Kaushik Bar
commited on
Commit
•
92be70e
1
Parent(s):
23de58a
first commit
Browse files- app.py +148 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import gradio as gr
|
3 |
+
import fasttext, torch, clip
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
|
6 |
+
model_en, preprocess_en = clip.load(model_tag="ViT-B/32")
|
7 |
+
model_multi = SentenceTransformer(model_tag="sentence-transformers/clip-ViT-B-32-multilingual-v1")
|
8 |
+
|
9 |
+
def prep_examples():
|
10 |
+
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
11 |
+
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
12 |
+
However, some will become seriously ill and require medical attention."
|
13 |
+
example_labels1 = "business;;health related;;politics;;climate change"
|
14 |
+
|
15 |
+
example_text2 = "Elephants are"
|
16 |
+
example_labels2 = "big;;small;;strong;;fast;;carnivorous"
|
17 |
+
|
18 |
+
example_text3 = "Elephants"
|
19 |
+
example_labels3 = "are big;;can be very small;;generally not strong enough;;are faster than you think"
|
20 |
+
|
21 |
+
example_text4 = "Dogs are man's best friend"
|
22 |
+
example_labels4 = "positive;;negative;;neutral"
|
23 |
+
|
24 |
+
example_text5 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
|
25 |
+
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
|
26 |
+
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
|
27 |
+
example_labels5 = "dünya;;ekonomi;;kültür;;siyaset;;spor;;teknoloji"
|
28 |
+
|
29 |
+
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
|
30 |
+
example_labels6 = "verbrechen;;tragödie;;stehlen"
|
31 |
+
|
32 |
+
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
33 |
+
example_labels7 = "cultura;;sociedad;;economia;;salud;;deportes"
|
34 |
+
|
35 |
+
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
|
36 |
+
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
|
37 |
+
войск от границ Украины."
|
38 |
+
example_labels8 = "новости;;комедия"
|
39 |
+
|
40 |
+
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
|
41 |
+
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
|
42 |
+
example_labels9 = "cinema;;politica;;cibo"
|
43 |
+
|
44 |
+
example_text10 = "Ja, vi elsker dette landet,\
|
45 |
+
som det stiger frem,\
|
46 |
+
furet, værbitt over vannet,\
|
47 |
+
med de tusen hjem.\
|
48 |
+
Og som fedres kamp har hevet\
|
49 |
+
det av nød til seir"
|
50 |
+
example_labels10 = "helse;;sport;;religion;;mat;;patriotisme og nasjonalisme"
|
51 |
+
|
52 |
+
example_text11 = "Amar sonar bangla ami tomay bhalobasi"
|
53 |
+
example_labels11 = "bhalo;;kharap"
|
54 |
+
|
55 |
+
examples = [
|
56 |
+
[example_text1, example_labels1],
|
57 |
+
[example_text2, example_labels2],
|
58 |
+
[example_text3, example_labels3],
|
59 |
+
[example_text4, example_labels4],
|
60 |
+
[example_text5, example_labels5],
|
61 |
+
[example_text6, example_labels6],
|
62 |
+
[example_text7, example_labels7],
|
63 |
+
[example_text8, example_labels8],
|
64 |
+
[example_text9, example_labels9],
|
65 |
+
[example_text10, example_labels10],
|
66 |
+
[example_text11, example_labels11]]
|
67 |
+
|
68 |
+
return examples
|
69 |
+
|
70 |
+
def detect_lang(sequence):
|
71 |
+
seq_lang = 'en'
|
72 |
+
|
73 |
+
sequence = sequence.replace('\n', ' ')
|
74 |
+
|
75 |
+
try:
|
76 |
+
seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1]
|
77 |
+
except:
|
78 |
+
print("Language detection failed!",
|
79 |
+
"Date:{}, Sequence:{}".format(
|
80 |
+
str(datetime.datetime.now())))
|
81 |
+
|
82 |
+
return seq_lang
|
83 |
+
|
84 |
+
def sequence_to_classify(text, labels):
|
85 |
+
lang = detect_lang(text)
|
86 |
+
if lang == 'en':
|
87 |
+
model = model_en
|
88 |
+
preprocess = preprocess_en
|
89 |
+
hypothesis_template = "This example is {}."
|
90 |
+
else:
|
91 |
+
model = model_multi
|
92 |
+
hypothesis_template = "{}."
|
93 |
+
|
94 |
+
labels = [hypothesis_template.format(label) for label in labels.split(";;")]
|
95 |
+
|
96 |
+
if str(type(model)) == "<class 'clip.model.CLIP'>":
|
97 |
+
text_tokens = clip.tokenize(text)
|
98 |
+
text_features = model.encode_text(text_tokens)
|
99 |
+
|
100 |
+
label_tokens = clip.tokenize(labels)
|
101 |
+
labels_features = model.encode_text(label_tokens)
|
102 |
+
else:
|
103 |
+
text_features = torch.tensor(model.encode(text))
|
104 |
+
labels_features = torch.tensor(self.model.encode(labels))
|
105 |
+
|
106 |
+
sim_scores = util.cos_sim(text_features, labels_features)
|
107 |
+
preds = []
|
108 |
+
|
109 |
+
for textlet, sim_score in zip([text], sim_scores):
|
110 |
+
out = []
|
111 |
+
pred = {}
|
112 |
+
for raw_score in sim_score:
|
113 |
+
out.append(raw_score.item() * 100)
|
114 |
+
probs = torch.tensor([out])
|
115 |
+
probs = probs.softmax(dim=-1).cpu().numpy()
|
116 |
+
scores = list(probs.flatten())
|
117 |
+
|
118 |
+
sorted_sl = sorted(zip(scores, candidate_labels), key=lambda t:t[0], reverse=True)
|
119 |
+
|
120 |
+
pred["labels"] = textlet
|
121 |
+
pred["scores"], pred["labels"] = zip(*sorted_sl)
|
122 |
+
preds.append(pred)
|
123 |
+
|
124 |
+
predicted_labels = preds['labels']
|
125 |
+
predicted_scores = preds['scores']
|
126 |
+
clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels}
|
127 |
+
print("Date:{}, Sequence:{}, Labels: {}".format(
|
128 |
+
str(datetime.datetime.now()),
|
129 |
+
text,
|
130 |
+
predicted_labels))
|
131 |
+
|
132 |
+
return clean_output
|
133 |
+
|
134 |
+
iface = gr.Interface(
|
135 |
+
title="Alternate Zero-shot Multi-label Multilingual NLP Classifier",
|
136 |
+
description="Work in progress.",
|
137 |
+
fn=sequence_to_classify,
|
138 |
+
inputs=[gr.inputs.Textbox(lines=10,
|
139 |
+
label="Please enter the text you would like to classify...",
|
140 |
+
placeholder="Text here..."),
|
141 |
+
gr.inputs.Textbox(lines=2,
|
142 |
+
label="Please enter the candidate labels (separated by 2 consecutive semicolons)...",
|
143 |
+
placeholder="Labels here separated by ;;")],
|
144 |
+
outputs=gr.outputs.Label(num_top_classes=5),
|
145 |
+
#interpretation="default",
|
146 |
+
examples=prep_examples())
|
147 |
+
|
148 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
sentence-transformers
|
3 |
+
git+https://github.com/openai/CLIP.git
|
4 |
+
fasttext
|