Spaces:
Runtime error
Runtime error
# import random | |
import torch | |
import math | |
from torch.nn.utils.rnn import pad_sequence | |
def find_pad_idx(boxes): | |
for i, j in enumerate(boxes): | |
if int(boxes[i].sum().item()) == 0: | |
return i | |
return i | |
# def apply_mask_on_token_bbox(boxes, tokenized_words, only_actual_words = False, span = 4, proportion_to_mask = 0.15, special_token = 103): | |
# ''' | |
# code taken from here: https://www.geeksforgeeks.org/python-non-overlapping-random-ranges/ | |
# Note: A more robust solution is to be coded | |
# ''' | |
# length_to_be_masked = int(proportion_to_mask*len(boxes)) | |
# if only_actual_words: | |
# tot = find_pad_idx(tokenized_words) | |
# else: | |
# tot = len(boxes) | |
# res = set() | |
# for _ in range(length_to_be_masked): | |
# temp = random.randint(0, tot - span) | |
# while any(((temp >= idx) and (temp <= idx + span)) for idx in res): | |
# temp = random.randint(0, tot - span) | |
# res.add(temp) | |
# ## Applying the mask on token | |
# tokenized_words[temp] = special_token | |
# ## Applying the masking on the box | |
# boxes[temp, 0] = torch.min(boxes[temp: temp+span, 0]) | |
# boxes[temp, 1] = torch.min(boxes[temp: temp+span, 1]) | |
# boxes[temp, 2] = torch.max(boxes[temp: temp+span, 2]) | |
# boxes[temp, 3] = torch.max(boxes[temp: temp+span, 3]) | |
# boxes[temp, 4] = boxes[temp, 2] - boxes[temp, 0] | |
# boxes[temp, 5] = boxes[temp, 3] - boxes[temp, 1] | |
# return res,boxes, tokenized_words | |
def convert_ans_to_token(answer, label2id, max_seq_length = 512 ): | |
## Simple Trick to pad a sequence to deired length | |
dummy_array = torch.zeros(max_seq_length) | |
actual_ans_array = [] | |
answer = answer.split(" ") | |
for token in answer: | |
actual_ans_array.append(label2id[token]['id']) | |
actual_ans_array = torch.tensor(actual_ans_array, dtype = torch.int32) | |
actual_ans_array = pad_sequence([actual_ans_array,dummy_array], batch_first = True)[0] | |
return actual_ans_array | |
def convert_ques_to_token(question, tokenizer, pad_token_id = 0, max_seq_len = 512): | |
question_array = [] | |
question = question.split(" ") | |
for token in question: | |
question_array.extend(tokenizer(token, add_special_tokens = False).input_ids) | |
if len(question_array)< max_seq_len: | |
question_array.extend([pad_token_id]* (max_seq_len-len(question_array))) | |
question_array = torch.tensor(question_array, dtype = torch.int32) | |
return question_array[:max_seq_len] | |
## To be taken from here | |
## https://logicatcore.github.io/scratchpad/lidar/sensor-fusion/jupyter/2021/04/20/3D-Oriented-Bounding-Box.html | |
def rotate(origin, point, angle): | |
""" | |
Rotate a point counterclockwise by a given angle around a given origin. | |
The angle should be given in radians. | |
modified from answer here: https://stackoverflow.com/questions/34372480/rotate-point-about-another-point-in-degrees-python | |
""" | |
# angle = np.deg2rad(angle) | |
ox, oy = origin | |
px, py = point | |
qx = ox + math.cos(angle) * (px - ox) - math.sin(angle) * (py - oy) | |
qy = oy + math.sin(angle) * (px - ox) + math.cos(angle) * (py - oy) | |
return int(qx), int(qy) | |
def convert_token_to_ques(ques, tokenizer): | |
decoded_ques = tokenizer.decode(ques, skip_special_tokens=True) | |
return decoded_ques | |
def convert_token_to_answer(ans, id2label): | |
non_zero_argument = torch.nonzero(ans,as_tuple = False).view(-1) | |
actual_answer = ans[non_zero_argument].cpu().numpy() | |
decoded_answer = [] | |
for token in actual_answer: | |
decoded_answer.append(id2label[token]) | |
decoded_answer = " ".join(decoded_answer) | |
return decoded_answer | |