import os import gradio as gr import json import pandas as pd import requests as req # Retrieve HF space secrets auth_key = os.getenv('AUTH_KEY') api_url = os.getenv('API_URL') api_port = os.getenv('API_PORT') FEEDBACK_IP = os.getenv('FEEDBACK_IP') FEEDBACK_PORT = os.getenv('FEEDBACK_PORT') FEEDBACK_PATH = os.getenv('FEEDBACK_PATH') API_KEY = os.getenv('API_KEY') HEADERS = { 'Content-Type': 'application/json' } # Define feedback function to send like/dislike feedback def send_feedback(request_data, response_data, like_reaction, dislike_reaction): print("Sending feedback...", request_data, response_data, like_reaction, dislike_reaction) # Construct the feedback payload feedback_payload = { "tool_id": 3, "request": json.dumps(request_data), "result": json.dumps(response_data), "like": like_reaction, "dislike": dislike_reaction } headers = { 'Content-Type': 'application/json', 'x-api-key': API_KEY } try: # Construct feedback URL and send the POST request feedback_url = f"http://{FEEDBACK_IP}:{FEEDBACK_PORT}{FEEDBACK_PATH}" response = req.post(feedback_url, json=feedback_payload, headers=headers) response.raise_for_status() # Raise an error for bad responses print("Feedback sent successfully.") return {"message": "Feedback sent successfully"} except req.RequestException as e: print("Error sending feedback:", e) return {"error": str(e)} # Define feedback toggle functionality def toggle_feedback(request_data, response_data, like_clicked, dislike_clicked): print("Toggling feedback...", like_clicked, dislike_clicked) # Determine feedback type like_reaction = True if like_clicked else False dislike_reaction = True if dislike_clicked else False # Send feedback to the backend feedback_response = send_feedback(request_data, response_data, like_reaction, dislike_reaction) # Return appropriate message based on the feedback response if 'error' in feedback_response: return f"Failed to send feedback: {feedback_response['error']}" else: return "Feedback sent successfully!" def preprocess_and_flatten(json_results, mode, meta_fields=None): # Ensure 'meta_fields' is a list or set default fields if meta_fields is None: meta_fields = ['doc_id', 'details', 'domain'] # Check if json_results is a valid dictionary if not isinstance(json_results, dict): print(f"Invalid JSON results: Expected a dictionary but got {type(json_results)}") return pd.DataFrame() # Return an empty DataFrame if json_results is not a dictionary # Collect flattened data flattened_data = [] # Mode-based logic if mode == 'news_analysis': # Handle 'claim_objects' for news analysis mode claim_objects = json_results.get('claim_objects', []) if isinstance(claim_objects, list): for item in claim_objects: flattened_data.append({ 'doc_id': json_results.get('doc_id'), 'details': json_results.get('details'), 'domain': json_results.get('domain'), 'topic': item.get('topic', ''), 'claim': item.get('claim', ''), 'claimer': item.get('claimer', '') }) elif mode == 'claim_verification': # Handle 'support', 'refute', 'no_info' for claim verification mode nested_fields = ['support', 'refute', 'no_info'] for field in nested_fields: nested_items = json_results.get(field, []) if not isinstance(nested_items, list): continue # Loop over each item in the nested field and flatten for item in nested_items: flattened_data.append({ 'doc_id': json_results.get('doc_id'), 'details': json_results.get('details'), 'category': field, # Mark which category the item belongs to (support/refute/no_info) 'sentence': item.get('sentence', ''), 'doi': item.get('doi', '') }) # Convert to DataFrame dataframe_results = pd.DataFrame(flattened_data) # Capitalize column names dataframe_results.columns = [col.capitalize() for col in dataframe_results.columns] # Rename columns at the end of the function, conditionally if they exist rename_columns = {} # Conditionally add renaming based on the mode and column existence if 'doc_id' in dataframe_results.columns: rename_columns['doc_id'] = 'DOC ID' if mode == 'claim_verification': if 'doi' in dataframe_results.columns: rename_columns['doi'] = 'DOI' if 'sentence' in dataframe_results.columns: rename_columns['sentence'] = 'Sentence' # Apply the renaming if there are any columns to rename if rename_columns: dataframe_results.rename(columns=rename_columns, inplace=True) return dataframe_results # Define the functions to handle the inputs and outputs def news_analysis(text): try: response = req.post( f"{api_url}:{api_port}/news_analysis", json={ 'doc_id': '1', 'text': text, 'auth_key': auth_key }, headers=HEADERS ) response.raise_for_status() # Prepare results for JSON output json_results = response.json() # Flatten 'claim_objects' field dataframe_results = preprocess_and_flatten(json_results, mode='news_analysis') return json_results, dataframe_results except Exception as e: results = {'error': str(e)} return results, pd.DataFrame() def claim_verification(text): try: response = req.post( f"{api_url}:{api_port}/claim_verification", json={ 'doc_id': '1', 'text': text, 'auth_key': auth_key }, headers=HEADERS ) response.raise_for_status() # Prepare results for JSON output json_results = response.json() # Flatten 'support', 'refute', and 'no_info' fields dataframe_results = preprocess_and_flatten(json_results, mode='claim_verification') return json_results, dataframe_results except Exception as e: results = {'error': str(e)} return results, pd.DataFrame() # Define reusable feedback and export binding function def bind_feedback_buttons(like_button, dislike_button, json_output, feedback_message): like_button.click( toggle_feedback, inputs=[json_output, json_output, gr.Textbox(visible=False, value='True'), gr.Textbox(visible=False, value='False')], outputs=[feedback_message] ) dislike_button.click( toggle_feedback, inputs=[json_output, json_output, gr.Textbox(visible=False, value='False'), gr.Textbox(visible=False, value='True')], outputs=[feedback_message] ) def bind_export_buttons(export_csv_button, export_json_button, table_output, json_output): export_csv_button.click( export_results, inputs=[table_output, gr.Textbox(visible=False, value='csv'), json_output], outputs=[gr.File()] ) export_json_button.click( export_results, inputs=[table_output, gr.Textbox(visible=False, value='json'), json_output], outputs=[gr.File()] ) # export function for results def export_results(results, export_type, original_json): print("Exporting results...", export_type) try: if export_type == 'csv': # Ensure results is a DataFrame before exporting try: if not isinstance(results, pd.DataFrame): results = pd.DataFrame(results) except ValueError as e: print("Error converting results to DataFrame:", e) return gr.File(None), f"Error: Unable to convert results to DataFrame - {str(e)}" csv_file_path = "exported_results.csv" results.to_csv(csv_file_path, index=False) print("CSV export successful:", csv_file_path) return gr.File(csv_file_path) elif export_type == 'json': # Ensure original_json is serializable if not isinstance(original_json, (dict, list)): raise ValueError("Invalid data for JSON export") json_file_path = "exported_results.json" with open(json_file_path, "w") as f: json.dump(original_json, f, indent=4) print("JSON export successful:", json_file_path) return gr.File(json_file_path) else: print("Error: Unsupported export type or no data available.") return gr.File(None), "Error: Unsupported export type or no data available." except (IOError, ValueError) as e: print("Error during export:", e) return gr.File(None), f"Error: {str(e)}" # CSS for styling the interface common_css = """ .unpadded_box { display: none !important; } #like-dislike-container, #claim-like-dislike-container { display: flex; justify-content: flex-start; margin-top: 20px; /* Increased margin to add more space between rows */ gap: 15px; /* Add gap between like and dislike buttons */ } #like-btn, #dislike-btn, #like-claim-btn, #dislike-claim-btn, #export-csv-btn, #export-json-btn, #export-claim-csv-btn, #export-claim-json-btn, #submit-btn, #submit-claim-btn { background-color: #e0e0e0; font-size: 18px; border-radius: 8px; padding: 12px; /* Increased padding for better look and feel */ margin: 10px; /* Added margin for spacing between buttons */ max-width: 250px; cursor: pointer; border: 1px solid transparent; transition: background-color 0.3s, box-shadow 0.3s; /* Smooth hover transition */ } #like-btn:hover, #dislike-btn:hover, #like-claim-btn:hover, #dislike-claim-btn:hover, #submit-btn:hover, #submit-claim-btn:hover, #export-csv-btn:hover, #export-json-btn:hover, #export-claim-csv-btn:hover, #export-claim-json-btn:hover { background-color: #d0d0d0; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); /* Add shadow on hover for depth effect */ } .active { background-color: #c0c0c0; font-weight: bold; border-color: #000; } .feedback-message { font-size: 16px; /* Slightly larger for readability */ color: #4CAF50; margin-top: 10px; /* Space between feedback message and buttons */ } .gr-textbox, .gr-markdown { margin-top: 15px; /* Space between input elements and titles */ } #export-container { margin-top: 20px; /* Add space above the export container */ gap: 15px; /* Add gap between export buttons */ } .output-container { margin-top: 30px; /* Add space above the output container */ } .gr-row { margin-top: 20px; /* Spacing for each row */ } """ # Define the interface for the first tab (News Analysis) with gr.Blocks(css=common_css) as news_analysis_mode: # Input fields for news analysis gr.Markdown("### News Analysis") gr.Markdown("Classify the domain of a news article and detect major claims.") news_text_input = gr.Textbox(lines=10, label="News Article Text", placeholder="Enter the news article text") news_submit_button = gr.Button("Submit", elem_id="submit-btn") # Group related elements in a single container with gr.Group(visible=False, elem_id="output-container") as output_container: # Output fields for displaying results table_output = gr.DataFrame(label="Table View", elem_id="table_view", interactive=False) json_view_output = gr.JSON(label="JSON View", elem_id="json_view") # Feedback buttons container for user reaction reaction_label = gr.Markdown("**Reaction**") with gr.Row(elem_id="like-dislike-container"): like_button = gr.Button("👍 Like", elem_id="like-btn") dislike_button = gr.Button("👎 Dislike", elem_id="dislike-btn") feedback_message = gr.Markdown("") # Export options container export_label = gr.Markdown("**Export Options**") with gr.Row(elem_id="export-container"): export_csv_button = gr.Button("📄 Export as CSV", elem_id="export-csv-btn") export_json_button = gr.Button("📝 Export as JSON", elem_id="export-json-btn") # Bind export buttons to export function for News Analysis mode bind_export_buttons(export_csv_button, export_json_button, table_output, json_view_output) # Bind submit button to analyze input function news_submit_button.click( news_analysis, inputs=[news_text_input], outputs=[json_view_output, table_output] # Ensure both outputs are specified here ).then( lambda: gr.update(visible=True), # Show entire container after the first request inputs=[], outputs=[output_container] ) # Bind feedback buttons for News Analysis Mode bind_feedback_buttons(like_button, dislike_button, json_view_output, feedback_message) # Define the interface for the second tab (Claim Verification) with gr.Blocks(css=common_css) as claim_verification_mode: gr.Markdown("### Claim Verification") gr.Markdown("Verify claims made in a news article.") claim_text_input = gr.Textbox(lines=10, label="Claim Text", placeholder="Enter the claim text") claim_submit_button = gr.Button("Submit", elem_id="submit-claim-btn") # Group related elements in a single container with gr.Group(visible=False) as claim_output_container: table_claim_output = gr.DataFrame(label="Table View", elem_id="table_view_claim", interactive=False) json_claim_output = gr.JSON(label="JSON View", elem_id="json_view_claim") claim_reaction_label = gr.Markdown("**Reaction**") with gr.Row(elem_id="claim-like-dislike-container"): like_claim_button = gr.Button("👍 Like", elem_id="like-claim-btn") dislike_claim_button = gr.Button("👎 Dislike", elem_id="dislike-claim-btn") claim_feedback_message = gr.Markdown("") claim_export_label = gr.Markdown("**Export Options**") with gr.Row(elem_id="export-claim-container"): export_claim_csv_button = gr.Button("📄 Export as CSV", elem_id="export-claim-csv-btn") export_claim_json_button = gr.Button("📝 Export as JSON", elem_id="export-claim-json-btn") # Bind the submit button to the function for verifying the claim text claim_submit_button.click( claim_verification, inputs=[claim_text_input], outputs=[json_claim_output, table_claim_output] ).then( lambda: gr.update(visible=True), # Show entire container after the first request inputs=[], outputs=[claim_output_container] ) # Bind feedback buttons for Claim Verification Mode bind_feedback_buttons(like_claim_button, dislike_claim_button, json_claim_output, claim_feedback_message) # Bind export buttons to export function for Claim Verification Mode bind_export_buttons(export_claim_csv_button, export_claim_json_button, table_claim_output, json_claim_output) # Combine the tabs into one interface with gr.Blocks(css=common_css) as demo: gr.TabbedInterface([news_analysis_mode, claim_verification_mode], ["News Analysis", "Claim Verification"]) # Launch the interface demo.queue().launch(server_name="0.0.0.0", server_port=7860)