
428 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
429 |
+
`Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which
|
430 |
+
the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the
|
431 |
+
latents in the denoising process such as in the standard stable diffusion text guided image variation
|
432 |
+
process.
|
433 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
434 |
+
The height in pixels of the generated image.
|
435 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
436 |
+
The width in pixels of the generated image.
|
437 |
+
num_inference_steps (`int`, *optional*, defaults to 20):
|
438 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
439 |
+
expense of slower inference.
|
440 |
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
441 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
442 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
443 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
444 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
445 |
+
usually at the expense of lower image quality.
|
446 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
447 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
448 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
449 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
450 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
451 |
+
The number of images to generate per prompt.
|
452 |
+
eta (`float`, *optional*, defaults to 0.0):
|
453 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
454 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
455 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
456 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
457 |
+
to make generation deterministic.
|
458 |
+
latents (`torch.FloatTensor`, *optional*):
|
459 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
460 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
461 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
462 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
463 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
464 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
465 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
466 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
467 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
468 |
+
argument.
|
469 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
470 |
+
The output format of the generate image. Choose between
|
471 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
472 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
473 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
474 |
+
plain tuple.
|
475 |
+
callback (`Callable`, *optional*):
|
476 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
477 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
478 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
479 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
480 |
+
called at every step.
|
481 |
+
cross_attention_kwargs (`dict`, *optional*):
|
482 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
483 |
+
`self.processor` in
|
484 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
485 |
+
noise_level (`int`, *optional*, defaults to `0`):
|
486 |
+
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
|
487 |
+
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details.
|
488 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
489 |
+
Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in
|
490 |
+
the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as
|
491 |
+
`latents`.
|
492 |
+
|
493 |
+
Examples:
|
494 |
+
|
495 |
+
Returns:
|
496 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is
|
497 |
+
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
|
498 |
+
"""
|
499 |
+
# 0. Default height and width to unet
|
500 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
501 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
502 |
+
|
503 |
+
# 1. Check inputs. Raise error if not correct
|
504 |
+
self.check_inputs(
|
505 |
+
prompt=prompt,
|
506 |
+
image=image,
|
507 |
+
height=height,
|
508 |
+
width=width,
|
509 |
+
callback_steps=callback_steps,
|
510 |
+
noise_level=noise_level
|
511 |
+
)
|
512 |
+
|
513 |
+
# 2. Define call parameters
|
514 |
+
if isinstance(image, list):
|
515 |
+
batch_size = len(image)
|
516 |
+
elif isinstance(image, torch.Tensor):
|
517 |
+
batch_size = image.shape[0]
|
518 |
+
assert batch_size >= self.num_views and batch_size % self.num_views == 0
|
519 |
+
elif isinstance(image, PIL.Image.Image):
|
520 |
+
image = [image]*self.num_views*2
|
521 |
+
batch_size = self.num_views*2
|
522 |
+
|
523 |
+
if isinstance(prompt, str):
|
524 |
+
prompt = [prompt] * self.num_views * 2
|
525 |
+
|
526 |
+
device = self._execution_device
|
527 |
+
|
528 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
529 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
530 |
+
# corresponds to doing no classifier free guidance.
|
531 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
532 |
+
|
533 |
+
# 3. Encode input prompt
|
534 |
+
text_encoder_lora_scale = (
|
535 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
536 |
+
)
|
537 |
+
prompt_embeds = self._encode_prompt(
|
538 |
+
prompt=prompt,
|
539 |
+
device=device,
|
540 |
+
num_images_per_prompt=num_images_per_prompt,
|
541 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
542 |
+
negative_prompt=negative_prompt,
|
543 |
+
prompt_embeds=prompt_embeds,
|
544 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
545 |
+
lora_scale=text_encoder_lora_scale,
|
546 |
+
)
|
547 |
+
|
548 |
+
|
549 |
+
# 4. Encoder input image
|
550 |
+
noise_level = torch.tensor([noise_level], device=device)
|
551 |
+
|
552 |
+
class_targets = []
|
553 |
+
for level in [0, 1, 2]:
|
554 |
+
class_target = torch.tensor([0, 0, 0, 0]).cuda()
|
555 |
+
class_target[level] = 1
|
556 |
+
class_target = torch.repeat_interleave(class_target, 256).unsqueeze(0)
|
557 |
+
class_targets.append(class_target)
|
558 |
+
|
559 |
+
image_embeds_ls, image_latents = self._encode_image(
|
560 |
+
image=image,
|
561 |
+
device=device,
|
562 |
+
num_images_per_prompt=num_images_per_prompt,
|
563 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
564 |
+
noise_level=noise_level,
|
565 |
+
class_targets=class_targets,
|
566 |
+
generator=generator,
|
567 |
+
)
|
568 |
+
|
569 |
+
# 5. Prepare timesteps
|
570 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
571 |
+
timesteps = self.scheduler.timesteps
|
572 |
+
|
573 |
+
# 6. Prepare latent variables
|
574 |
+
num_channels_latents = self.unet.config.out_channels
|
575 |
+
if gt_img_in is not None:
|
576 |
+
latents = gt_img_in * self.scheduler.init_noise_sigma
|
577 |
+
else:
|
578 |
+
latents, noise = self.prepare_latents(
|
579 |
+
batch_size=batch_size,
|
580 |
+
num_channels_latents=num_channels_latents,
|
581 |
+
height=height,
|
582 |
+
width=width,
|
583 |
+
dtype=prompt_embeds.dtype,
|
584 |
+
device=device,
|
585 |
+
generator=generator,
|
586 |
+
latents=latents,
|
587 |
+
)
|
588 |
+
|
589 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
590 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
591 |
+
|
592 |
+
original_latents = latents.clone()
|
593 |
+
image_ls = []
|
594 |
+
now_range = range(1, 3) if num_levels == 2 else range(num_levels)
|
595 |
+
for level in now_range:
|
596 |
+
latents = original_latents.clone()
|
597 |
+
eles, focals = [], []
|
598 |
+
# 8. Denoising loop
|
599 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
600 |
+
if do_classifier_free_guidance:
|
601 |
+
normal_latents, color_latents = torch.chunk(latents, 2, dim=0)
|
602 |
+
latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0)
|
603 |
+
else:
|
604 |
+
latent_model_input = latents
|
605 |
+
|
606 |
+
latent_model_input = torch.cat([
|
607 |
+
latent_model_input, image_latents
|
608 |
+
], dim=1)
|
609 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
610 |
+
|
611 |
+
# predict the noise residual
|
612 |
+
unet_out = self.unet(
|
613 |
+
latent_model_input,
|
614 |
+
t,
|
615 |
+
encoder_hidden_states=prompt_embeds,
|
616 |
+
dino_feature=dino_feature,
|
617 |
+
class_labels=image_embeds_ls[level],
|
618 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
619 |
+
return_dict=False)
|
620 |
+
|
621 |
+
noise_pred = unet_out[0]
|
622 |
+
if return_elevation_focal:
|
623 |
+
uncond_pose, pose = torch.chunk(unet_out[1], 2, 0)
|
624 |
+
pose = uncond_pose + guidance_scale * (pose - uncond_pose)
|
625 |
+
ele = pose[:, 0].detach().cpu().numpy() # b
|
626 |
+
eles.append(ele)
|
627 |
+
focal = pose[:, 1].detach().cpu().numpy()
|
628 |
+
focals.append(focal)
|
629 |
+
|
630 |
+
# perform guidance
|
631 |
+
if do_classifier_free_guidance:
|
632 |
+
normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0)
|
633 |
+
|
634 |
+
noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0)
|
635 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
636 |
+
|
637 |
+
# compute the previous noisy sample x_t -> x_t-1
|
638 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
639 |
+
|
640 |
+
if callback is not None and i % callback_steps == 0:
|
641 |
+
callback(i, t, latents)
|
642 |
+
|
643 |
+
# 9. Post-processing
|
644 |
+
if not output_type == "latent":
|
645 |
+
if num_channels_latents == 8:
|
646 |
+
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
|
647 |
+
with torch.no_grad():
|
648 |
+
image = self.vae.decode((latents / self.vae.config.scaling_factor).to(self.vae.dtype), return_dict=False)[0]
|
649 |
+
else:
|
650 |
+
image = latents
|
651 |
+
|
652 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
653 |
+
image = ImagePipelineOutput(images=image)
|
654 |
+
image_ls.append(image)
|
655 |
+
|
656 |
+
return image_ls
|
refine/func.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase
|
3 |
+
from pytorch3d.renderer import (
|
4 |
+
RasterizationSettings,
|
5 |
+
TexturesVertex,
|
6 |
+
FoVPerspectiveCameras,
|
7 |
+
FoVOrthographicCameras,
|
8 |
+
)
|
9 |
+
from pytorch3d.structures import Meshes
|
10 |
+
from PIL import Image
|
11 |
+
from typing import List
|
12 |
+
from refine.render import _warmup
|
13 |
+
import pymeshlab as ml
|
14 |
+
from pymeshlab import Percentage
|
15 |
+
import nvdiffrast.torch as dr
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
|
19 |
+
def _translation(x, y, z, device):
|
20 |
+
return torch.tensor([[1., 0, 0, x],
|
21 |
+
[0, 1, 0, y],
|
22 |
+
[0, 0, 1, z],
|
23 |
+
[0, 0, 0, 1]],device=device) #4,4
|
24 |
+
|
25 |
+
def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
|
26 |
+
"""
|
27 |
+
see https://blog.csdn.net/wodownload2/article/details/85069240/
|
28 |
+
"""
|
29 |
+
if l is None:
|
30 |
+
l = -r
|
31 |
+
if t is None:
|
32 |
+
t = r
|
33 |
+
if b is None:
|
34 |
+
b = -t
|
35 |
+
p = torch.zeros([4,4],device=device)
|
36 |
+
p[0,0] = 2*n/(r-l)
|
37 |
+
p[0,2] = (r+l)/(r-l)
|
38 |
+
p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1)
|
39 |
+
p[1,2] = (t+b)/(t-b)
|
40 |
+
p[2,2] = -(f+n)/(f-n)
|
41 |
+
p[2,3] = -(2*f*n)/(f-n)
|
42 |
+
p[3,2] = -1
|
43 |
+
return p #4,4
|
44 |
+
|
45 |
+
def _orthographic(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True):
|
46 |
+
if l is None:
|
47 |
+
l = -r
|
48 |
+
if t is None:
|
49 |
+
t = r
|
50 |
+
if b is None:
|
51 |
+
b = -t
|
52 |
+
o = torch.zeros([4,4],device=device)
|
53 |
+
o[0,0] = 2/(r-l)
|
54 |
+
o[0,3] = -(r+l)/(r-l)
|
55 |
+
o[1,1] = 2/(t-b) * (-1 if flip_y else 1)
|
56 |
+
o[1,3] = -(t+b)/(t-b)
|
57 |
+
o[2,2] = -2/(f-n)
|
58 |
+
o[2,3] = -(f+n)/(f-n)
|
59 |
+
o[3,3] = 1
|
60 |
+
return o #4,4
|
61 |
+
|
62 |
+
def make_star_cameras(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
|
63 |
+
if r is None:
|
64 |
+
r = 1/distance
|
65 |
+
A = az_count
|
66 |
+
P = pol_count
|
67 |
+
C = A * P
|
68 |
+
|
69 |
+
phi = torch.arange(0,A) * (2*torch.pi/A)
|
70 |
+
phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone()
|
71 |
+
phi_rot[:,0,2,2] = phi.cos()
|
72 |
+
phi_rot[:,0,2,0] = -phi.sin()
|
73 |
+
phi_rot[:,0,0,2] = phi.sin()
|
74 |
+
phi_rot[:,0,0,0] = phi.cos()
|
75 |
+
|
76 |
+
theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2
|
77 |
+
theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone()
|
78 |
+
theta_rot[0,:,1,1] = theta.cos()
|
79 |
+
theta_rot[0,:,1,2] = -theta.sin()
|
80 |
+
theta_rot[0,:,2,1] = theta.sin()
|
81 |
+
theta_rot[0,:,2,2] = theta.cos()
|
82 |
+
|
83 |
+
mv = torch.empty((C,4,4), device=device)
|
84 |
+
mv[:] = torch.eye(4, device=device)
|
85 |
+
mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3)
|
86 |
+
mv = _translation(0, 0, -distance, device) @ mv
|
87 |
+
|
88 |
+
return mv, _projection(r,device)
|
89 |
+
|
90 |
+
|
91 |
+
def make_star_cameras_orthographic(az_count,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'):
|
92 |
+
mv, _ = make_star_cameras(az_count,pol_count,distance,r,image_size,device)
|
93 |
+
if r is None:
|
94 |
+
r = 1
|
95 |
+
return mv, _orthographic(r,device)
|
96 |
+
|
97 |
+
|
98 |
+
def get_camera(world_to_cam, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'):
|
99 |
+
# pytorch3d expects transforms as row-vectors, so flip rotation: https://github.com/facebookresearch/pytorch3d/issues/1183
|
100 |
+
R = world_to_cam[:3, :3].t()[None, ...]
|
101 |
+
T = world_to_cam[:3, 3][None, ...]
|
102 |
+
if cam_type == 'fov':
|
103 |
+
camera = FoVPerspectiveCameras(device=world_to_cam.device, R=R, T=T, fov=fov_in_degrees, degrees=True)
|
104 |
+
else:
|
105 |
+
focal_length = 1 / focal_length
|
106 |
+
camera = FoVOrthographicCameras(device=world_to_cam.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length)
|
107 |
+
return camera
|
108 |
+
|
109 |
+
|
110 |
+
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1):
|
111 |
+
ret = []
|
112 |
+
for azim in azim_list:
|
113 |
+
R, T = look_at_view_transform(dist, 0, azim)
|
114 |
+
w2c = torch.cat([R[0].T, T[0, :, None]], dim=1)
|
115 |
+
cameras: OrthographicCameras = get_camera(w2c, focal_length=focal, cam_type='orthogonal').to(device)
|
116 |
+
ret.append(cameras)
|
117 |
+
return ret
|
118 |
+
|
119 |
+
|
120 |
+
def to_py3d_mesh(vertices, faces, normals=None):
|
121 |
+
from pytorch3d.structures import Meshes
|
122 |
+
from pytorch3d.renderer.mesh.textures import TexturesVertex
|
123 |
+
mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
|
124 |
+
if normals is None:
|
125 |
+
normals = mesh.verts_normals_packed()
|
126 |
+
# set normals as vertext colors
|
127 |
+
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
|
128 |
+
return mesh
|
129 |
+
|
130 |
+
|
131 |
+
def from_py3d_mesh(mesh):
|
132 |
+
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()
|
133 |
+
|
134 |
+
|
135 |
+
class Pix2FacesRenderer:
|
136 |
+
def __init__(self, device="cuda"):
|
137 |
+
self._glctx = dr.RasterizeCudaContext(device=device)
|
138 |
+
self.device = device
|
139 |
+
_warmup(self._glctx, device)
|
140 |
+
|
141 |
+
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase):
|
142 |
+
vertices = cameras.transform_points_ndc(meshes.verts_padded())
|
143 |
+
|
144 |
+
perspective_correct = cameras.is_perspective()
|
145 |
+
znear = cameras.get_znear()
|
146 |
+
if isinstance(znear, torch.Tensor):
|
147 |
+
znear = znear.min().item()
|
148 |
+
z_clip = None if not perspective_correct or znear is None else znear / 2
|
149 |
+
|
150 |
+
if z_clip:
|
151 |
+
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] # clip
|
152 |
+
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices)
|
153 |
+
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32)
|
154 |
+
return vertices
|
155 |
+
|
156 |
+
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512):
|
157 |
+
meshes = meshes.to(self.device)
|
158 |
+
cameras = cameras.to(self.device)
|
159 |
+
vertices = self.transform_vertices(meshes, cameras)
|
160 |
+
faces = meshes.faces_packed().to(torch.int32)
|
161 |
+
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4
|
162 |
+
pix_to_face = rast_out[..., -1].to(torch.int32) - 1
|
163 |
+
return pix_to_face
|
164 |
+
|
165 |
+
pix2faces_renderer = Pix2FacesRenderer()
|
166 |
+
|
167 |
+
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024):
|
168 |
+
# pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face']
|
169 |
+
pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution)
|
170 |
+
|
171 |
+
unique_faces = torch.unique(pix_to_face.flatten())
|
172 |
+
unique_faces = unique_faces[unique_faces != -1]
|
173 |
+
return unique_faces
|
174 |
+
|
175 |
+
|
176 |
+
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict:
|
177 |
+
"""
|
178 |
+
Projects color from a given image onto a 3D mesh.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
meshes (pytorch3d.structures.Meshes): The 3D mesh object.
|
182 |
+
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object.
|
183 |
+
pil_image (PIL.Image.Image): The input image.
|
184 |
+
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
|
185 |
+
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
|
186 |
+
resolution (int, optional): The resolution of the projection. Defaults to 1024.
|
187 |
+
device (str, optional): The device to use for computation. Defaults to "cuda".
|
188 |
+
debug (bool, optional): Whether to save debug images. Defaults to False.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
dict: A dictionary containing the following keys:
|
192 |
+
- "new_texture" (TexturesVertex): The updated texture with interpolated colors.
|
193 |
+
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected.
|
194 |
+
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices.
|
195 |
+
"""
|
196 |
+
meshes = meshes.to(device)
|
197 |
+
cameras = cameras.to(device)
|
198 |
+
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) # in CHW format of [0, 1.]
|
199 |
+
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution)
|
200 |
+
|
201 |
+
# visible faces
|
202 |
+
faces_normals = meshes.faces_normals_packed()[unique_faces]
|
203 |
+
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True)
|
204 |
+
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0]
|
205 |
+
view_direction = world_points[1] - world_points[0]
|
206 |
+
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True)
|
207 |
+
|
208 |
+
# find invalid faces
|
209 |
+
cos_angles = (faces_normals * view_direction).sum(dim=1)
|
210 |
+
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}"
|
211 |
+
selected_faces = unique_faces[cos_angles < -eps]
|
212 |
+
|
213 |
+
# find verts
|
214 |
+
faces = meshes.faces_packed()[selected_faces] # [N, 3]
|
215 |
+
verts = torch.unique(faces.flatten()) # [N, 1]
|
216 |
+
verts_coordinates = meshes.verts_packed()[verts] # [N, 3]
|
217 |
+
|
218 |
+
# compute color
|
219 |
+
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points
|
220 |
+
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) # checked, correct
|
221 |
+
valid_pt = pt_tensor[valid, :]
|
222 |
+
valid_idx = verts[valid]
|
223 |
+
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) # [N, 4], note that bicubic may give invalid value
|
224 |
+
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3]
|
225 |
+
if not use_alpha:
|
226 |
+
alpha = torch.ones_like(alpha)
|
227 |
+
|
228 |
+
# modify color
|
229 |
+
old_colors = meshes.textures.verts_features_packed()
|
230 |
+
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha)
|
231 |
+
new_texture = TexturesVertex(verts_features=[old_colors])
|
232 |
+
|
233 |
+
valid_verts_normals = meshes.verts_normals_packed()[valid_idx]
|
234 |
+
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001)
|
235 |
+
cos_angles = (valid_verts_normals * view_direction).sum(dim=1)
|
236 |
+
return {
|
237 |
+
"new_texture": new_texture,
|
238 |
+
"valid_verts": valid_idx,
|
239 |
+
"valid_colors": valid_color,
|
240 |
+
"valid_alpha": alpha,
|
241 |
+
"cos_angles": cos_angles,
|
242 |
+
}
|
243 |
+
|
244 |
+
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict:
|
245 |
+
"""
|
246 |
+
meshes: the mesh with vertex color to be completed.
|
247 |
+
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1]
|
248 |
+
"""
|
249 |
+
valid_index = valid_index.to(meshes.device)
|
250 |
+
colors = meshes.textures.verts_features_packed() # [V, 3]
|
251 |
+
V = colors.shape[0]
|
252 |
+
|
253 |
+
invalid_index = torch.ones_like(colors[:, 0]).bool() # [V]
|
254 |
+
invalid_index[valid_index] = False
|
255 |
+
invalid_index = torch.arange(V).to(meshes.device)[invalid_index]
|
256 |
+
|
257 |
+
L = meshes.laplacian_packed()
|
258 |
+
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device)
|
259 |
+
L = L + E
|
260 |
+
# import pdb; pdb.set_trace()
|
261 |
+
# E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device)
|
262 |
+
# L = L + E
|
263 |
+
colored_count = torch.ones_like(colors[:, 0]) # [V]
|
264 |
+
colored_count[invalid_index] = 0
|
265 |
+
L_invalid = torch.index_select(L, 0, invalid_index) # sparse [IV, V]
|
266 |
+
|
267 |
+
total_colored = colored_count.sum()
|
268 |
+
coloring_round = 0
|
269 |
+
stage = "uncolored"
|
270 |
+
from tqdm import tqdm
|
271 |
+
pbar = tqdm(miniters=100)
|
272 |
+
while stage == "uncolored" or coloring_round > 0:
|
273 |
+
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) # [IV, 3]
|
274 |
+
new_count = torch.matmul(L_invalid, colored_count)[:, None] # [IV, 1]
|
275 |
+
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index])
|
276 |
+
colored_count[invalid_index] = (new_count[:, 0] > 0).float()
|
277 |
+
|
278 |
+
new_total_colored = colored_count.sum()
|
279 |
+
if new_total_colored > total_colored:
|
280 |
+
total_colored = new_total_colored
|
281 |
+
coloring_round += 1
|
282 |
+
else:
|
283 |
+
stage = "colored"
|
284 |
+
coloring_round -= 1
|
285 |
+
pbar.update(1)
|
286 |
+
if coloring_round > 10000:
|
287 |
+
print("coloring_round > 10000, break")
|
288 |
+
break
|
289 |
+
assert not torch.isnan(colors).any()
|
290 |
+
meshes.textures = TexturesVertex(verts_features=[colors])
|
291 |
+
return meshes
|
292 |
+
|
293 |
+
|
294 |
+
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth", distract_mask=None) -> Meshes:
|
295 |
+
"""
|
296 |
+
Projects color from a given image onto a 3D mesh.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh.
|
300 |
+
image_list (PIL.Image.Image): List of images.
|
301 |
+
cameras_list (list): List of cameras.
|
302 |
+
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35.
|
303 |
+
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None.
|
304 |
+
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
|
305 |
+
resolution (int, optional): The resolution of the projection. Defaults to 1024.
|
306 |
+
device (str, optional): The device to use for computation. Defaults to "cuda".
|
307 |
+
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None.
|
308 |
+
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
|
309 |
+
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1.
|
310 |
+
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False.
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
Meshes: the colored mesh
|
314 |
+
"""
|
315 |
+
# 1. preprocess inputs
|
316 |
+
if image_list is None:
|
317 |
+
raise ValueError("image_list is None")
|
318 |
+
if cameras_list is None:
|
319 |
+
raise ValueError("cameras_list is None")
|
320 |
+
if weights is None:
|
321 |
+
raise ValueError("weights is None, and can not be guessed from image_list")
|
322 |
+
|
323 |
+
# 2. run projection
|
324 |
+
meshes = meshes.clone().to(device)
|
325 |
+
if weights is None:
|
326 |
+
weights = [1. for _ in range(len(cameras_list))]
|
327 |
+
assert len(cameras_list) == len(image_list) == len(weights)
|
328 |
+
original_color = meshes.textures.verts_features_packed()
|
329 |
+
assert not torch.isnan(original_color).any()
|
330 |
+
texture_counts = torch.zeros_like(original_color[..., :1])
|
331 |
+
texture_values = torch.zeros_like(original_color)
|
332 |
+
max_texture_counts = torch.zeros_like(original_color[..., :1])
|
333 |
+
max_texture_values = torch.zeros_like(original_color)
|
334 |
+
for camera, image, weight in zip(cameras_list, image_list, weights):
|
335 |
+
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
|
336 |
+
if reweight_with_cosangle == "linear":
|
337 |
+
weight = (ret['cos_angles'].abs() * weight)[:, None]
|
338 |
+
elif reweight_with_cosangle == "square":
|
339 |
+
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None]
|
340 |
+
if use_alpha:
|
341 |
+
weight = weight * ret['valid_alpha']
|
342 |
+
assert weight.min() > -0.0001
|
343 |
+
texture_counts[ret['valid_verts']] += weight
|
344 |
+
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight
|
345 |
+
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']])
|
346 |
+
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight)
|
347 |
+
|
348 |
+
# Method2
|
349 |
+
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values)
|
350 |
+
if below_confidence_strategy == "smooth":
|
351 |
+
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values)
|
352 |
+
elif below_confidence_strategy == "original":
|
353 |
+
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values)
|
354 |
+
else:
|
355 |
+
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported")
|
356 |
+
assert not torch.isnan(texture_values).any()
|
357 |
+
meshes.textures = TexturesVertex(verts_features=[texture_values])
|
358 |
+
|
359 |
+
if distract_mask is not None:
|
360 |
+
import cv2
|
361 |
+
pil_distract_mask = (distract_mask * 255).astype(np.uint8)
|
362 |
+
pil_distract_mask = cv2.erode(pil_distract_mask, np.ones((3, 3), np.uint8), iterations=2)
|
363 |
+
pil_distract_mask = Image.fromarray(pil_distract_mask)
|
364 |
+
ret = project_color(meshes, cameras_list[0], pil_distract_mask, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
|
365 |
+
distract_valid_mask = ret['valid_colors'][:, 0] > 0.5
|
366 |
+
distract_invalid_index = ret['valid_verts'][~distract_valid_mask]
|
367 |
+
|
368 |
+
# invalid index's neighbors also should included
|
369 |
+
L = meshes.laplacian_packed()
|
370 |
+
# Convert invalid indices to a boolean mask
|
371 |
+
distract_invalid_mask = torch.zeros(meshes.verts_packed().shape[0:1], dtype=torch.bool, device=device)
|
372 |
+
distract_invalid_mask[distract_invalid_index] = True
|
373 |
+
|
374 |
+
# Find neighbors: multiply Laplacian with invalid_mask and check non-zero values
|
375 |
+
# Extract COO format (L.indices() gives [2, N] shape: row, col; L.values() gives values)
|
376 |
+
row_indices, col_indices = L.coalesce().indices()
|
377 |
+
invalid_rows = distract_invalid_mask[row_indices]
|
378 |
+
neighbor_indices = col_indices[invalid_rows]
|
379 |
+
|
380 |
+
# Combine original invalids with their neighbors
|
381 |
+
combined_invalid_mask = distract_invalid_mask.clone()
|
382 |
+
combined_invalid_mask[neighbor_indices] = True
|
383 |
+
|
384 |
+
# repeat
|
385 |
+
invalid_rows = combined_invalid_mask[row_indices]
|
386 |
+
neighbor_indices = col_indices[invalid_rows]
|
387 |
+
combined_invalid_mask[neighbor_indices] = True
|
388 |
+
|
389 |
+
# Apply to texture counts and values
|
390 |
+
texture_counts[combined_invalid_mask] = 0
|
391 |
+
texture_values[combined_invalid_mask] = 0
|
392 |
+
|
393 |
+
|
394 |
+
if complete_unseen:
|
395 |
+
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold])
|
396 |
+
ret_mesh = meshes.detach()
|
397 |
+
del meshes
|
398 |
+
return ret_mesh
|
399 |
+
|
400 |
+
|
401 |
+
def meshlab_mesh_to_py3dmesh(mesh: ml.Mesh) -> Meshes:
|
402 |
+
verts = torch.from_numpy(mesh.vertex_matrix()).float()
|
403 |
+
faces = torch.from_numpy(mesh.face_matrix()).long()
|
404 |
+
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
|
405 |
+
textures = TexturesVertex(verts_features=[colors])
|
406 |
+
return Meshes(verts=[verts], faces=[faces], textures=textures)
|
407 |
+
|
408 |
+
|
409 |
+
def to_pyml_mesh(vertices,faces):
|
410 |
+
m1 = ml.Mesh(
|
411 |
+
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
|
412 |
+
face_matrix=faces.cpu().long().numpy().astype(np.int32),
|
413 |
+
)
|
414 |
+
return m1
|
415 |
+
|
416 |
+
|
417 |
+
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
|
418 |
+
ms = ml.MeshSet()
|
419 |
+
ms.add_mesh(pyml_mesh, "cube_mesh")
|
420 |
+
|
421 |
+
if apply_smooth:
|
422 |
+
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False)
|
423 |
+
if apply_sub_divide: # 5s, slow
|
424 |
+
ms.apply_filter("meshing_repair_non_manifold_vertices")
|
425 |
+
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces')
|
426 |
+
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=Percentage(sub_divide_threshold))
|
427 |
+
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
|