Spaces:
Runtime error
Runtime error
File size: 3,980 Bytes
55e98f1 4d4157a 63cf799 55e98f1 811776f 55e98f1 eacdce1 55e98f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import streamlit as st
import pandas as pd
# ๋ชจ๋ธ ์ค๋นํ๊ธฐ
from transformers import RobertaForSequenceClassification, AutoTokenizer
import numpy as np
import pandas as pd
import torch
import os
# [theme]
# base="dark"
# primaryColor="purple"
# ์ ๋ชฉ ์
๋ ฅ
st.header('ํ๊ตญํ์ค์ฐ์
๋ถ๋ฅ ์๋์ฝ๋ฉ ์๋น์ค')
# ์ฌ๋ก๋ ์ํ๋๋ก
@st.experimental_memo(max_entries=20)
def md_loading():
## cpu
# device = torch.device('cpu')
tokenizer = AutoTokenizer.from_pretrained('klue/roberta-base')
model = RobertaForSequenceClassification.from_pretrained('klue/roberta-base', num_labels=495)
model_checkpoint = 'upsampling_20.bin'
project_path = './'
output_model_file = os.path.join(project_path, model_checkpoint)
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
label_tbl = np.load('./label_table.npy')
loc_tbl = pd.read_csv('./kisc_table.csv', encoding='utf-8')
print('ready')
return tokenizer, model, label_tbl, loc_tbl
# ๋ชจ๋ธ ๋ก๋
tokenizer, model, label_tbl, loc_tbl = md_loading()
# ํ
์คํธ input ๋ฐ์ค
business = st.text_input('์ฌ์
์ฒด๋ช
').replace(',', '')
business_work = st.text_input('์ฌ์
์ฒด ํ๋์ผ').replace(',', '')
work_department = st.text_input('๊ทผ๋ฌด๋ถ์').replace(',', '')
work_position = st.text_input('์ง์ฑ
').replace(',', '')
what_do_i = st.text_input('๋ด๊ฐ ํ๋ ์ผ').replace(',', '')
# md_input: ๋ชจ๋ธ์ ์
๋ ฅํ input ๊ฐ ์ ์
md_input = ', '.join([business, business_work, work_department, work_position, what_do_i])
## ์์ ํ์ธ
# st.write(md_input)
# ๋ฒํผ
if st.button('ํ์ธ'):
## ๋ฒํผ ํด๋ฆญ ์ ์ํ์ฌํญ
### ๋ชจ๋ธ ์คํ
query_tokens = md_input.split(',')
input_ids = np.zeros(shape=[1, 64])
attention_mask = np.zeros(shape=[1, 64])
seq = '[CLS] '
try:
for i in range(5):
seq += query_tokens[i] + ' '
except:
None
tokens = tokenizer.tokenize(seq)
ids = tokenizer.convert_tokens_to_ids(tokens)
length = len(ids)
if length > 64:
length = 64
for i in range(length):
input_ids[0, i] = ids[i]
attention_mask[0, i] = 1
input_ids = torch.from_numpy(input_ids).type(torch.long)
attention_mask = torch.from_numpy(attention_mask).type(torch.long)
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=None)
logits = outputs.logits
# # ๋จ๋
์์ธก ์
# arg_idx = torch.argmax(logits, dim=1)
# print('arg_idx:', arg_idx)
# num_ans = label_tbl[arg_idx]
# str_ans = loc_tbl['ํญ๋ชฉ๋ช
'][loc_tbl['์ฝ๋'] == num_ans].values
# ์์ k๋ฒ์งธ๊น์ง ์์ธก ์
k = 10
topk_idx = torch.topk(logits.flatten(), k).indices
num_ans_topk = label_tbl[topk_idx]
str_ans_topk = [loc_tbl['ํญ๋ชฉ๋ช
'][loc_tbl['์ฝ๋'] == k] for k in num_ans_topk]
# print(num_ans, str_ans)
# print(num_ans_topk)
# print('์ฌ์
์ฒด๋ช
:', query_tokens[0])
# print('์ฌ์
์ฒด ํ๋์ผ:', query_tokens[1])
# print('๊ทผ๋ฌด๋ถ์:', query_tokens[2])
# print('์ง์ฑ
:', query_tokens[3])
# print('๋ด๊ฐ ํ๋์ผ:', query_tokens[4])
# print('์ฐ์
์ฝ๋ ๋ฐ ๋ถ๋ฅ:', num_ans, str_ans)
# ans = ''
# ans1, ans2, ans3 = '', '', ''
## ๋ชจ๋ธ ๊ฒฐ๊ณผ๊ฐ ์ถ๋ ฅ
# st.write("์ฐ์
์ฝ๋ ๋ฐ ๋ถ๋ฅ:", num_ans, str_ans[0])
# st.write("์ธ๋ถ๋ฅ ์ฝ๋")
# for i in range(k):
# st.write(str(i+1) + '์์:', num_ans_topk[i], str_ans_topk[i].iloc[0])
# print(num_ans)
# print(str_ans, type(str_ans))
str_ans_topk_list = []
for i in range(k):
str_ans_topk_list.append(str_ans_topk[i].iloc[0])
# print(str_ans_topk_list)
ans_topk_df = pd.DataFrame({
'NO': range(1, k+1),
'์ธ๋ถ๋ฅ ์ฝ๋': num_ans_topk,
'์ธ๋ถ๋ฅ ๋ช
์นญ': str_ans_topk_list
})
ans_topk_df = ans_topk_df.set_index('NO')
st.dataframe(ans_topk_df) |