Spaces:
Paused
Paused
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目 | |
""" | |
该文件中主要包含三个函数 | |
不具备多线程能力的函数: | |
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 | |
具备多线程调用能力的函数 | |
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑 | |
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程 | |
""" | |
import json | |
import time | |
import gradio as gr | |
import logging | |
import traceback | |
import requests | |
import importlib | |
# config_private.py放自己的秘密如API和代理网址 | |
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件 | |
from toolbox import get_conf | |
proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL = \ | |
get_conf('proxies', 'API_URL', 'API_KEY', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'LLM_MODEL') | |
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ | |
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' | |
def get_full_error(chunk, stream_response): | |
""" | |
获取完整的从Openai返回的报错 | |
""" | |
while True: | |
try: | |
chunk += next(stream_response) | |
except: | |
break | |
return chunk | |
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""): | |
""" | |
发送至chatGPT,等待回复,一次性完成,不显示中间过程。 | |
predict函数的简化版。 | |
用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表 | |
(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError) | |
""" | |
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False) | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=False | |
response = requests.post(API_URL, headers=headers, proxies=proxies, | |
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break | |
except requests.exceptions.ReadTimeout as e: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
try: | |
result = json.loads(response.text)["choices"][0]["message"]["content"] | |
return result | |
except Exception as e: | |
if "choices" not in response.text: print(response.text) | |
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text) | |
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt="", observe_window=None): | |
""" | |
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 | |
inputs: | |
是本次问询的输入 | |
sys_prompt: | |
系统静默prompt | |
top_p, temperature: | |
chatGPT的内部调优参数 | |
history: | |
是之前的对话列表 | |
observe_window = None: | |
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 | |
""" | |
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可 | |
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True) | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=False | |
response = requests.post(API_URL, headers=headers, proxies=proxies, | |
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break | |
except requests.exceptions.ReadTimeout as e: | |
retry += 1 | |
traceback.print_exc() | |
if retry > MAX_RETRY: raise TimeoutError | |
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……') | |
stream_response = response.iter_lines() | |
result = '' | |
while True: | |
try: chunk = next(stream_response).decode() | |
except StopIteration: break | |
if len(chunk)==0: continue | |
if not chunk.startswith('data:'): | |
error_msg = get_full_error(chunk.encode('utf8'), stream_response).decode() | |
if "reduce the length" in error_msg: | |
raise ConnectionAbortedError("OpenAI拒绝了请求:" + error_msg) | |
else: | |
raise RuntimeError("OpenAI拒绝了请求:" + error_msg) | |
json_data = json.loads(chunk.lstrip('data:'))['choices'][0] | |
delta = json_data["delta"] | |
if len(delta) == 0: break | |
if "role" in delta: continue | |
if "content" in delta: | |
result += delta["content"] | |
print(delta["content"], end='') | |
if observe_window is not None: | |
# 观测窗,把已经获取的数据显示出去 | |
if len(observe_window) >= 1: observe_window[0] += delta["content"] | |
# 看门狗,如果超过期限没有喂狗,则终止 | |
if len(observe_window) >= 2: | |
if (time.time()-observe_window[1]) > watch_dog_patience: | |
raise RuntimeError("程序终止。") | |
else: raise RuntimeError("意外Json结构:"+delta) | |
if json_data['finish_reason'] == 'length': | |
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。") | |
return result | |
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='', | |
stream = True, additional_fn=None): | |
""" | |
发送至chatGPT,流式获取输出。 | |
用于基础的对话功能。 | |
inputs 是本次问询的输入 | |
top_p, temperature是chatGPT的内部调优参数 | |
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) | |
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 | |
additional_fn代表点击的哪个按钮,按钮见functional.py | |
""" | |
if additional_fn is not None: | |
import core_functional | |
importlib.reload(core_functional) # 热更新prompt | |
core_functional = core_functional.get_functions() | |
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话) | |
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"] | |
if stream: | |
raw_input = inputs | |
logging.info(f'[raw_input] {raw_input}') | |
chatbot.append((inputs, "")) | |
yield chatbot, history, "等待响应" | |
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream) | |
history.append(inputs); history.append(" ") | |
retry = 0 | |
while True: | |
try: | |
# make a POST request to the API endpoint, stream=True | |
response = requests.post(API_URL, headers=headers, proxies=proxies, | |
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break | |
except: | |
retry += 1 | |
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) | |
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" | |
yield chatbot, history, "请求超时"+retry_msg | |
if retry > MAX_RETRY: raise TimeoutError | |
gpt_replying_buffer = "" | |
is_head_of_the_stream = True | |
if stream: | |
stream_response = response.iter_lines() | |
while True: | |
chunk = next(stream_response) | |
# print(chunk.decode()[6:]) | |
if is_head_of_the_stream: | |
# 数据流的第一帧不携带content | |
is_head_of_the_stream = False; continue | |
if chunk: | |
try: | |
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
# 判定为数据流的结束,gpt_replying_buffer也写完了 | |
logging.info(f'[response] {gpt_replying_buffer}') | |
break | |
# 处理数据流的主体 | |
chunkjson = json.loads(chunk.decode()[6:]) | |
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}" | |
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出 | |
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"] | |
history[-1] = gpt_replying_buffer | |
chatbot[-1] = (history[-2], history[-1]) | |
yield chatbot, history, status_text | |
except Exception as e: | |
traceback.print_exc() | |
yield chatbot, history, "Json解析不合常规" | |
chunk = get_full_error(chunk, stream_response) | |
error_msg = chunk.decode() | |
if "reduce the length" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长,或历史数据过长. 历史缓存数据现已释放,您可以请再次尝试.") | |
history = [] # 清除历史 | |
elif "Incorrect API key" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由,拒绝服务.") | |
elif "exceeded your current quota" in error_msg: | |
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由,拒绝服务.") | |
else: | |
from toolbox import regular_txt_to_markdown | |
tb_str = '```\n' + traceback.format_exc() + '```' | |
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk.decode()[4:])}") | |
yield chatbot, history, "Json异常" + error_msg | |
return | |
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream): | |
""" | |
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 | |
""" | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {API_KEY}" | |
} | |
conversation_cnt = len(history) // 2 | |
messages = [{"role": "system", "content": system_prompt}] | |
if conversation_cnt: | |
for index in range(0, 2*conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = history[index] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = history[index+1] | |
if what_i_have_asked["content"] != "": | |
if what_gpt_answer["content"] == "": continue | |
if what_gpt_answer["content"] == timeout_bot_msg: continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]['content'] = what_gpt_answer['content'] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = inputs | |
messages.append(what_i_ask_now) | |
payload = { | |
"model": LLM_MODEL, | |
"messages": messages, | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": stream, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}") | |
return headers,payload | |