# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py import tqdm import inspect from typing import Callable, List, Optional, Union from dataclasses import dataclass import numpy as np import torch from diffusers.utils import is_accelerate_available from packaging import version from transformers import CLIPTextModel, CLIPTokenizer import torchvision.transforms.functional as TF from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL from diffusers import DiffusionPipeline from diffusers.schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from diffusers.utils import deprecate, logging, BaseOutput from einops import rearrange from canonicalize.models.unet import UNet3DConditionModel from torchvision.transforms import InterpolationMode logger = logging.get_logger(__name__) # pylint: disable=invalid-name class CanonicalizationPipeline(DiffusionPipeline): _optional_components = [] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], ref_unet = None, feature_extractor=None, image_encoder=None ): super().__init__() self.ref_unet = ref_unet self.feature_extractor = feature_extractor self.image_encoder = image_encoder if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) def enable_vae_slicing(self): self.vae.enable_slicing() def disable_vae_slicing(self): self.vae.disable_slicing() def enable_sequential_cpu_offload(self, gpu_id=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device(f"cuda:{gpu_id}") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @property def _execution_device(self): if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance, img_proj=None): dtype = next(self.image_encoder.parameters()).dtype # image encoding clip_image_mean = torch.as_tensor(self.feature_extractor.image_mean)[:,None,None].to(device, dtype=torch.float32) clip_image_std = torch.as_tensor(self.feature_extractor.image_std)[:,None,None].to(device, dtype=torch.float32) imgs_in_proc = TF.resize(image_pil, (self.feature_extractor.crop_size['height'], self.feature_extractor.crop_size['width']), interpolation=InterpolationMode.BICUBIC) # do the normalization in float32 to preserve precision imgs_in_proc = ((imgs_in_proc.float() - clip_image_mean) / clip_image_std).to(dtype) if img_proj is None: # (B*Nv, 1, 768) image_embeddings = self.image_encoder(imgs_in_proc).image_embeds.unsqueeze(1) # duplicate image embeddings for each generation per prompt, using mps friendly method # Note: repeat differently from official pipelines # B1B2B3B4 -> B1B2B3B4B1B2B3B4 bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeddings) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) else: if do_classifier_free_guidance: negative_image_proc = torch.zeros_like(imgs_in_proc) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes imgs_in_proc = torch.cat([negative_image_proc, imgs_in_proc]) image_embeds = image_encoder(imgs_in_proc, output_hidden_states=True).hidden_states[-2] image_embeddings = img_proj(image_embeds) image_latents = self.vae.encode(image_pil* 2.0 - 1.0).latent_dist.mode() * self.vae.config.scaling_factor # Note: repeat differently from official pipelines # B1B2B3B4 -> B1B2B3B4B1B2B3B4 image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1) return image_embeddings, image_latents def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None text_embeddings = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) text_embeddings = text_embeddings[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None uncond_embeddings = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) uncond_embeddings = uncond_embeddings[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) return text_embeddings def decode_latents(self, latents): video_length = latents.shape[2] latents = 1 / 0.18215 * latents latents = rearrange(latents, "b c f h w -> (b f) c h w") video = self.vae.decode(latents).sample video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.cpu().float().numpy() return video def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs(self, prompt, height, width, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: rand_device = "cpu" if device.type == "mps" else device if isinstance(generator, list): shape = (1,) + shape[1:] latents = [ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) for i in range(batch_size) ] latents = torch.cat(latents, dim=0).to(device) else: latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], image: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, class_labels = None, prompt_ids = None, unet_condition_type = None, img_proj=None, use_noise=True, use_shifted_noise=False, rescale = 0.7, **kwargs, ): # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor video_length = 1 # Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) if isinstance(image, list): batch_size = len(image) else: batch_size = image.shape[0] # Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") import sys print(f"PIPELINE Using device!!!!!!!!!!!!: {device}", file=sys.stderr) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input image image_embeddings, image_latents = self._encode_image(image, device, num_videos_per_prompt, do_classifier_free_guidance, img_proj=img_proj) #torch.Size([64, 1, 768]) torch.Size([64, 4, 32, 32]) image_latents = rearrange(image_latents, "(b f) c h w -> b c f h w", f=1) #torch.Size([64, 4, 1, 32, 32]) # Encode input prompt text_embeddings = self._encode_prompt( #torch.Size([64, 77, 768]) prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt ) # Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # Prepare latent variables num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, video_length, height, width, text_embeddings.dtype, device, generator, latents, ) latents_dtype = latents.dtype # Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(tqdm.tqdm(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_cond = torch.randn_like(image_latents) if use_noise: cond_latents = self.scheduler.add_noise(image_latents, noise_cond, t) else: cond_latents = image_latents cond_latent_model_input = torch.cat([cond_latents] * 2) if do_classifier_free_guidance else cond_latents cond_latent_model_input = self.scheduler.scale_model_input(cond_latent_model_input, t) # predict the noise residual # ref text condition ref_dict = {} if self.ref_unet is not None: noise_pred_cond = self.ref_unet( cond_latent_model_input, t, encoder_hidden_states=text_embeddings.to(torch.float32), cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict) ).sample.to(dtype=latents_dtype) # text condition for unet text_embeddings_unet = text_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1,1) text_embeddings_unet = rearrange(text_embeddings_unet, 'B Nv d c -> (B Nv) d c') # image condition for unet image_embeddings_unet = image_embeddings.unsqueeze(1).repeat(1,latents.shape[2],1, 1) image_embeddings_unet = rearrange(image_embeddings_unet, 'B Nv d c -> (B Nv) d c') encoder_hidden_states_unet_cond = image_embeddings_unet if self.ref_unet is not None: noise_pred = self.unet( latent_model_input.to(torch.float32), t, encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32), cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance) ).sample.to(dtype=latents_dtype) else: noise_pred = self.unet( latent_model_input.to(torch.float32), t, encoder_hidden_states=encoder_hidden_states_unet_cond.to(torch.float32), cross_attention_kwargs=dict(mode="n", ref_dict=ref_dict, is_cfg_guidance=do_classifier_free_guidance) ).sample.to(dtype=latents_dtype) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) if use_shifted_noise: # Apply regular classifier-free guidance. cfg = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # Calculate standard deviations. std_pos = noise_pred_text.std([1,2,3], keepdim=True) std_cfg = cfg.std([1,2,3], keepdim=True) # Apply guidance rescale with fused operations. factor = std_pos / std_cfg factor = rescale * factor + (1 - rescale) noise_pred = cfg * factor else: noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 noise_pred = rearrange(noise_pred, "(b f) c h w -> b c f h w", f=video_length) latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) # Post-processing video = self.decode_latents(latents) # Convert to tensor if output_type == "tensor": video = torch.from_numpy(video) return video