from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline import gradio as gr import torch model = AutoModelForQuestionAnswering.from_pretrained("i0xs0/Fine-Tuned-XLM-Question-Answering") tokenizer = AutoTokenizer.from_pretrained("i0xs0/Fine-Tuned-XLM-Question-Answering") def generate_answer(question, context): inputs = tokenizer.encode_plus(question, context, add_special_tokens=True, return_tensors="pt") input_ids = inputs["input_ids"].tolist()[0] outputs = model(**inputs) answer_start_scores = outputs.start_logits answer_end_scores = outputs.end_logits answer_start = torch.argmax(answer_start_scores) answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])) return answer iface = gr.Interface(fn=generate_answer, inputs=[gr.Textbox(lines=2, placeholder="Enter Question Here..."), gr.Textbox(lines=5, placeholder="Enter Context Here...", label="Context")], outputs=gr.Textbox(lines=5), title="Question Answering", description="Type in your question and Context, and the system will provide you with an answer.") iface.launch()