File size: 4,643 Bytes
9a6e24a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch.nn as nn
from modeling import LiLT
import torch
## Defining pytorch lightning model
from sklearn.metrics import accuracy_score, confusion_matrix
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import torchmetrics
import pytorch_lightning as pl


id2label = ['scientific_report',
 'resume',
 'memo',
 'file_folder',
 'specification',
 'news_article',
 'letter',
 'form',
 'budget',
 'handwritten',
 'email',
 'invoice',
 'presentation',
 'scientific_publication',
 'questionnaire',
 'advertisement']

class LiLTForClassification(nn.Module):
      
    def __init__(self, config):
      super(LiLTForClassification, self).__init__()

      self.lilt = LiLT(config)
      self.config = config
      self.dropout = nn.Dropout(config['hidden_dropout_prob'])
      self.linear_layer = nn.Linear(in_features = config['hidden_size'] * 2, out_features = len(id2label))  ## Number of Classes

    def forward(self, batch_dict):
        encodings = self.lilt(batch_dict['input_words'], batch_dict['input_boxes'])
        final_out = torch.cat([encodings['layout_hidden_states'][-1], 
                              encodings['text_hidden_states'][-1]
                              ],
                             axis = -1)[:, 0, :]
        final_out = self.linear_layer(final_out)
        return final_out


class LiLTPL(pl.LightningModule):

  def __init__(self, config , lr = 5e-5):
    super(LiLTPL, self).__init__()
    
    self.save_hyperparameters()
    self.config = config
    self.lilt = LiLTForClassification(config)
    
    self.num_classes = len(id2label)
    self.train_accuracy_metric = torchmetrics.Accuracy()
    self.val_accuracy_metric = torchmetrics.Accuracy()
    self.f1_metric = torchmetrics.F1Score(num_classes=self.num_classes)
    self.precision_macro_metric = torchmetrics.Precision(
            average="macro", num_classes=self.num_classes
        )
    self.recall_macro_metric = torchmetrics.Recall(
            average="macro", num_classes=self.num_classes
        )
    self.precision_micro_metric = torchmetrics.Precision(average="micro")
    self.recall_micro_metric = torchmetrics.Recall(average="micro")

  def forward(self, batch_dict):
    logits = self.lilt(batch_dict)
    return logits

  def training_step(self, batch, batch_idx):
    logits = self.forward(batch)

    loss = nn.CrossEntropyLoss()(logits, batch['label'])
    preds = torch.argmax(logits, 1)

    ## Calculating the accuracy score
    train_acc = self.train_accuracy_metric(preds, batch["label"])

    ## Logging
    self.log('train/loss', loss,prog_bar = True, on_epoch=True, logger=True, on_step=True)
    self.log('train/acc', train_acc, prog_bar = True, on_epoch=True, logger=True, on_step=True)

    return loss
  
  def validation_step(self, batch, batch_idx):
    logits = self.forward(batch)
    loss = nn.CrossEntropyLoss()(logits, batch['label'])
    preds = torch.argmax(logits, 1)
    
    labels = batch['label']
    # Metrics
    valid_acc = self.val_accuracy_metric(preds, labels)
    precision_macro = self.precision_macro_metric(preds, labels)
    recall_macro = self.recall_macro_metric(preds, labels)
    precision_micro = self.precision_micro_metric(preds, labels)
    recall_micro = self.recall_micro_metric(preds, labels)
    f1 = self.f1_metric(preds, labels)

    # Logging metrics
    self.log("valid/loss", loss, prog_bar=True, on_step=True, logger=True)
    self.log("valid/acc", valid_acc, prog_bar=True, on_epoch=True, logger=True, on_step=True)
    self.log("valid/precision_macro", precision_macro, prog_bar=True, on_epoch=True, logger=True, on_step=True)
    self.log("valid/recall_macro", recall_macro, prog_bar=True, on_epoch=True, logger=True, on_step=True)
    self.log("valid/precision_micro", precision_micro, prog_bar=True, on_epoch=True, logger=True, on_step=True)
    self.log("valid/recall_micro", recall_micro, prog_bar=True, on_epoch=True, logger=True, on_step=True)
    self.log("valid/f1", f1, prog_bar=True, on_epoch=True)
    
    return {"label": batch['label'], "logits": logits}

  def validation_epoch_end(self, outputs):
        labels = torch.cat([x["label"] for x in outputs])
        logits = torch.cat([x["logits"] for x in outputs])
        preds = torch.argmax(logits, 1)

        wandb.log({"cm": wandb.sklearn.plot_confusion_matrix(labels.cpu().numpy(), preds.cpu().numpy())})
        self.logger.experiment.log(
            {"roc": wandb.plot.roc_curve(labels.cpu().numpy(), logits.cpu().numpy())}
        )
        
  def configure_optimizers(self):
    return torch.optim.AdamW(self.parameters(), lr = self.hparams['lr'])