File size: 3,980 Bytes
55e98f1
 
 
 
 
 
 
 
 
 
4d4157a
 
 
63cf799
55e98f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811776f
 
 
 
 
55e98f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eacdce1
55e98f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import streamlit as st
import pandas as pd

# ๋ชจ๋ธ ์ค€๋น„ํ•˜๊ธฐ
from transformers import RobertaForSequenceClassification, AutoTokenizer
import numpy as np
import pandas as pd
import torch
import os

# [theme]
# base="dark"
# primaryColor="purple"

# ์ œ๋ชฉ ์ž…๋ ฅ
st.header('ํ•œ๊ตญํ‘œ์ค€์‚ฐ์—…๋ถ„๋ฅ˜ ์ž๋™์ฝ”๋”ฉ ์„œ๋น„์Šค')

# ์žฌ๋กœ๋“œ ์•ˆํ•˜๋„๋ก
@st.experimental_memo(max_entries=20)
def md_loading():
    ## cpu
    # device = torch.device('cpu')

    tokenizer = AutoTokenizer.from_pretrained('klue/roberta-base')
    model = RobertaForSequenceClassification.from_pretrained('klue/roberta-base', num_labels=495)

    model_checkpoint = 'upsampling_20.bin'
    project_path = './'
    output_model_file = os.path.join(project_path, model_checkpoint)

    model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))

    label_tbl = np.load('./label_table.npy')
    loc_tbl = pd.read_csv('./kisc_table.csv', encoding='utf-8')

    print('ready')

    return tokenizer, model, label_tbl, loc_tbl

# ๋ชจ๋ธ ๋กœ๋“œ
tokenizer, model, label_tbl, loc_tbl = md_loading()


# ํ…์ŠคํŠธ input ๋ฐ•์Šค
business = st.text_input('์‚ฌ์—…์ฒด๋ช…').replace(',', '')
business_work = st.text_input('์‚ฌ์—…์ฒด ํ•˜๋Š”์ผ').replace(',', '')
work_department = st.text_input('๊ทผ๋ฌด๋ถ€์„œ').replace(',', '')
work_position = st.text_input('์ง์ฑ…').replace(',', '')
what_do_i = st.text_input('๋‚ด๊ฐ€ ํ•˜๋Š” ์ผ').replace(',', '')

# md_input: ๋ชจ๋ธ์— ์ž…๋ ฅํ•  input ๊ฐ’ ์ •์˜
md_input = ', '.join([business, business_work, work_department, work_position, what_do_i])

## ์ž„์‹œ ํ™•์ธ
# st.write(md_input)

# ๋ฒ„ํŠผ
if st.button('ํ™•์ธ'):
    ## ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ์ˆ˜ํ–‰์‚ฌํ•ญ
    ### ๋ชจ๋ธ ์‹คํ–‰
    query_tokens = md_input.split(',')

    input_ids = np.zeros(shape=[1, 64])
    attention_mask = np.zeros(shape=[1, 64])

    seq = '[CLS] '
    try:
        for i in range(5):
            seq += query_tokens[i] + ' '
    except:
        None

    tokens = tokenizer.tokenize(seq)
    ids = tokenizer.convert_tokens_to_ids(tokens)

    length = len(ids)
    if length > 64:
        length = 64

    for i in range(length):
        input_ids[0, i] = ids[i]
        attention_mask[0, i] = 1

    input_ids = torch.from_numpy(input_ids).type(torch.long)
    attention_mask = torch.from_numpy(attention_mask).type(torch.long)

    outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=None)
    logits = outputs.logits

    # # ๋‹จ๋… ์˜ˆ์ธก ์‹œ
    # arg_idx = torch.argmax(logits, dim=1)
    # print('arg_idx:', arg_idx)

    # num_ans = label_tbl[arg_idx]
    # str_ans = loc_tbl['ํ•ญ๋ชฉ๋ช…'][loc_tbl['์ฝ”๋“œ'] == num_ans].values

    # ์ƒ์œ„ k๋ฒˆ์งธ๊นŒ์ง€ ์˜ˆ์ธก ์‹œ
    k = 10
    topk_idx = torch.topk(logits.flatten(), k).indices    

    num_ans_topk = label_tbl[topk_idx]
    str_ans_topk = [loc_tbl['ํ•ญ๋ชฉ๋ช…'][loc_tbl['์ฝ”๋“œ'] == k] for k in num_ans_topk]

    # print(num_ans, str_ans)
    # print(num_ans_topk)

    # print('์‚ฌ์—…์ฒด๋ช…:', query_tokens[0])
    # print('์‚ฌ์—…์ฒด ํ•˜๋Š”์ผ:', query_tokens[1])
    # print('๊ทผ๋ฌด๋ถ€์„œ:', query_tokens[2])
    # print('์ง์ฑ…:', query_tokens[3])
    # print('๋‚ด๊ฐ€ ํ•˜๋Š”์ผ:', query_tokens[4])
    # print('์‚ฐ์—…์ฝ”๋“œ ๋ฐ ๋ถ„๋ฅ˜:', num_ans, str_ans)

    # ans = ''
    # ans1, ans2, ans3 = '', '', ''

    ## ๋ชจ๋ธ ๊ฒฐ๊ณผ๊ฐ’ ์ถœ๋ ฅ
    # st.write("์‚ฐ์—…์ฝ”๋“œ ๋ฐ ๋ถ„๋ฅ˜:", num_ans, str_ans[0])
    # st.write("์„ธ๋ถ„๋ฅ˜ ์ฝ”๋“œ")
    # for i in range(k):
    #     st.write(str(i+1) + '์ˆœ์œ„:', num_ans_topk[i], str_ans_topk[i].iloc[0])

    # print(num_ans)
    # print(str_ans, type(str_ans))

    str_ans_topk_list = []
    for i in range(k):
        str_ans_topk_list.append(str_ans_topk[i].iloc[0])

    # print(str_ans_topk_list)

    ans_topk_df = pd.DataFrame({
        'NO': range(1, k+1),
        '์„ธ๋ถ„๋ฅ˜ ์ฝ”๋“œ': num_ans_topk,
        '์„ธ๋ถ„๋ฅ˜ ๋ช…์นญ': str_ans_topk_list
    })
    ans_topk_df = ans_topk_df.set_index('NO')

    st.dataframe(ans_topk_df)