File size: 5,982 Bytes
0089672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Requirements.txt
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
from torch import cuda
from utils import convert_ans_to_token, convert_ques_to_token, rotate, convert_token_to_ques, convert_token_to_answer
from modeling import LaTr_for_pretraining, LaTr_for_finetuning, LaTrForVQA
from dataset import load_json_file, get_specific_file, resize_align_bbox, get_tokens_with_boxes, create_features
import torch.nn as nn
from PIL import Image, ImageDraw
import pytesseract
import pandas as pd
from tqdm.auto import tqdm
import numpy as np
import json
import os


# install PyTesseract
os.system('pip install -q pytesseract')
os.environ["TOKENIZERS_PARALLELISM"] = "false"


# Default Library import


# For the purpose of displaying the progress of map function
tqdm.pandas()

# Visualization libraries

# Specific libraries of LaTr

# Setting the hyperparameters as well as primary configurations

PAD_TOKEN_BOX = [0, 0, 0, 0]
max_seq_len = 512
batch_size = 2
target_size = (500, 384)
t5_model = "t5-base"


device = 'cuda' if cuda.is_available() else 'cpu'


# Configuration for the model
config = {
    't5_model': 't5-base',
    'vocab_size': 32128,
    'hidden_state': 768,
    'max_2d_position_embeddings': 1001,
    'classes': 32128,  # number of tokens
    'seq_len': 512
}

tokenizer = T5Tokenizer.from_pretrained(t5_model)
latr = LaTrForVQA(config, max_steps=max_steps)
url = 'https://www.kaggleusercontent.com/kf/99663112/eyJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..tGHcmnLDazeyRNWAxV-KDQ.6unLNRwl7AyVy0Qz3ONE1m_mRNmgC-8VGyS61PdkSeBMV7PpG2B1cD5liuLlok5LQiYrGujrULdtIXKTqCUU_PA3MMSRhi1VKkGMdtrzJLMvzA4jxlWh_qak8P89w4ir4LENyuPCan24M0MOLXYjrm4d1iiy4Hg8pp2o5zWgs0OrVYoh_AJNazOD7pRIjLEAqnM-Pa0LSmvJkfN7j3Zn_Fu9jJ7Pq3Z0rWVtEb-PbeY06f9t-0QK6-JU8K2LdQjuBaCxjgB3BlufgFhKuhU3CZXsJitG7tDnwMSl4JImGfMmBntE2kn9-0dl_aANxaQd2Lsy8KGUDNAdQ2vBpowGQ0-tgDT_w7DpG6DzmUlmzIegqJF1-JyurCO0TrX_RatoPa7jGzuqA5vUT4263-MkoAlR0Xuulq4_pwGV-WnJsrcLuuDtEKFVsYjQvikWM3c9Arw0MsXchYCQkl_OZ6ZqYZ6TZrYxujHE2B6nHxu0F-5xj33vQ2ojaMpHtDplTnqCe4TdmzRWV6LhopfL4x1NXIXry8we4IqgPPwnIy3G2lZVR39nPmNR-8IGjbvweVr6Ci6y1COdbLR4JiTMVc_Nvf2glVKRjppTdcEwLv-j1YR8JsZpZvjaOEokrNkyCG7J0PLJAHlY8iX-pRdBG4vivbSHxnKl3Qppa689VH0RARpOsOBYv-IF-rM1nSmKq7Ci.tXi1B0oNQFlUtxesMcma3w/models/epoch=0-step=34602.ckpt'


try:
    latr = latr.load_from_checkpoint(url)
    print("Checkpoint loaded successfully")
except:
    print("Checkpoint not loaded")
    pass


image = gr.inputs.Image(type="pil")
question = gr.inputs.Textbox(label="Question")
answer = gr.outputs.Textbox(label="Predicted answer")
examples = [["remote.jpg", "what number is the button near the top left?"]]


def answer_question(image, question):
    image.save('sample_img.jpg')

    # Extracting features from the image
    img, boxes, tokenized_words = create_features(image_path='sample_img.jpg',
                                                  tokenizer=tokenizer,
                                                  target_size=target_size,
                                                  max_seq_length=max_seq_length,
                                                  use_ocr=True
                                                  )

    ## Converting the boxes as per the format required for model input
    boxes = torch.as_tensor(boxes, dtype=torch.int32)
    width = (boxes[:, 2] - boxes[:, 0]).view(-1, 1)
    height = (boxes[:, 3] - boxes[:, 1]).view(-1, 1)
    boxes = torch.cat([boxes, width, height], axis = -1)

    ## Clamping the value,as some of the box values are out of bound
    boxes[:, 0] = torch.clamp(boxes[:, 0], min = 0, max = 0)
    boxes[:, 2] = torch.clamp(boxes[:, 2], min = 1000, max = 1000)
    boxes[:, 4] = torch.clamp(boxes[:, 4], min = 1000, max = 1000)
    
    boxes[:, 1] = torch.clamp(boxes[:, 1], min = 0, max = 0)
    boxes[:, 3] = torch.clamp(boxes[:, 3], min = 1000, max = 1000)
    boxes[:, 5] = torch.clamp(boxes[:, 5], min = 1000, max = 1000)

    ## Tensor tokenized words
    tokenized_words = torch.as_tensor(tokenized_words, dtype=torch.int32)
    
    img = transforms.ToTensor()(img)
    question = convert_ques_to_token(question = question, tokenizer = tokenizer)

    ## Expanding the dimension for inference
    img = img.unsqueeze(0)
    boxes = boxes.unsqueeze(0)
    tokenized_words = tokenized_words.unsqueeze(0)
    question = question.unsqueeze(0)

    encoding = {'img': img, 'boxes': boxes, 'tokenized_words': tokenized_words, 'question': question}
    
    with torch.no_grad():
        logits = latr.forward(encoding)
        logits = logits.squeeze(0)

    _, preds = torch.max(logits, dim = 1)
    preds = preds.detach().cpu()
    mask = torch.clamp(preds, min = 0, max = 1)
    last_non_zero_argument = (mask != 0).nonzero()[1][-1]
    
    predicted_ans = convert_token_to_ques(individual_ans_pred[:last_non_zero_argument], tokenizer)
    return predicted_ans


# Taken from here: https://huggingface.co/spaces/nielsr/vilt-vqa/blob/main/app.py
title = "Interactive demo: laTr (Layout Aware Transformer) for VQA"
description = "Gradio Demo for LaTr (Layout Aware Transformer),trained on TextVQA Dataset. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.12494' target='_blank'>LaTr: Layout-aware transformer for scene-text VQA,a novel multimodal architecture for Scene Text Visual Question Answering (STVQA)</a> | <a href='https://github.com/uakarsh/latr' target='_blank'>Github Repo</a></p>"

interface = gr.Interface(fn=answer_question,
                         inputs=[image, question],
                         outputs=answer,
                         examples=examples,
                         title=title,
                         description=description,
                         article=article,
                         enable_queue=True)
interface.launch(debug=True)