iakarshu's picture
Upload dataset.py
15f37f2
raw
history blame
11.3 kB
# -*- coding: utf-8 -*-
import os
import pickle
from functools import lru_cache
import pytesseract
import numpy as np
from PIL import Image
import torch
from torchvision.transforms import ToTensor
PAD_TOKEN_BOX = [0, 0, 0, 0]
GRID_SIZE = 1000
def normalize_box(box, width, height, size=1000):
"""
Takes a bounding box and normalizes it to a thousand pixels. If you notice it is
just like calculating percentage except takes 1000 instead of 100.
"""
return [
int(size * (box[0] / width)),
int(size * (box[1] / height)),
int(size * (box[2] / width)),
int(size * (box[3] / height)),
]
@lru_cache(maxsize=10)
def resize_align_bbox(bbox, orig_w, orig_h, target_w, target_h):
x_scale = target_w / orig_w
y_scale = target_h / orig_h
orig_left, orig_top, orig_right, orig_bottom = bbox
x = int(np.round(orig_left * x_scale))
y = int(np.round(orig_top * y_scale))
xmax = int(np.round(orig_right * x_scale))
ymax = int(np.round(orig_bottom * y_scale))
return [x, y, xmax, ymax]
def get_topleft_bottomright_coordinates(df_row):
left, top, width, height = df_row["left"], df_row["top"], df_row["width"], df_row["height"]
return [left, top, left + width, top + height]
def apply_ocr(image_fp):
"""
Returns words and its bounding boxes from an image
"""
image = Image.open(image_fp)
width, height = image.size
ocr_df = pytesseract.image_to_data(image, output_type="data.frame")
ocr_df = ocr_df.dropna().reset_index(drop=True)
float_cols = ocr_df.select_dtypes("float").columns
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
ocr_df = ocr_df.replace(r"^\s*$", np.nan, regex=True)
ocr_df = ocr_df.dropna().reset_index(drop=True)
words = list(ocr_df.text.apply(lambda x: str(x).strip()))
actual_bboxes = ocr_df.apply(get_topleft_bottomright_coordinates, axis=1).values.tolist()
# add as extra columns
assert len(words) == len(actual_bboxes)
return {"words": words, "bbox": actual_bboxes}
def get_tokens_with_boxes(unnormalized_word_boxes, pad_token_box, word_ids,max_seq_len = 512):
# assert len(unnormalized_word_boxes) == len(word_ids), this should not be applied, since word_ids may have higher
# length and the bbox corresponding to them may not exist
unnormalized_token_boxes = []
for i, word_idx in enumerate(word_ids):
if word_idx is None:
break
unnormalized_token_boxes.append(unnormalized_word_boxes[word_idx])
# all remaining are padding tokens so why add them in a loop one by one
num_pad_tokens = len(word_ids) - i - 1
if num_pad_tokens > 0:
unnormalized_token_boxes.extend([pad_token_box] * num_pad_tokens)
if len(unnormalized_token_boxes)<max_seq_len:
unnormalized_token_boxes.extend([pad_token_box] * (max_seq_len-len(unnormalized_token_boxes)))
return unnormalized_token_boxes
def get_centroid(actual_bbox):
centroid = []
for i in actual_bbox:
width = i[2] - i[0]
height = i[3] - i[1]
centroid.append([i[0] + width / 2, i[1] + height / 2])
return centroid
def get_pad_token_id_start_index(words, encoding, tokenizer):
# assert len(words) < len(encoding["input_ids"]) This condition, was creating errors on some sample images
for idx in range(len(encoding["input_ids"])):
if encoding["input_ids"][idx] == tokenizer.pad_token_id:
break
return idx
def get_relative_distance(bboxes, centroids, pad_tokens_start_idx):
a_rel_x = []
a_rel_y = []
for i in range(0, len(bboxes)-1):
if i >= pad_tokens_start_idx:
a_rel_x.append([0] * 8)
a_rel_y.append([0] * 8)
continue
curr = bboxes[i]
next = bboxes[i+1]
a_rel_x.append(
[
curr[0], # top left x
curr[2], # bottom right x
curr[2] - curr[0], # width
next[0] - curr[0], # diff top left x
next[0] - curr[0], # diff bottom left x
next[2] - curr[2], # diff top right x
next[2] - curr[2], # diff bottom right x
centroids[i+1][0] - centroids[i][0],
]
)
a_rel_y.append(
[
curr[1], # top left y
curr[3], # bottom right y
curr[3] - curr[1], # height
next[1] - curr[1], # diff top left y
next[3] - curr[3], # diff bottom left y
next[1] - curr[1], # diff top right y
next[3] - curr[3], # diff bottom right y
centroids[i+1][1] - centroids[i][1],
]
)
# For the last word
a_rel_x.append([0]*8)
a_rel_y.append([0]*8)
return a_rel_x, a_rel_y
def apply_mask(inputs, tokenizer):
inputs = torch.as_tensor(inputs)
rand = torch.rand(inputs.shape)
# where the random array is less than 0.15, we set true
mask_arr = (rand < 0.15) * (inputs != tokenizer.cls_token_id) * (inputs != tokenizer.pad_token_id)
# create selection from mask_arr
selection = torch.flatten(mask_arr.nonzero()).tolist()
# apply selection pad_tokens_start_idx to inputs.input_ids, adding MASK tokens
inputs[selection] = 103
return inputs
def read_image_and_extract_text(image):
original_image = Image.open(image).convert("RGB")
return apply_ocr(image)
def create_features(
image,
tokenizer,
add_batch_dim=False,
target_size=(500,384), # This was the resolution used by the authors
max_seq_length=512,
path_to_save=None,
save_to_disk=False,
apply_mask_for_mlm=False,
extras_for_debugging=False,
use_ocr = False,
bounding_box = None,
words = None
):
# step 1: read original image and extract OCR entries
original_image = Image.open(image).convert("RGB")
if (use_ocr == False) and (bounding_box == None or words == None):
raise Exception('Please provide the bounding box and words or pass the argument "use_ocr" = True')
if use_ocr == True:
entries = apply_ocr(image)
bounding_box = entries["bbox"]
words = entries["words"]
CLS_TOKEN_BOX = [0, 0, *original_image.size] # Can be variable, but as per the paper, they have mentioned that it covers the whole image
# step 2: resize image
resized_image = original_image.resize(target_size)
# step 3: normalize image to a grid of 1000 x 1000 (to avoid the problem of differently sized images)
width, height = original_image.size
normalized_word_boxes = [
normalize_box(bbox, width, height, GRID_SIZE) for bbox in bounding_box
]
assert len(words) == len(normalized_word_boxes), "Length of words != Length of normalized words"
# step 4: tokenize words and get their bounding boxes (one word may split into multiple tokens)
encoding = tokenizer(words,
padding="max_length",
max_length=max_seq_length,
is_split_into_words=True,
truncation=True,
add_special_tokens=False)
unnormalized_token_boxes = get_tokens_with_boxes(bounding_box,
PAD_TOKEN_BOX,
encoding.word_ids())
# step 5: add special tokens and truncate seq. to maximum length
unnormalized_token_boxes = [CLS_TOKEN_BOX] + unnormalized_token_boxes[:-1]
# add CLS token manually to avoid autom. addition of SEP too (as in the paper)
encoding["input_ids"] = [tokenizer.cls_token_id] + encoding["input_ids"][:-1]
# step 6: Add bounding boxes to the encoding dict
encoding["unnormalized_token_boxes"] = unnormalized_token_boxes
# step 7: apply mask for the sake of pre-training
if apply_mask_for_mlm:
encoding["mlm_labels"] = encoding["input_ids"]
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
assert len(encoding["mlm_labels"]) == max_seq_length, "Length of mlm_labels != Length of max_seq_length"
assert len(encoding["input_ids"]) == max_seq_length, "Length of input_ids != Length of max_seq_length"
assert len(encoding["attention_mask"]) == max_seq_length, "Length of attention mask != Length of max_seq_length"
assert len(encoding["token_type_ids"]) == max_seq_length, "Length of token type ids != Length of max_seq_length"
# step 8: normalize the image
encoding["resized_scaled_img"] = ToTensor()(resized_image)
# step 9: apply mask for the sake of pre-training
if apply_mask_for_mlm:
encoding["mlm_labels"] = encoding["input_ids"]
encoding["input_ids"] = apply_mask(encoding["input_ids"], tokenizer)
# step 10: rescale and align the bounding boxes to match the resized image size (typically 224x224)
resized_and_aligned_bboxes = []
for bbox in unnormalized_token_boxes:
# performing the normalization of the bounding box
resized_and_aligned_bboxes.append(resize_align_bbox(tuple(bbox), *original_image.size, *target_size))
encoding["resized_and_aligned_bounding_boxes"] = resized_and_aligned_bboxes
# step 11: add the relative distances in the normalized grid
bboxes_centroids = get_centroid(resized_and_aligned_bboxes)
pad_token_start_index = get_pad_token_id_start_index(words, encoding, tokenizer)
a_rel_x, a_rel_y = get_relative_distance(resized_and_aligned_bboxes, bboxes_centroids, pad_token_start_index)
# step 12: convert all to tensors
for k, v in encoding.items():
encoding[k] = torch.as_tensor(encoding[k])
encoding.update({
"x_features": torch.as_tensor(a_rel_x, dtype=torch.int32),
"y_features": torch.as_tensor(a_rel_y, dtype=torch.int32),
})
# step 13: add tokens for debugging
if extras_for_debugging:
input_ids = encoding["mlm_labels"] if apply_mask_for_mlm else encoding["input_ids"]
encoding["tokens_without_padding"] = tokenizer.convert_ids_to_tokens(input_ids)
encoding["words"] = words
# step 14: add extra dim for batch
if add_batch_dim:
encoding["x_features"].unsqueeze_(0)
encoding["y_features"].unsqueeze_(0)
encoding["input_ids"].unsqueeze_(0)
encoding["resized_scaled_img"].unsqueeze_(0)
# step 15: save to disk
if save_to_disk:
os.makedirs(path_to_save, exist_ok=True)
image_name = os.path.basename(image)
with open(f"{path_to_save}{image_name}.pickle", "wb") as f:
pickle.dump(encoding, f)
# step 16: keys to keep, resized_and_aligned_bounding_boxes have been added for the purpose to test if the bounding boxes are drawn correctly or not, it maybe removed
keys = ['resized_scaled_img', 'x_features','y_features','input_ids','resized_and_aligned_bounding_boxes']
if apply_mask_for_mlm:
keys.append('mlm_labels')
final_encoding = {k:encoding[k] for k in keys}
del encoding
return final_encoding