latr-vqa / app.py
iakarshu's picture
Update app.py
751479f
raw
history blame
6.3 kB
# Requirements.txt
from torch import cuda
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr
from utils import convert_ans_to_token, convert_ques_to_token, rotate, convert_token_to_ques, convert_token_to_answer
from modeling import LaTr_for_pretraining, LaTr_for_finetuning, LaTrForVQA
from dataset import load_json_file, get_specific_file, resize_align_bbox, get_tokens_with_boxes, create_features
import torch.nn as nn
from PIL import Image, ImageDraw
import pytesseract
from tqdm.auto import tqdm
import numpy as np
import json
import os
import torch
from torchvision import transforms
# install PyTesseract
os.system('pip install -q pytesseract')
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Default Library import
# Visualization libraries
# Specific libraries of LaTr
# Setting the hyperparameters as well as primary configurations
PAD_TOKEN_BOX = [0, 0, 0, 0]
max_seq_len = 512
batch_size = 2
target_size = (500, 384)
t5_model = "t5-base"
device = 'cuda' if cuda.is_available() else 'cpu'
# Configuration for the model
config = {
't5_model': 't5-base',
'vocab_size': 32128,
'hidden_state': 768,
'max_2d_position_embeddings': 1001,
'classes': 32128, # number of tokens
'seq_len': 512
}
tokenizer = T5Tokenizer.from_pretrained(t5_model)
latr = LaTrForVQA(config)
url = 'https://www.kaggleusercontent.com/kf/99663112/eyJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0..2HGa6jqeAbugMJYxSkh7eA.XkaLSf8XlITet17Bscupegw9zWLw-IEizSy1lM-_PJF_Gfj-YuinOpDw4ad0M8r-s3WlnclQhHYrd2seaZVjBmkm5WSE6Dae1fW54dnNhyWF5w5O2VafNar7QSuUTSRzacJcmtqI1ypL3OZofwXuETbXq4weeqfDptFS5luxuV0P4Vaer_xEgfsdld6v8O5jjMXwb1CVmPCjMdZUE-HTgzTDiwv3Lb-P3dkRgU7q-iI5GeYZCODYGrX-koxya9DlfzKQZXmJmvtMj45vUZ8OSRB0_hTc7UosQanA-SalWznnOuyOgwl4hMag5toTomriWsxfvJIRBn9CYgFcvUJNqO_kDzBUoAwnagjcxXeEIJTJglwAl9Rs37XyfJAZr7yQ_YTXeRW1j2QMsT_M3qtS96IKRTpsqPVibl8Vrs9Q5g_vKccIQR9t7R9ma_DZLwjWYhDvDO06AZqtdaYGfWaOrbqe8dDvJkZoHsZEO8ukpIH6YNLyCO_dqgRsE77I9jqxiUqQh1KnuNv2hGRSlQR7u8OF7lpiRS7JEwj2MaxlzD58dyhOOLDqrbLp7XWrgV79EQcRYHFSMfhDvG0zmGvHjWGAg-LGhnYIc0NMVhyRv5Pfta9WYEl4qXxCTZWe4olgV79WHLqksQMVyTteheB36n4biHZKx4KZj7k-j3aSI72DIAvj7_UFeHxUTTZ1c6MB.7BF6J5MPMuhQFU48xVZ2qQ/models/epoch=0-step=34602.ckpt'
try:
latr = latr.load_from_checkpoint(url)
print("Checkpoint loaded successfully")
except:
print("Checkpoint not loaded")
pass
image = gr.inputs.Image(type="pil")
question = gr.inputs.Textbox(label="Question")
answer = gr.outputs.Textbox(label="Predicted answer")
examples = [["remote.jpg", "what number is the button near the top left?"]]
from transformers import ViTFeatureExtractor, ViTModel
vit_feat_extract = ViTFeatureExtractor("google/vit-base-patch16-224-in21k")
import torchvision
import numpy as np
def answer_question(image, question):
# Extracting features from the image
image.save("sample.png")
img, boxes, tokenized_words = create_features("sample.png",
tokenizer=tokenizer,
target_size=target_size,
max_seq_length=max_seq_len,
use_ocr=True
)
## Converting the boxes as per the format required for model input
boxes = torch.as_tensor(boxes, dtype=torch.int32)
width = (boxes[:, 2] - boxes[:, 0]).view(-1, 1)
height = (boxes[:, 3] - boxes[:, 1]).view(-1, 1)
boxes = torch.cat([boxes, width, height], axis = -1)
## Clamping the value,as some of the box values are out of bound
boxes[:, 0] = torch.clamp(boxes[:, 0], min = 0, max = 0)
boxes[:, 2] = torch.clamp(boxes[:, 2], min = 1000, max = 1000)
boxes[:, 4] = torch.clamp(boxes[:, 4], min = 1000, max = 1000)
boxes[:, 1] = torch.clamp(boxes[:, 1], min = 0, max = 0)
boxes[:, 3] = torch.clamp(boxes[:, 3], min = 1000, max = 1000)
boxes[:, 5] = torch.clamp(boxes[:, 5], min = 1000, max = 1000)
## Tensor tokenized words
tokenized_words = torch.as_tensor(tokenized_words, dtype=torch.int32)
img = np.array(img)
img = torchvision.transforms.ToTensor()(img)
question = convert_ques_to_token(question = question, tokenizer = tokenizer)
## Expanding the dimension for inference
boxes = boxes.unsqueeze(0)
tokenized_words = tokenized_words.unsqueeze(0)
question = question.unsqueeze(0)
# print("Shape of Image is:", img.shape)
img = vit_feat_extract(img, return_tensors = 'pt')['pixel_values']
if int(len(img.shape)) == 3:
img = img.unsqueeze(0)
encoding = {'img': img, 'boxes': boxes, 'tokenized_words': tokenized_words, 'question': question}
with torch.no_grad():
logits = latr.forward(encoding)
logits = logits.squeeze(0)
_, preds = torch.max(logits, dim = 1)
preds = preds.detach().cpu()
mask = torch.clamp(preds, min = 0, max = 1)
last_non_zero_argument = (mask != 0).nonzero()[1][-1]
predicted_ans = convert_token_to_ques(preds[:last_non_zero_argument], tokenizer)
return predicted_ans
# Taken from here: https://huggingface.co/spaces/nielsr/vilt-vqa/blob/main/app.py
title = "Interactive demo: laTr (Layout Aware Transformer) for VQA"
description = "Gradio Demo for LaTr (Layout Aware Transformer),trained on TextVQA Dataset. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.12494' target='_blank'>LaTr: Layout-aware transformer for scene-text VQA,a novel multimodal architecture for Scene Text Visual Question Answering (STVQA)</a> | <a href='https://github.com/uakarsh/latr' target='_blank'>Github Repo</a></p>"
examples = [['remote.png', "Is remote present in the picture?"]]
interface = gr.Interface(fn=answer_question,
inputs=[image, question],
outputs=answer,
examples=examples,
title=title,
description=description,
article=article,
enable_queue=True)
interface.launch(debug=True)