Spaces:
Runtime error
Runtime error
Upload modeling.py
Browse filesAdded modeling file
- modeling.py +545 -0
modeling.py
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.models as models
|
6 |
+
from einops import rearrange
|
7 |
+
from torch import Tensor
|
8 |
+
|
9 |
+
class PositionalEncoding(nn.Module):
|
10 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
|
11 |
+
super().__init__()
|
12 |
+
self.dropout = nn.Dropout(p=dropout)
|
13 |
+
self.max_len = max_len
|
14 |
+
self.d_model = d_model
|
15 |
+
position = torch.arange(max_len).unsqueeze(1)
|
16 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
17 |
+
pe = torch.zeros(1, max_len, d_model)
|
18 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
19 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
20 |
+
self.register_buffer("pe", pe)
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self) -> Tensor:
|
24 |
+
x = self.pe[0, : self.max_len]
|
25 |
+
return self.dropout(x).unsqueeze(0)
|
26 |
+
|
27 |
+
|
28 |
+
class ResNetFeatureExtractor(nn.Module):
|
29 |
+
def __init__(self, hidden_dim = 512):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
# Making the resnet 50 model, which was used in the docformer for the purpose of visual feature extraction
|
33 |
+
|
34 |
+
resnet50 = models.resnet50(pretrained=False)
|
35 |
+
modules = list(resnet50.children())[:-2]
|
36 |
+
self.resnet50 = nn.Sequential(*modules)
|
37 |
+
|
38 |
+
# Applying convolution and linear layer
|
39 |
+
|
40 |
+
self.conv1 = nn.Conv2d(2048, 768, 1)
|
41 |
+
self.relu1 = F.relu
|
42 |
+
self.linear1 = nn.Linear(192, hidden_dim)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.resnet50(x)
|
46 |
+
x = self.conv1(x)
|
47 |
+
x = self.relu1(x)
|
48 |
+
x = rearrange(x, "b e w h -> b e (w h)") # b -> batch, e -> embedding dim, w -> width, h -> height
|
49 |
+
x = self.linear1(x)
|
50 |
+
x = rearrange(x, "b e s -> b s e") # b -> batch, e -> embedding dim, s -> sequence length
|
51 |
+
return x
|
52 |
+
|
53 |
+
class DocFormerEmbeddings(nn.Module):
|
54 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
55 |
+
|
56 |
+
def __init__(self, config):
|
57 |
+
super(DocFormerEmbeddings, self).__init__()
|
58 |
+
|
59 |
+
self.config = config
|
60 |
+
|
61 |
+
self.position_embeddings_v = PositionalEncoding(
|
62 |
+
d_model=config["hidden_size"],
|
63 |
+
dropout=0.1,
|
64 |
+
max_len=config["max_position_embeddings"],
|
65 |
+
)
|
66 |
+
|
67 |
+
self.x_topleft_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
68 |
+
self.x_bottomright_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
69 |
+
self.w_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
70 |
+
self.x_topleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
71 |
+
self.x_bottomleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
72 |
+
self.x_topright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
73 |
+
self.x_bottomright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
74 |
+
self.x_centroid_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
75 |
+
|
76 |
+
self.y_topleft_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
77 |
+
self.y_bottomright_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
78 |
+
self.h_position_embeddings_v = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
79 |
+
self.y_topleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
80 |
+
self.y_bottomleft_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
81 |
+
self.y_topright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
82 |
+
self.y_bottomright_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
83 |
+
self.y_centroid_distance_to_prev_embeddings_v = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
84 |
+
|
85 |
+
self.position_embeddings_t = PositionalEncoding(
|
86 |
+
d_model=config["hidden_size"],
|
87 |
+
dropout=0.1,
|
88 |
+
max_len=config["max_position_embeddings"],
|
89 |
+
)
|
90 |
+
|
91 |
+
self.x_topleft_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
92 |
+
self.x_bottomright_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
93 |
+
self.w_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
94 |
+
self.x_topleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"]+1, config["shape_size"])
|
95 |
+
self.x_bottomleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"]+1, config["shape_size"])
|
96 |
+
self.x_topright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
97 |
+
self.x_bottomright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
98 |
+
self.x_centroid_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
99 |
+
|
100 |
+
self.y_topleft_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
101 |
+
self.y_bottomright_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["coordinate_size"])
|
102 |
+
self.h_position_embeddings_t = nn.Embedding(config["max_2d_position_embeddings"], config["shape_size"])
|
103 |
+
self.y_topleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
104 |
+
self.y_bottomleft_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
105 |
+
self.y_topright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
106 |
+
self.y_bottomright_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
107 |
+
self.y_centroid_distance_to_prev_embeddings_t = nn.Embedding(2*config["max_2d_position_embeddings"] + 1, config["shape_size"])
|
108 |
+
|
109 |
+
self.LayerNorm = nn.LayerNorm(config["hidden_size"], eps=config["layer_norm_eps"])
|
110 |
+
self.dropout = nn.Dropout(config["hidden_dropout_prob"])
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x_feature, y_feature):
|
115 |
+
|
116 |
+
"""
|
117 |
+
Arguments:
|
118 |
+
x_features of shape, (batch size, seq_len, 8)
|
119 |
+
y_features of shape, (batch size, seq_len, 8)
|
120 |
+
Outputs:
|
121 |
+
(V-bar-s, T-bar-s) of shape (batch size, 512,768),(batch size, 512,768)
|
122 |
+
What are the features:
|
123 |
+
0 -> top left x/y
|
124 |
+
1 -> bottom right x/y
|
125 |
+
2 -> width/height
|
126 |
+
3 -> diff top left x/y
|
127 |
+
4 -> diff bottom left x/y
|
128 |
+
5 -> diff top right x/y
|
129 |
+
6 -> diff bottom right x/y
|
130 |
+
7 -> centroids diff x/y
|
131 |
+
"""
|
132 |
+
|
133 |
+
|
134 |
+
batch, seq_len = x_feature.shape[:-1]
|
135 |
+
hidden_size = self.config["hidden_size"]
|
136 |
+
num_feat = x_feature.shape[-1]
|
137 |
+
sub_dim = hidden_size // num_feat
|
138 |
+
|
139 |
+
# Clamping and adding a bias for handling negative values
|
140 |
+
x_feature[:,:,3:] = torch.clamp(x_feature[:,:,3:],-self.config["max_2d_position_embeddings"],self.config["max_2d_position_embeddings"])
|
141 |
+
x_feature[:,:,3:]+= self.config["max_2d_position_embeddings"]
|
142 |
+
|
143 |
+
y_feature[:,:,3:] = torch.clamp(y_feature[:,:,3:],-self.config["max_2d_position_embeddings"],self.config["max_2d_position_embeddings"])
|
144 |
+
y_feature[:,:,3:]+= self.config["max_2d_position_embeddings"]
|
145 |
+
|
146 |
+
x_topleft_position_embeddings_v = self.x_topleft_position_embeddings_v(x_feature[:,:,0])
|
147 |
+
x_bottomright_position_embeddings_v = self.x_bottomright_position_embeddings_v(x_feature[:,:,1])
|
148 |
+
w_position_embeddings_v = self.w_position_embeddings_v(x_feature[:,:,2])
|
149 |
+
x_topleft_distance_to_prev_embeddings_v = self.x_topleft_distance_to_prev_embeddings_v(x_feature[:,:,3])
|
150 |
+
x_bottomleft_distance_to_prev_embeddings_v = self.x_bottomleft_distance_to_prev_embeddings_v(x_feature[:,:,4])
|
151 |
+
x_topright_distance_to_prev_embeddings_v = self.x_topright_distance_to_prev_embeddings_v(x_feature[:,:,5])
|
152 |
+
x_bottomright_distance_to_prev_embeddings_v = self.x_bottomright_distance_to_prev_embeddings_v(x_feature[:,:,6])
|
153 |
+
x_centroid_distance_to_prev_embeddings_v = self.x_centroid_distance_to_prev_embeddings_v(x_feature[:,:,7])
|
154 |
+
|
155 |
+
x_calculated_embedding_v = torch.cat(
|
156 |
+
[
|
157 |
+
x_topleft_position_embeddings_v,
|
158 |
+
x_bottomright_position_embeddings_v,
|
159 |
+
w_position_embeddings_v,
|
160 |
+
x_topleft_distance_to_prev_embeddings_v,
|
161 |
+
x_bottomleft_distance_to_prev_embeddings_v,
|
162 |
+
x_topright_distance_to_prev_embeddings_v,
|
163 |
+
x_bottomright_distance_to_prev_embeddings_v ,
|
164 |
+
x_centroid_distance_to_prev_embeddings_v
|
165 |
+
],
|
166 |
+
dim = -1
|
167 |
+
)
|
168 |
+
|
169 |
+
y_topleft_position_embeddings_v = self.y_topleft_position_embeddings_v(y_feature[:,:,0])
|
170 |
+
y_bottomright_position_embeddings_v = self.y_bottomright_position_embeddings_v(y_feature[:,:,1])
|
171 |
+
h_position_embeddings_v = self.h_position_embeddings_v(y_feature[:,:,2])
|
172 |
+
y_topleft_distance_to_prev_embeddings_v = self.y_topleft_distance_to_prev_embeddings_v(y_feature[:,:,3])
|
173 |
+
y_bottomleft_distance_to_prev_embeddings_v = self.y_bottomleft_distance_to_prev_embeddings_v(y_feature[:,:,4])
|
174 |
+
y_topright_distance_to_prev_embeddings_v = self.y_topright_distance_to_prev_embeddings_v(y_feature[:,:,5])
|
175 |
+
y_bottomright_distance_to_prev_embeddings_v = self.y_bottomright_distance_to_prev_embeddings_v(y_feature[:,:,6])
|
176 |
+
y_centroid_distance_to_prev_embeddings_v = self.y_centroid_distance_to_prev_embeddings_v(y_feature[:,:,7])
|
177 |
+
|
178 |
+
x_calculated_embedding_v = torch.cat(
|
179 |
+
[
|
180 |
+
x_topleft_position_embeddings_v,
|
181 |
+
x_bottomright_position_embeddings_v,
|
182 |
+
w_position_embeddings_v,
|
183 |
+
x_topleft_distance_to_prev_embeddings_v,
|
184 |
+
x_bottomleft_distance_to_prev_embeddings_v,
|
185 |
+
x_topright_distance_to_prev_embeddings_v,
|
186 |
+
x_bottomright_distance_to_prev_embeddings_v ,
|
187 |
+
x_centroid_distance_to_prev_embeddings_v
|
188 |
+
],
|
189 |
+
dim = -1
|
190 |
+
)
|
191 |
+
|
192 |
+
y_calculated_embedding_v = torch.cat(
|
193 |
+
[
|
194 |
+
y_topleft_position_embeddings_v,
|
195 |
+
y_bottomright_position_embeddings_v,
|
196 |
+
h_position_embeddings_v,
|
197 |
+
y_topleft_distance_to_prev_embeddings_v,
|
198 |
+
y_bottomleft_distance_to_prev_embeddings_v,
|
199 |
+
y_topright_distance_to_prev_embeddings_v,
|
200 |
+
y_bottomright_distance_to_prev_embeddings_v ,
|
201 |
+
y_centroid_distance_to_prev_embeddings_v
|
202 |
+
],
|
203 |
+
dim = -1
|
204 |
+
)
|
205 |
+
|
206 |
+
v_bar_s = x_calculated_embedding_v + y_calculated_embedding_v + self.position_embeddings_v()
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
x_topleft_position_embeddings_t = self.x_topleft_position_embeddings_t(x_feature[:,:,0])
|
211 |
+
x_bottomright_position_embeddings_t = self.x_bottomright_position_embeddings_t(x_feature[:,:,1])
|
212 |
+
w_position_embeddings_t = self.w_position_embeddings_t(x_feature[:,:,2])
|
213 |
+
x_topleft_distance_to_prev_embeddings_t = self.x_topleft_distance_to_prev_embeddings_t(x_feature[:,:,3])
|
214 |
+
x_bottomleft_distance_to_prev_embeddings_t = self.x_bottomleft_distance_to_prev_embeddings_t(x_feature[:,:,4])
|
215 |
+
x_topright_distance_to_prev_embeddings_t = self.x_topright_distance_to_prev_embeddings_t(x_feature[:,:,5])
|
216 |
+
x_bottomright_distance_to_prev_embeddings_t = self.x_bottomright_distance_to_prev_embeddings_t(x_feature[:,:,6])
|
217 |
+
x_centroid_distance_to_prev_embeddings_t = self.x_centroid_distance_to_prev_embeddings_t(x_feature[:,:,7])
|
218 |
+
|
219 |
+
x_calculated_embedding_t = torch.cat(
|
220 |
+
[
|
221 |
+
x_topleft_position_embeddings_t,
|
222 |
+
x_bottomright_position_embeddings_t,
|
223 |
+
w_position_embeddings_t,
|
224 |
+
x_topleft_distance_to_prev_embeddings_t,
|
225 |
+
x_bottomleft_distance_to_prev_embeddings_t,
|
226 |
+
x_topright_distance_to_prev_embeddings_t,
|
227 |
+
x_bottomright_distance_to_prev_embeddings_t ,
|
228 |
+
x_centroid_distance_to_prev_embeddings_t
|
229 |
+
],
|
230 |
+
dim = -1
|
231 |
+
)
|
232 |
+
|
233 |
+
y_topleft_position_embeddings_t = self.y_topleft_position_embeddings_t(y_feature[:,:,0])
|
234 |
+
y_bottomright_position_embeddings_t = self.y_bottomright_position_embeddings_t(y_feature[:,:,1])
|
235 |
+
h_position_embeddings_t = self.h_position_embeddings_t(y_feature[:,:,2])
|
236 |
+
y_topleft_distance_to_prev_embeddings_t = self.y_topleft_distance_to_prev_embeddings_t(y_feature[:,:,3])
|
237 |
+
y_bottomleft_distance_to_prev_embeddings_t = self.y_bottomleft_distance_to_prev_embeddings_t(y_feature[:,:,4])
|
238 |
+
y_topright_distance_to_prev_embeddings_t = self.y_topright_distance_to_prev_embeddings_t(y_feature[:,:,5])
|
239 |
+
y_bottomright_distance_to_prev_embeddings_t = self.y_bottomright_distance_to_prev_embeddings_t(y_feature[:,:,6])
|
240 |
+
y_centroid_distance_to_prev_embeddings_t = self.y_centroid_distance_to_prev_embeddings_t(y_feature[:,:,7])
|
241 |
+
|
242 |
+
x_calculated_embedding_t = torch.cat(
|
243 |
+
[
|
244 |
+
x_topleft_position_embeddings_t,
|
245 |
+
x_bottomright_position_embeddings_t,
|
246 |
+
w_position_embeddings_t,
|
247 |
+
x_topleft_distance_to_prev_embeddings_t,
|
248 |
+
x_bottomleft_distance_to_prev_embeddings_t,
|
249 |
+
x_topright_distance_to_prev_embeddings_t,
|
250 |
+
x_bottomright_distance_to_prev_embeddings_t ,
|
251 |
+
x_centroid_distance_to_prev_embeddings_t
|
252 |
+
],
|
253 |
+
dim = -1
|
254 |
+
)
|
255 |
+
|
256 |
+
y_calculated_embedding_t = torch.cat(
|
257 |
+
[
|
258 |
+
y_topleft_position_embeddings_t,
|
259 |
+
y_bottomright_position_embeddings_t,
|
260 |
+
h_position_embeddings_t,
|
261 |
+
y_topleft_distance_to_prev_embeddings_t,
|
262 |
+
y_bottomleft_distance_to_prev_embeddings_t,
|
263 |
+
y_topright_distance_to_prev_embeddings_t,
|
264 |
+
y_bottomright_distance_to_prev_embeddings_t ,
|
265 |
+
y_centroid_distance_to_prev_embeddings_t
|
266 |
+
],
|
267 |
+
dim = -1
|
268 |
+
)
|
269 |
+
|
270 |
+
t_bar_s = x_calculated_embedding_t + y_calculated_embedding_t + self.position_embeddings_t()
|
271 |
+
|
272 |
+
return v_bar_s, t_bar_s
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
# fmt: off
|
277 |
+
class PreNorm(nn.Module):
|
278 |
+
def __init__(self, dim, fn):
|
279 |
+
# Fig 1: http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
|
280 |
+
super().__init__()
|
281 |
+
self.norm = nn.LayerNorm(dim)
|
282 |
+
self.fn = fn
|
283 |
+
|
284 |
+
def forward(self, x, **kwargs):
|
285 |
+
return self.fn(self.norm(x), **kwargs)
|
286 |
+
|
287 |
+
|
288 |
+
class PreNormAttn(nn.Module):
|
289 |
+
def __init__(self, dim, fn):
|
290 |
+
# Fig 1: http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf
|
291 |
+
super().__init__()
|
292 |
+
|
293 |
+
self.norm_t_bar = nn.LayerNorm(dim)
|
294 |
+
self.norm_v_bar = nn.LayerNorm(dim)
|
295 |
+
self.norm_t_bar_s = nn.LayerNorm(dim)
|
296 |
+
self.norm_v_bar_s = nn.LayerNorm(dim)
|
297 |
+
self.fn = fn
|
298 |
+
|
299 |
+
def forward(self, t_bar, v_bar, t_bar_s, v_bar_s, **kwargs):
|
300 |
+
return self.fn(self.norm_t_bar(t_bar),
|
301 |
+
self.norm_v_bar(v_bar),
|
302 |
+
self.norm_t_bar_s(t_bar_s),
|
303 |
+
self.norm_v_bar_s(v_bar_s), **kwargs)
|
304 |
+
|
305 |
+
|
306 |
+
class FeedForward(nn.Module):
|
307 |
+
def __init__(self, dim, hidden_dim, dropout=0.):
|
308 |
+
super().__init__()
|
309 |
+
self.net = nn.Sequential(
|
310 |
+
nn.Linear(dim, hidden_dim),
|
311 |
+
nn.GELU(),
|
312 |
+
nn.Dropout(dropout),
|
313 |
+
nn.Linear(hidden_dim, dim),
|
314 |
+
nn.Dropout(dropout)
|
315 |
+
)
|
316 |
+
|
317 |
+
def forward(self, x):
|
318 |
+
return self.net(x)
|
319 |
+
|
320 |
+
|
321 |
+
class RelativePosition(nn.Module):
|
322 |
+
|
323 |
+
def __init__(self, num_units, max_relative_position, max_seq_length):
|
324 |
+
super().__init__()
|
325 |
+
self.num_units = num_units
|
326 |
+
self.max_relative_position = max_relative_position
|
327 |
+
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
|
328 |
+
self.max_length = max_seq_length
|
329 |
+
range_vec_q = torch.arange(max_seq_length)
|
330 |
+
range_vec_k = torch.arange(max_seq_length)
|
331 |
+
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
|
332 |
+
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
|
333 |
+
final_mat = distance_mat_clipped + self.max_relative_position
|
334 |
+
self.final_mat = torch.LongTensor(final_mat)
|
335 |
+
nn.init.xavier_uniform_(self.embeddings_table)
|
336 |
+
|
337 |
+
def forward(self, length_q, length_k):
|
338 |
+
embeddings = self.embeddings_table[self.final_mat[:length_q, :length_k]]
|
339 |
+
return embeddings
|
340 |
+
|
341 |
+
|
342 |
+
class MultiModalAttentionLayer(nn.Module):
|
343 |
+
def __init__(self, embed_dim, n_heads, max_relative_position, max_seq_length, dropout):
|
344 |
+
super().__init__()
|
345 |
+
assert embed_dim % n_heads == 0
|
346 |
+
|
347 |
+
self.embed_dim = embed_dim
|
348 |
+
self.n_heads = n_heads
|
349 |
+
self.head_dim = embed_dim // n_heads
|
350 |
+
|
351 |
+
self.relative_positions_text = RelativePosition(self.head_dim, max_relative_position, max_seq_length)
|
352 |
+
self.relative_positions_img = RelativePosition(self.head_dim, max_relative_position, max_seq_length)
|
353 |
+
|
354 |
+
# text qkv embeddings
|
355 |
+
self.fc_k_text = nn.Linear(embed_dim, embed_dim)
|
356 |
+
self.fc_q_text = nn.Linear(embed_dim, embed_dim)
|
357 |
+
self.fc_v_text = nn.Linear(embed_dim, embed_dim)
|
358 |
+
|
359 |
+
# image qkv embeddings
|
360 |
+
self.fc_k_img = nn.Linear(embed_dim, embed_dim)
|
361 |
+
self.fc_q_img = nn.Linear(embed_dim, embed_dim)
|
362 |
+
self.fc_v_img = nn.Linear(embed_dim, embed_dim)
|
363 |
+
|
364 |
+
# spatial qk embeddings (shared for visual and text)
|
365 |
+
self.fc_k_spatial = nn.Linear(embed_dim, embed_dim)
|
366 |
+
self.fc_q_spatial = nn.Linear(embed_dim, embed_dim)
|
367 |
+
|
368 |
+
self.dropout = nn.Dropout(dropout)
|
369 |
+
|
370 |
+
self.to_out = nn.Sequential(
|
371 |
+
nn.Linear(embed_dim, embed_dim),
|
372 |
+
nn.Dropout(dropout)
|
373 |
+
)
|
374 |
+
self.scale = embed_dim**0.5
|
375 |
+
|
376 |
+
def forward(self, text_feat, img_feat, text_spatial_feat, img_spatial_feat):
|
377 |
+
text_feat = text_feat
|
378 |
+
img_feat = img_feat
|
379 |
+
text_spatial_feat = text_spatial_feat
|
380 |
+
img_spatial_feat = img_spatial_feat
|
381 |
+
seq_length = text_feat.shape[1]
|
382 |
+
|
383 |
+
# self attention of text
|
384 |
+
# b -> batch, t -> time steps (l -> length has same meaning), head -> # of heads, k -> head dim.
|
385 |
+
key_text_nh = rearrange(self.fc_k_text(text_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
386 |
+
query_text_nh = rearrange(self.fc_q_text(text_feat), 'b l (head k) -> head b l k', head=self.n_heads)
|
387 |
+
value_text_nh = rearrange(self.fc_v_text(text_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
388 |
+
dots_text = torch.einsum('hblk,hbtk->hblt', query_text_nh, key_text_nh)
|
389 |
+
dots_text = dots_text/ self.scale
|
390 |
+
|
391 |
+
# 1D relative positions (query, key)
|
392 |
+
rel_pos_embed_text = self.relative_positions_text(seq_length, seq_length)
|
393 |
+
rel_pos_key_text = torch.einsum('bhrd,lrd->bhlr', key_text_nh, rel_pos_embed_text)
|
394 |
+
rel_pos_query_text = torch.einsum('bhld,lrd->bhlr', query_text_nh, rel_pos_embed_text)
|
395 |
+
|
396 |
+
# shared spatial <-> text hidden features
|
397 |
+
key_spatial_text = self.fc_k_spatial(text_spatial_feat)
|
398 |
+
query_spatial_text = self.fc_q_spatial(text_spatial_feat)
|
399 |
+
key_spatial_text_nh = rearrange(key_spatial_text, 'b t (head k) -> head b t k', head=self.n_heads)
|
400 |
+
query_spatial_text_nh = rearrange(query_spatial_text, 'b l (head k) -> head b l k', head=self.n_heads)
|
401 |
+
dots_text_spatial = torch.einsum('hblk,hbtk->hblt', query_spatial_text_nh, key_spatial_text_nh)
|
402 |
+
dots_text_spatial = dots_text_spatial/ self.scale
|
403 |
+
|
404 |
+
# Line 38 of pseudo-code
|
405 |
+
text_attn_scores = dots_text + rel_pos_key_text + rel_pos_query_text + dots_text_spatial
|
406 |
+
|
407 |
+
# self-attention of image
|
408 |
+
key_img_nh = rearrange(self.fc_k_img(img_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
409 |
+
query_img_nh = rearrange(self.fc_q_img(img_feat), 'b l (head k) -> head b l k', head=self.n_heads)
|
410 |
+
value_img_nh = rearrange(self.fc_v_img(img_feat), 'b t (head k) -> head b t k', head=self.n_heads)
|
411 |
+
dots_img = torch.einsum('hblk,hbtk->hblt', query_img_nh, key_img_nh)
|
412 |
+
dots_img = dots_img/ self.scale
|
413 |
+
|
414 |
+
# 1D relative positions (query, key)
|
415 |
+
rel_pos_embed_img = self.relative_positions_img(seq_length, seq_length)
|
416 |
+
rel_pos_key_img = torch.einsum('bhrd,lrd->bhlr', key_img_nh, rel_pos_embed_text)
|
417 |
+
rel_pos_query_img = torch.einsum('bhld,lrd->bhlr', query_img_nh, rel_pos_embed_text)
|
418 |
+
|
419 |
+
# shared spatial <-> image features
|
420 |
+
key_spatial_img = self.fc_k_spatial(img_spatial_feat)
|
421 |
+
query_spatial_img = self.fc_q_spatial(img_spatial_feat)
|
422 |
+
key_spatial_img_nh = rearrange(key_spatial_img, 'b t (head k) -> head b t k', head=self.n_heads)
|
423 |
+
query_spatial_img_nh = rearrange(query_spatial_img, 'b l (head k) -> head b l k', head=self.n_heads)
|
424 |
+
dots_img_spatial = torch.einsum('hblk,hbtk->hblt', query_spatial_img_nh, key_spatial_img_nh)
|
425 |
+
dots_img_spatial = dots_img_spatial/ self.scale
|
426 |
+
|
427 |
+
# Line 59 of pseudo-code
|
428 |
+
img_attn_scores = dots_img + rel_pos_key_img + rel_pos_query_img + dots_img_spatial
|
429 |
+
|
430 |
+
text_attn_probs = self.dropout(torch.softmax(text_attn_scores, dim=-1))
|
431 |
+
img_attn_probs = self.dropout(torch.softmax(img_attn_scores, dim=-1))
|
432 |
+
|
433 |
+
text_context = torch.einsum('hblt,hbtv->hblv', text_attn_probs, value_text_nh)
|
434 |
+
img_context = torch.einsum('hblt,hbtv->hblv', img_attn_probs, value_img_nh)
|
435 |
+
|
436 |
+
context = text_context + img_context
|
437 |
+
|
438 |
+
embeddings = rearrange(context, 'head b t d -> b t (head d)')
|
439 |
+
return self.to_out(embeddings)
|
440 |
+
|
441 |
+
class DocFormerEncoder(nn.Module):
|
442 |
+
def __init__(self, config):
|
443 |
+
super().__init__()
|
444 |
+
self.config = config
|
445 |
+
self.layers = nn.ModuleList([])
|
446 |
+
for _ in range(config['num_hidden_layers']):
|
447 |
+
encoder_block = nn.ModuleList([
|
448 |
+
PreNormAttn(config['hidden_size'],
|
449 |
+
MultiModalAttentionLayer(config['hidden_size'],
|
450 |
+
config['num_attention_heads'],
|
451 |
+
config['max_relative_positions'],
|
452 |
+
config['max_position_embeddings'],
|
453 |
+
config['hidden_dropout_prob'],
|
454 |
+
)
|
455 |
+
),
|
456 |
+
PreNorm(config['hidden_size'],
|
457 |
+
FeedForward(config['hidden_size'],
|
458 |
+
config['hidden_size'] * config['intermediate_ff_size_factor'],
|
459 |
+
dropout=config['hidden_dropout_prob']))
|
460 |
+
])
|
461 |
+
self.layers.append(encoder_block)
|
462 |
+
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
text_feat, # text feat or output from last encoder block
|
466 |
+
img_feat,
|
467 |
+
text_spatial_feat,
|
468 |
+
img_spatial_feat,
|
469 |
+
):
|
470 |
+
# Fig 1 encoder part (skip conn for both attn & FF): https://arxiv.org/abs/1706.03762
|
471 |
+
# TODO: ensure 1st skip conn (var "skip") in such a multimodal setting makes sense (most likely does)
|
472 |
+
for attn, ff in self.layers:
|
473 |
+
skip = text_feat + img_feat + text_spatial_feat + img_spatial_feat
|
474 |
+
x = attn(text_feat, img_feat, text_spatial_feat, img_spatial_feat) + skip
|
475 |
+
x = ff(x) + x
|
476 |
+
text_feat = x
|
477 |
+
return x
|
478 |
+
|
479 |
+
|
480 |
+
class LanguageFeatureExtractor(nn.Module):
|
481 |
+
def __init__(self):
|
482 |
+
super().__init__()
|
483 |
+
from transformers import LayoutLMForTokenClassification
|
484 |
+
layoutlm_dummy = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=1)
|
485 |
+
self.embedding_vector = nn.Embedding.from_pretrained(layoutlm_dummy.layoutlm.embeddings.word_embeddings.weight)
|
486 |
+
|
487 |
+
def forward(self, x):
|
488 |
+
return self.embedding_vector(x)
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
class ExtractFeatures(nn.Module):
|
493 |
+
|
494 |
+
'''
|
495 |
+
Inputs: dictionary
|
496 |
+
Output: v_bar, t_bar, v_bar_s, t_bar_s
|
497 |
+
'''
|
498 |
+
|
499 |
+
def __init__(self, config):
|
500 |
+
super().__init__()
|
501 |
+
self.visual_feature = ResNetFeatureExtractor(hidden_dim = config['max_position_embeddings'])
|
502 |
+
self.language_feature = LanguageFeatureExtractor()
|
503 |
+
self.spatial_feature = DocFormerEmbeddings(config)
|
504 |
+
|
505 |
+
def forward(self, encoding):
|
506 |
+
|
507 |
+
image = encoding['resized_scaled_img']
|
508 |
+
|
509 |
+
language = encoding['input_ids']
|
510 |
+
x_feature = encoding['x_features']
|
511 |
+
y_feature = encoding['y_features']
|
512 |
+
|
513 |
+
v_bar = self.visual_feature(image)
|
514 |
+
t_bar = self.language_feature(language)
|
515 |
+
|
516 |
+
v_bar_s, t_bar_s = self.spatial_feature(x_feature, y_feature)
|
517 |
+
|
518 |
+
return v_bar, t_bar, v_bar_s, t_bar_s
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
class DocFormer(nn.Module):
|
523 |
+
|
524 |
+
'''
|
525 |
+
Easy boiler plate, because this model will just take as an input, the dictionary which is obtained from create_features function
|
526 |
+
'''
|
527 |
+
def __init__(self, config):
|
528 |
+
super().__init__()
|
529 |
+
self.config = config
|
530 |
+
self.extract_feature = ExtractFeatures(config)
|
531 |
+
self.encoder = DocFormerEncoder(config)
|
532 |
+
self.dropout = nn.Dropout(config['hidden_dropout_prob'])
|
533 |
+
|
534 |
+
def forward(self, x ,use_tdi=False):
|
535 |
+
v_bar, t_bar, v_bar_s, t_bar_s = self.extract_feature(x,use_tdi)
|
536 |
+
features = {'v_bar': v_bar, 't_bar': t_bar, 'v_bar_s': v_bar_s, 't_bar_s': t_bar_s}
|
537 |
+
output = self.encoder(features['t_bar'], features['v_bar'], features['t_bar_s'], features['v_bar_s'])
|
538 |
+
output = self.dropout(output)
|
539 |
+
return output
|
540 |
+
|
541 |
+
|
542 |
+
|
543 |
+
|
544 |
+
|
545 |
+
|