Kaushik Bar commited on
Commit
92be70e
1 Parent(s): 23de58a

first commit

Browse files
Files changed (2) hide show
  1. app.py +148 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import gradio as gr
3
+ import fasttext, torch, clip
4
+ from sentence_transformers import SentenceTransformer, util
5
+
6
+ model_en, preprocess_en = clip.load(model_tag="ViT-B/32")
7
+ model_multi = SentenceTransformer(model_tag="sentence-transformers/clip-ViT-B-32-multilingual-v1")
8
+
9
+ def prep_examples():
10
+ example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
11
+ people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
12
+ However, some will become seriously ill and require medical attention."
13
+ example_labels1 = "business;;health related;;politics;;climate change"
14
+
15
+ example_text2 = "Elephants are"
16
+ example_labels2 = "big;;small;;strong;;fast;;carnivorous"
17
+
18
+ example_text3 = "Elephants"
19
+ example_labels3 = "are big;;can be very small;;generally not strong enough;;are faster than you think"
20
+
21
+ example_text4 = "Dogs are man's best friend"
22
+ example_labels4 = "positive;;negative;;neutral"
23
+
24
+ example_text5 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
25
+ Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
26
+ Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
27
+ example_labels5 = "dünya;;ekonomi;;kültür;;siyaset;;spor;;teknoloji"
28
+
29
+ example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
30
+ example_labels6 = "verbrechen;;tragödie;;stehlen"
31
+
32
+ example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
33
+ example_labels7 = "cultura;;sociedad;;economia;;salud;;deportes"
34
+
35
+ example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
36
+ и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
37
+ войск от границ Украины."
38
+ example_labels8 = "новости;;комедия"
39
+
40
+ example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
41
+ hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
42
+ example_labels9 = "cinema;;politica;;cibo"
43
+
44
+ example_text10 = "Ja, vi elsker dette landet,\
45
+ som det stiger frem,\
46
+ furet, værbitt over vannet,\
47
+ med de tusen hjem.\
48
+ Og som fedres kamp har hevet\
49
+ det av nød til seir"
50
+ example_labels10 = "helse;;sport;;religion;;mat;;patriotisme og nasjonalisme"
51
+
52
+ example_text11 = "Amar sonar bangla ami tomay bhalobasi"
53
+ example_labels11 = "bhalo;;kharap"
54
+
55
+ examples = [
56
+ [example_text1, example_labels1],
57
+ [example_text2, example_labels2],
58
+ [example_text3, example_labels3],
59
+ [example_text4, example_labels4],
60
+ [example_text5, example_labels5],
61
+ [example_text6, example_labels6],
62
+ [example_text7, example_labels7],
63
+ [example_text8, example_labels8],
64
+ [example_text9, example_labels9],
65
+ [example_text10, example_labels10],
66
+ [example_text11, example_labels11]]
67
+
68
+ return examples
69
+
70
+ def detect_lang(sequence):
71
+ seq_lang = 'en'
72
+
73
+ sequence = sequence.replace('\n', ' ')
74
+
75
+ try:
76
+ seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1]
77
+ except:
78
+ print("Language detection failed!",
79
+ "Date:{}, Sequence:{}".format(
80
+ str(datetime.datetime.now())))
81
+
82
+ return seq_lang
83
+
84
+ def sequence_to_classify(text, labels):
85
+ lang = detect_lang(text)
86
+ if lang == 'en':
87
+ model = model_en
88
+ preprocess = preprocess_en
89
+ hypothesis_template = "This example is {}."
90
+ else:
91
+ model = model_multi
92
+ hypothesis_template = "{}."
93
+
94
+ labels = [hypothesis_template.format(label) for label in labels.split(";;")]
95
+
96
+ if str(type(model)) == "<class 'clip.model.CLIP'>":
97
+ text_tokens = clip.tokenize(text)
98
+ text_features = model.encode_text(text_tokens)
99
+
100
+ label_tokens = clip.tokenize(labels)
101
+ labels_features = model.encode_text(label_tokens)
102
+ else:
103
+ text_features = torch.tensor(model.encode(text))
104
+ labels_features = torch.tensor(self.model.encode(labels))
105
+
106
+ sim_scores = util.cos_sim(text_features, labels_features)
107
+ preds = []
108
+
109
+ for textlet, sim_score in zip([text], sim_scores):
110
+ out = []
111
+ pred = {}
112
+ for raw_score in sim_score:
113
+ out.append(raw_score.item() * 100)
114
+ probs = torch.tensor([out])
115
+ probs = probs.softmax(dim=-1).cpu().numpy()
116
+ scores = list(probs.flatten())
117
+
118
+ sorted_sl = sorted(zip(scores, candidate_labels), key=lambda t:t[0], reverse=True)
119
+
120
+ pred["labels"] = textlet
121
+ pred["scores"], pred["labels"] = zip(*sorted_sl)
122
+ preds.append(pred)
123
+
124
+ predicted_labels = preds['labels']
125
+ predicted_scores = preds['scores']
126
+ clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
127
+ print("Date:{}, Sequence:{}, Labels: {}".format(
128
+ str(datetime.datetime.now()),
129
+ text,
130
+ predicted_labels))
131
+
132
+ return clean_output
133
+
134
+ iface = gr.Interface(
135
+ title="Alternate Zero-shot Multi-label Multilingual NLP Classifier",
136
+ description="Work in progress.",
137
+ fn=sequence_to_classify,
138
+ inputs=[gr.inputs.Textbox(lines=10,
139
+ label="Please enter the text you would like to classify...",
140
+ placeholder="Text here..."),
141
+ gr.inputs.Textbox(lines=2,
142
+ label="Please enter the candidate labels (separated by 2 consecutive semicolons)...",
143
+ placeholder="Labels here separated by ;;")],
144
+ outputs=gr.outputs.Label(num_top_classes=5),
145
+ #interpretation="default",
146
+ examples=prep_examples())
147
+
148
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ sentence-transformers
3
+ git+https://github.com/openai/CLIP.git
4
+ fasttext