import datetime import gradio as gr import fasttext, torch, clip from sentence_transformers import SentenceTransformer, util model_en, _ = clip.load("ViT-B/32") model_multi = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1") def prep_examples(): example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \ people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \ However, some will become seriously ill and require medical attention." example_labels1 = "business;;health related;;politics;;climate change" example_text2 = "Elephants are" example_labels2 = "big;;small;;strong;;fast;;carnivorous" example_text3 = "Elephants" example_labels3 = "are big;;can be very small;;generally not strong enough;;are faster than you think" example_text4 = "Dogs are man's best friend" example_labels4 = "positive;;negative;;neutral" example_text5 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \ Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \ Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi." example_labels5 = "dünya;;ekonomi;;kültür;;siyaset;;spor;;teknoloji" example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" example_labels6 = "verbrechen;;tragödie;;stehlen" example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" example_labels7 = "cultura;;sociedad;;economia;;salud;;deportes" example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \ и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \ войск от границ Украины." example_labels8 = "новости;;комедия" example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \ hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi." example_labels9 = "cinema;;politica;;cibo" example_text10 = "Ja, vi elsker dette landet,\ som det stiger frem,\ furet, værbitt over vannet,\ med de tusen hjem.\ Og som fedres kamp har hevet\ det av nød til seir" example_labels10 = "helse;;sport;;religion;;mat;;patriotisme og nasjonalisme" example_text11 = "Amar sonar bangla ami tomay bhalobasi" example_labels11 = "bhalo;;kharap" examples = [ [example_text1, example_labels1], [example_text2, example_labels2], [example_text3, example_labels3], [example_text4, example_labels4], [example_text5, example_labels5], [example_text6, example_labels6], [example_text7, example_labels7], [example_text8, example_labels8], [example_text9, example_labels9], [example_text10, example_labels10], [example_text11, example_labels11]] return examples def detect_lang(sequence): seq_lang = 'en' sequence = sequence.replace('\n', ' ') try: seq_lang = fasttext_model.predict(sequence, k=1)[0][0].split("__label__")[1] except: print("Language detection failed!", "Date:{}, Sequence:{}".format( str(datetime.datetime.now()))) return seq_lang def sequence_to_classify(text, labels): lang = detect_lang(text) if lang == 'en': model = model_en hypothesis_template = "This example is {}." else: model = model_multi hypothesis_template = "{}." labels = [hypothesis_template.format(label) for label in labels.split(";;")] if str(type(model)) == "": text_tokens = clip.tokenize(text) text_features = model.encode_text(text_tokens) label_tokens = clip.tokenize(labels) labels_features = model.encode_text(label_tokens) else: text_features = torch.tensor(model.encode(text)) labels_features = torch.tensor(self.model.encode(labels)) sim_scores = util.cos_sim(text_features, labels_features) preds = [] for textlet, sim_score in zip([text], sim_scores): out = [] pred = {} for raw_score in sim_score: out.append(raw_score.item() * 100) probs = torch.tensor([out]) probs = probs.softmax(dim=-1).cpu().numpy() scores = list(probs.flatten()) sorted_sl = sorted(zip(scores, candidate_labels), key=lambda t:t[0], reverse=True) pred["labels"] = textlet pred["scores"], pred["labels"] = zip(*sorted_sl) preds.append(pred) predicted_labels = preds['labels'] predicted_scores = preds['scores'] clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} print("Date:{}, Sequence:{}, Labels: {}".format( str(datetime.datetime.now()), text, predicted_labels)) return clean_output iface = gr.Interface( title="Alternate Zero-shot Multi-label Multilingual NLP Classifier", description="Work in progress.", fn=sequence_to_classify, inputs=[gr.inputs.Textbox(lines=10, label="Please enter the text you would like to classify...", placeholder="Text here..."), gr.inputs.Textbox(lines=2, label="Please enter the candidate labels (separated by 2 consecutive semicolons)...", placeholder="Labels here separated by ;;")], outputs=gr.outputs.Label(num_top_classes=5), #interpretation="default", examples=prep_examples()) iface.launch()