Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import json | |
import pandas as pd | |
import requests as req | |
# Retrieve HF space secrets | |
auth_key = os.getenv('AUTH_KEY') | |
api_url = os.getenv('API_URL') | |
api_port = os.getenv('API_PORT') | |
FEEDBACK_IP = os.getenv('FEEDBACK_IP') | |
FEEDBACK_PORT = os.getenv('FEEDBACK_PORT') | |
FEEDBACK_PATH = os.getenv('FEEDBACK_PATH') | |
API_KEY = os.getenv('API_KEY') | |
HEADERS = { | |
'Content-Type': 'application/json' | |
} | |
# Define feedback function to send like/dislike feedback | |
def send_feedback(request_data, response_data, like_reaction, dislike_reaction): | |
print("Sending feedback...", request_data, response_data, like_reaction, dislike_reaction) | |
# Construct the feedback payload | |
feedback_payload = { | |
"tool_id": 3, | |
"request": json.dumps(request_data), | |
"result": json.dumps(response_data), | |
"like": like_reaction, | |
"dislike": dislike_reaction | |
} | |
headers = { | |
'Content-Type': 'application/json', | |
'x-api-key': API_KEY | |
} | |
try: | |
# Construct feedback URL and send the POST request | |
feedback_url = f"http://{FEEDBACK_IP}:{FEEDBACK_PORT}{FEEDBACK_PATH}" | |
response = req.post(feedback_url, json=feedback_payload, headers=headers) | |
response.raise_for_status() # Raise an error for bad responses | |
print("Feedback sent successfully.") | |
return {"message": "Feedback sent successfully"} | |
except req.RequestException as e: | |
print("Error sending feedback:", e) | |
return {"error": str(e)} | |
# Define feedback toggle functionality | |
def toggle_feedback(request_data, response_data, like_clicked, dislike_clicked): | |
print("Toggling feedback...", like_clicked, dislike_clicked) | |
# Determine feedback type | |
like_reaction = True if like_clicked else False | |
dislike_reaction = True if dislike_clicked else False | |
# Send feedback to the backend | |
feedback_response = send_feedback(request_data, response_data, like_reaction, dislike_reaction) | |
# Return appropriate message based on the feedback response | |
if 'error' in feedback_response: | |
return f"Failed to send feedback: {feedback_response['error']}" | |
else: | |
return "Feedback sent successfully!" | |
def preprocess_and_flatten(json_results, mode, meta_fields=None): | |
# Ensure 'meta_fields' is a list or set default fields | |
if meta_fields is None: | |
meta_fields = ['doc_id', 'details', 'domain'] | |
# Check if json_results is a valid dictionary | |
if not isinstance(json_results, dict): | |
print(f"Invalid JSON results: Expected a dictionary but got {type(json_results)}") | |
return pd.DataFrame() # Return an empty DataFrame if json_results is not a dictionary | |
# Collect flattened data | |
flattened_data = [] | |
# Mode-based logic | |
if mode == 'news_analysis': | |
# Handle 'claim_objects' for news analysis mode | |
claim_objects = json_results.get('claim_objects', []) | |
if isinstance(claim_objects, list): | |
for item in claim_objects: | |
flattened_data.append({ | |
'doc_id': json_results.get('doc_id'), | |
'details': json_results.get('details'), | |
'domain': json_results.get('domain'), | |
'topic': item.get('topic', ''), | |
'claim': item.get('claim', ''), | |
'claimer': item.get('claimer', '') | |
}) | |
elif mode == 'claim_verification': | |
# Handle 'support', 'refute', 'no_info' for claim verification mode | |
nested_fields = ['support', 'refute', 'no_info'] | |
for field in nested_fields: | |
nested_items = json_results.get(field, []) | |
if not isinstance(nested_items, list): | |
continue | |
# Loop over each item in the nested field and flatten | |
for item in nested_items: | |
flattened_data.append({ | |
'doc_id': json_results.get('doc_id'), | |
'details': json_results.get('details'), | |
'category': field, # Mark which category the item belongs to (support/refute/no_info) | |
'sentence': item.get('sentence', ''), | |
'doi': item.get('doi', '') | |
}) | |
# Convert to DataFrame | |
dataframe_results = pd.DataFrame(flattened_data) | |
# Capitalize column names | |
dataframe_results.columns = [col.capitalize() for col in dataframe_results.columns] | |
# Rename columns at the end of the function, conditionally if they exist | |
rename_columns = {} | |
# Conditionally add renaming based on the mode and column existence | |
if 'doc_id' in dataframe_results.columns: | |
rename_columns['doc_id'] = 'DOC ID' | |
if mode == 'claim_verification': | |
if 'doi' in dataframe_results.columns: | |
rename_columns['doi'] = 'DOI' | |
if 'sentence' in dataframe_results.columns: | |
rename_columns['sentence'] = 'Sentence' | |
# Apply the renaming if there are any columns to rename | |
if rename_columns: | |
dataframe_results.rename(columns=rename_columns, inplace=True) | |
return dataframe_results | |
# Define the functions to handle the inputs and outputs | |
def news_analysis(text): | |
try: | |
response = req.post( | |
f"{api_url}:{api_port}/news_analysis", | |
json={ | |
'doc_id': '1', | |
'text': text, | |
'auth_key': auth_key | |
}, | |
headers=HEADERS | |
) | |
response.raise_for_status() | |
# Prepare results for JSON output | |
json_results = response.json() | |
# Flatten 'claim_objects' field | |
dataframe_results = preprocess_and_flatten(json_results, mode='news_analysis') | |
return json_results, dataframe_results | |
except Exception as e: | |
results = {'error': str(e)} | |
return results, pd.DataFrame() | |
def claim_verification(text): | |
try: | |
response = req.post( | |
f"{api_url}:{api_port}/claim_verification", | |
json={ | |
'doc_id': '1', | |
'text': text, | |
'auth_key': auth_key | |
}, | |
headers=HEADERS | |
) | |
response.raise_for_status() | |
# Prepare results for JSON output | |
json_results = response.json() | |
# Flatten 'support', 'refute', and 'no_info' fields | |
dataframe_results = preprocess_and_flatten(json_results, mode='claim_verification') | |
return json_results, dataframe_results | |
except Exception as e: | |
results = {'error': str(e)} | |
return results, pd.DataFrame() | |
# Define reusable feedback and export binding function | |
def bind_feedback_buttons(like_button, dislike_button, json_output, feedback_message): | |
like_button.click( | |
toggle_feedback, | |
inputs=[json_output, json_output, gr.Textbox(visible=False, value='True'), gr.Textbox(visible=False, value='False')], | |
outputs=[feedback_message] | |
) | |
dislike_button.click( | |
toggle_feedback, | |
inputs=[json_output, json_output, gr.Textbox(visible=False, value='False'), gr.Textbox(visible=False, value='True')], | |
outputs=[feedback_message] | |
) | |
def bind_export_buttons(export_csv_button, export_json_button, table_output, json_output): | |
export_csv_button.click( | |
export_results, | |
inputs=[table_output, gr.Textbox(visible=False, value='csv'), json_output], | |
outputs=[gr.File()] | |
) | |
export_json_button.click( | |
export_results, | |
inputs=[table_output, gr.Textbox(visible=False, value='json'), json_output], | |
outputs=[gr.File()] | |
) | |
# export function for results | |
def export_results(results, export_type, original_json): | |
print("Exporting results...", export_type) | |
try: | |
if export_type == 'csv': | |
# Ensure results is a DataFrame before exporting | |
try: | |
if not isinstance(results, pd.DataFrame): | |
results = pd.DataFrame(results) | |
except ValueError as e: | |
print("Error converting results to DataFrame:", e) | |
return gr.File(None), f"Error: Unable to convert results to DataFrame - {str(e)}" | |
csv_file_path = "exported_results.csv" | |
results.to_csv(csv_file_path, index=False) | |
print("CSV export successful:", csv_file_path) | |
return gr.File(csv_file_path) | |
elif export_type == 'json': | |
# Ensure original_json is serializable | |
if not isinstance(original_json, (dict, list)): | |
raise ValueError("Invalid data for JSON export") | |
json_file_path = "exported_results.json" | |
with open(json_file_path, "w") as f: | |
json.dump(original_json, f, indent=4) | |
print("JSON export successful:", json_file_path) | |
return gr.File(json_file_path) | |
else: | |
print("Error: Unsupported export type or no data available.") | |
return gr.File(None), "Error: Unsupported export type or no data available." | |
except (IOError, ValueError) as e: | |
print("Error during export:", e) | |
return gr.File(None), f"Error: {str(e)}" | |
# CSS for styling the interface | |
common_css = """ | |
.unpadded_box { | |
display: none !important; | |
} | |
#like-dislike-container, #claim-like-dislike-container { | |
display: flex; | |
justify-content: flex-start; | |
margin-top: 20px; /* Increased margin to add more space between rows */ | |
gap: 15px; /* Add gap between like and dislike buttons */ | |
} | |
#like-btn, #dislike-btn, #like-claim-btn, #dislike-claim-btn, #export-csv-btn, #export-json-btn, | |
#export-claim-csv-btn, #export-claim-json-btn, #submit-btn, #submit-claim-btn { | |
background-color: #e0e0e0; | |
font-size: 18px; | |
border-radius: 8px; | |
padding: 12px; /* Increased padding for better look and feel */ | |
margin: 10px; /* Added margin for spacing between buttons */ | |
max-width: 250px; | |
cursor: pointer; | |
border: 1px solid transparent; | |
transition: background-color 0.3s, box-shadow 0.3s; /* Smooth hover transition */ | |
} | |
#like-btn:hover, #dislike-btn:hover, #like-claim-btn:hover, #dislike-claim-btn:hover, | |
#submit-btn:hover, #submit-claim-btn:hover, #export-csv-btn:hover, #export-json-btn:hover, | |
#export-claim-csv-btn:hover, #export-claim-json-btn:hover { | |
background-color: #d0d0d0; | |
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); /* Add shadow on hover for depth effect */ | |
} | |
.active { | |
background-color: #c0c0c0; | |
font-weight: bold; | |
border-color: #000; | |
} | |
.feedback-message { | |
font-size: 16px; /* Slightly larger for readability */ | |
color: #4CAF50; | |
margin-top: 10px; /* Space between feedback message and buttons */ | |
} | |
.gr-textbox, .gr-markdown { | |
margin-top: 15px; /* Space between input elements and titles */ | |
} | |
#export-container { | |
margin-top: 20px; /* Add space above the export container */ | |
gap: 15px; /* Add gap between export buttons */ | |
} | |
.output-container { | |
margin-top: 30px; /* Add space above the output container */ | |
} | |
.gr-row { | |
margin-top: 20px; /* Spacing for each row */ | |
} | |
""" | |
# Define the interface for the first tab (News Analysis) | |
with gr.Blocks(css=common_css) as news_analysis_mode: | |
# Input fields for news analysis | |
gr.Markdown("### News Analysis") | |
gr.Markdown("Classify the domain of a news article and detect major claims.") | |
news_text_input = gr.Textbox(lines=10, label="News Article Text", placeholder="Enter the news article text") | |
news_submit_button = gr.Button("Submit", elem_id="submit-btn") | |
# Group related elements in a single container | |
with gr.Group(visible=False, elem_id="output-container") as output_container: | |
# Output fields for displaying results | |
table_output = gr.DataFrame(label="Table View", elem_id="table_view", interactive=False) | |
json_view_output = gr.JSON(label="JSON View", elem_id="json_view") | |
# Feedback buttons container for user reaction | |
reaction_label = gr.Markdown("**Reaction**") | |
with gr.Row(elem_id="like-dislike-container"): | |
like_button = gr.Button("π Like", elem_id="like-btn") | |
dislike_button = gr.Button("π Dislike", elem_id="dislike-btn") | |
feedback_message = gr.Markdown("") | |
# Export options container | |
export_label = gr.Markdown("**Export Options**") | |
with gr.Row(elem_id="export-container"): | |
export_csv_button = gr.Button("π Export as CSV", elem_id="export-csv-btn") | |
export_json_button = gr.Button("π Export as JSON", elem_id="export-json-btn") | |
# Bind export buttons to export function for News Analysis mode | |
bind_export_buttons(export_csv_button, export_json_button, table_output, json_view_output) | |
# Bind submit button to analyze input function | |
news_submit_button.click( | |
news_analysis, | |
inputs=[news_text_input], | |
outputs=[json_view_output, table_output] # Ensure both outputs are specified here | |
).then( | |
lambda: gr.update(visible=True), # Show entire container after the first request | |
inputs=[], | |
outputs=[output_container] | |
) | |
# Bind feedback buttons for News Analysis Mode | |
bind_feedback_buttons(like_button, dislike_button, json_view_output, feedback_message) | |
# Define the interface for the second tab (Claim Verification) | |
with gr.Blocks(css=common_css) as claim_verification_mode: | |
gr.Markdown("### Claim Verification") | |
gr.Markdown("Verify claims made in a news article.") | |
claim_text_input = gr.Textbox(lines=10, label="Claim Text", placeholder="Enter the claim text") | |
claim_submit_button = gr.Button("Submit", elem_id="submit-claim-btn") | |
# Group related elements in a single container | |
with gr.Group(visible=False) as claim_output_container: | |
table_claim_output = gr.DataFrame(label="Table View", elem_id="table_view_claim", interactive=False) | |
json_claim_output = gr.JSON(label="JSON View", elem_id="json_view_claim") | |
claim_reaction_label = gr.Markdown("**Reaction**") | |
with gr.Row(elem_id="claim-like-dislike-container"): | |
like_claim_button = gr.Button("π Like", elem_id="like-claim-btn") | |
dislike_claim_button = gr.Button("π Dislike", elem_id="dislike-claim-btn") | |
claim_feedback_message = gr.Markdown("") | |
claim_export_label = gr.Markdown("**Export Options**") | |
with gr.Row(elem_id="export-claim-container"): | |
export_claim_csv_button = gr.Button("π Export as CSV", elem_id="export-claim-csv-btn") | |
export_claim_json_button = gr.Button("π Export as JSON", elem_id="export-claim-json-btn") | |
# Bind the submit button to the function for verifying the claim text | |
claim_submit_button.click( | |
claim_verification, | |
inputs=[claim_text_input], | |
outputs=[json_claim_output, table_claim_output] | |
).then( | |
lambda: gr.update(visible=True), # Show entire container after the first request | |
inputs=[], | |
outputs=[claim_output_container] | |
) | |
# Bind feedback buttons for Claim Verification Mode | |
bind_feedback_buttons(like_claim_button, dislike_claim_button, json_claim_output, claim_feedback_message) | |
# Bind export buttons to export function for Claim Verification Mode | |
bind_export_buttons(export_claim_csv_button, export_claim_json_button, table_claim_output, json_claim_output) | |
# Combine the tabs into one interface | |
with gr.Blocks(css=common_css) as demo: | |
gr.TabbedInterface([news_analysis_mode, claim_verification_mode], ["News Analysis", "Claim Verification"]) | |
# Launch the interface | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860) | |